Skip to content
2000
image of Computational Analysis and in vitro Validation of the Anti-Prostate Cancer Activity of Sesamin from Sesamum indicum

Abstract

Introduction

Prostate cancer is the fourth most commonly diagnosed cancer worldwide and the eighth leading cause of cancer-related mortality, primarily affecting elderly males. Conventional therapeutic approaches, while effective in some cases, often come with substantial side effects, posing particular challenges for older patients. As a result, the exploration of natural compounds from traditional Chinese medicine (TCM) as potential anticancer agents has gained increasing attention. Sesamin, a dietary lignan found in sesame seeds and frequently used in TCM, has shown promise in preliminary studies for its antioxidant, anti-inflammatory, and potential anticancer properties. However, its specific effects and underlying mechanisms against prostate cancer cells remain inadequately characterized.

Materials and Methods

This study investigated the anticancer effects of sesamin on human prostate cancer DU145 cells. Cell viability was evaluated using MTT assays. Apoptosis induction and cell cycle distribution were assessed by flow cytometry. Protein expression levels of PPAR-γ, p21, and p53 were measured using Western blotting. Additionally, molecular docking was performed using the LibDock algorithm to evaluate sesamin’s binding affinity with the target proteins PPAR-γ and p21.

Results

Sesamin treatment significantly reduced the viability of DU145 cells in a dose-dependent manner. Flow cytometry revealed increased apoptosis and cell cycle arrest at the G1 phase. Western blot analysis showed upregulated expression of PPAR-γ and p21, while p53 expression remained largely unchanged. Molecular docking analysis demonstrated strong binding affinity of sesamin to PPAR-γ (LibDock score: 125.03) and p21 (LibDock score: 105.45), supporting its involvement in a p53-independent apoptotic mechanism.

Discussion

The study demonstrates that sesamin exerts significant anticancer effects on prostate cancer DU145 cells by inhibiting cell viability, inducing apoptosis, and causing G1 phase cell cycle arrest. The upregulation of PPAR-γ and p21, coupled with unchanged p53 expression, suggests that sesamin may activate a p53-independent pathway, a valuable feature in treating prostate cancers with defective p53 signaling. Molecular docking results corroborate these findings, indicating direct interactions between sesamin and its molecular targets.

Conclusion

Sesamin exhibits promising antiproliferative and pro-apoptotic activities against DU145 prostate cancer cells. Its potential to act as a G1-phase-specific chemotherapeutic agent a p53-independent mechanism warrants further investigation and development as a natural candidate for prostate cancer therapy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673401248251028114820
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Lin P.H. Chang S.W. Tsai L.H. Kan H.C. Liu J.M. Chuang C.K. Pang S.T. Yu K.J. Increasing incidence of prostate cancer in Taiwan. Medicine 2020 99 39 22336 10.1097/MD.0000000000022336 32991446
    [Google Scholar]
  4. Incidence and mortality rates for the top 10 cancer in Taiwan. 2022 Available from: https://twcr.tw/wp-content/uploads/2024/02/Top-10-cancers-in-Taiwan-2021.pdf
  5. Mohan L. Plant-based drugs as an adjuvant to cancer chemotherapy. Alternative Medicine Update United Kingdom IntechOpen 2021 10.5772/intechopen.94040
    [Google Scholar]
  6. Safarzadeh E. Shotorbani S.S. Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull. 2014 4 Suppl 1 421 427 10.5681/apb.2014.062
    [Google Scholar]
  7. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  8. Gahtori R. Tripathi A.H. Kumari A. Negi N. Paliwal A. Tripathi P. Joshi P. Rai R.C. Upadhyay S.K. Anticancer plant-derivatives: Deciphering their oncopreventive and therapeutic potential in molecular terms. Future J. Pharm. Sci. 2023 9 1 14 10.1186/s43094‑023‑00465‑5
    [Google Scholar]
  9. Dehelean C.A. Marcovici I. Soica C. Mioc M. Coricovac D. Iurciuc S. Cretu O.M. Pinzaru I. Plant-derived anticancer compounds as new perspectives in drug discovery and alternative therapy. Molecules 2021 26 4 1109 10.3390/molecules26041109 33669817
    [Google Scholar]
  10. Zou K. Yang S. Zheng L. Yang C. Xiong B. Efficacy and safety of target combined chemotherapy in advanced gastric cancer: A meta-analysis and system review. BMC Cancer 2016 16 1 737 10.1186/s12885‑016‑2772‑5 27633381
    [Google Scholar]
  11. Di Maio M. Chiodini P. Georgoulias V. Hatzidaki D. Takeda K. Wachters F.M. Gebbia V. Smit E.F. Morabito A. Gallo C. Perrone F. Gridelli C. Meta-analysis of single-agent chemotherapy compared with combination chemotherapy as second-line treatment of advanced non-small-cell lung cancer. J. Clin. Oncol. 2009 27 11 1836 1843 10.1200/JCO.2008.17.5844 19273711
    [Google Scholar]
  12. Jakobušić Brala C. Karković Marković A. Kugić A. Torić J. Barbarić M. Combination chemotherapy with selected polyphenols in preclinical and clinical studies-an update overview. Molecules 2023 28 9 3746 10.3390/molecules28093746 37175156
    [Google Scholar]
  13. Gross S.M. Mohammadi F. Sanchez-Aguila C. Zhan P.J. Liby T.A. Dane M.A. Meyer A.S. Heiser L.M. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nat. Commun. 2023 14 1 3450 10.1038/s41467‑023‑39122‑z 37301933
    [Google Scholar]
  14. Mokhtari R.B. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723 28410237
    [Google Scholar]
  15. Gilad Y. Gellerman G. Lonard D.M. O’Malley B.W. Drug combination in cancer treatment-from cocktails to conjugated combinations. Cancers 2021 13 4 669 10.3390/cancers13040669 33562300
    [Google Scholar]
  16. Kim A.Y. Yun C.I. Lee J.G. Kim Y.J. Determination and daily intake estimation of lignans in sesame seeds and sesame oil products in Korea. Foods 2020 9 4 394 10.3390/foods9040394 32235516
    [Google Scholar]
  17. Majdalawieh A.F. Massri M. Nasrallah G.K. A comprehensive review on the anti-cancer properties and mechanisms of action of sesamin, a lignan in sesame seeds (Sesamum indicum). Eur. J. Pharmacol. 2017 815 512 521 10.1016/j.ejphar.2017.10.020 29032105
    [Google Scholar]
  18. Sohel M. Islam M.N. Hossain M.A. Sultana T. Dutta A. Rahman M.S. Aktar S. Islam K. Al Mamun A. Pharmacological properties to pharmacological insight of sesamin in breast cancer treatment: A literature-based review study. Int. J. Breast Cancer 2022 2022 1 13 10.1155/2022/2599689 35223101
    [Google Scholar]
  19. Kuo T.N. Lin C.S. Li G.D. Kuo C.Y. Kao S.H. Sesamin inhibits cervical cancer cell proliferation by promoting p53/PTEN-mediated apoptosis. Int. J. Med. Sci. 2020 17 15 2292 2298 10.7150/ijms.48955 32922194
    [Google Scholar]
  20. Chen Y. Li H. Zhang W. Qi W. Lu C. Huang H. Yang Z. Liu B. Zhang L. Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway. Toxicol. Appl. Pharmacol. 2020 387 114848 10.1016/j.taap.2019.114848 31809756
    [Google Scholar]
  21. Wen L. Mao W. Xu L. Cai B. Gu L. Sesamin exerts anti-tumor activity in esophageal squamous cell carcinoma via inhibition of TRIM44 and NF‐κB signaling. Chem. Biol. Drug Des. 2022 99 1 118 125 10.1111/cbdd.13937 34411455
    [Google Scholar]
  22. Wu M.S. Aquino L.B.B. Barbaza M.Y.U. Hsieh C.L. De Castro-Cruz K.A. Yang L.L. Tsai P.W. Anti-inflammatory and anticancer properties of bioactive compounds from sesamum indicum L. - A review. Molecules 2019 24 24 4426 10.3390/molecules24244426 31817084
    [Google Scholar]
  23. Ping S.Y. Hour T.C. Lin S.R. Yu D.S. Taxol synergizes with antioxidants in inhibiting hormal refractory prostate cancer cell growth. Urol. Oncol. 2010 28 2 170 179 10.1016/j.urolonc.2008.07.003 18818108
    [Google Scholar]
  24. Yin F. Wakino S. Liu Z. Kim S. Hsueh W.A. Collins A.R. Van Herle A.J. Law R.E. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem. Biophys. Res. Commun. 2001 286 5 916 922 10.1006/bbrc.2001.5491 11527386
    [Google Scholar]
  25. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  26. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27
    [Google Scholar]
  27. Kanehisa M. Araki M. Goto S. Hattori M. Hirakawa M. Itoh M. Katayama T. Kawashima S. Okuda S. Tokimatsu T. Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007 36 Database D480 D484 10.1093/nar/gkm882 18077471
    [Google Scholar]
  28. Aleksander S.A. Balhoff J. Carbon S. Cherry J.M. Drabkin H.J. Ebert D. Feuermann M. Gaudet P. Harris N.L. Hill D.P. Lee R. Mi H. Moxon S. Mungall C.J. Muruganugan A. Mushayahama T. Sternberg P.W. Thomas P.D. Van Auken K. Ramsey J. Siegele D.A. Chisholm R.L. Fey P. Aspromonte M.C. Nugnes M.V. Quaglia F. Tosatto S. Giglio M. Nadendla S. Antonazzo G. Attrill H. dos Santos G. Marygold S. Strelets V. Tabone C.J. Thurmond J. Zhou P. Ahmed S.H. Asanitthong P. Luna Buitrago D. Erdol M.N. Gage M.C. Ali Kadhum M. Li K.Y.C. Long M. Michalak A. Pesala A. Pritazahra A. Saverimuttu S.C.C. Su R. Thurlow K.E. Lovering R.C. Logie C. Oliferenko S. Blake J. Christie K. Corbani L. Dolan M.E. Drabkin H.J. Hill D.P. Ni L. Sitnikov D. Smith C. Cuzick A. Seager J. Cooper L. Elser J. Jaiswal P. Gupta P. Jaiswal P. Naithani S. Lera-Ramirez M. Rutherford K. Wood V. De Pons J.L. Dwinell M.R. Hayman G.T. Kaldunski M.L. Kwitek A.E. Laulederkind S.J.F. Tutaj M.A. Vedi M. Wang S.J. D’Eustachio P. Aimo L. Axelsen K. Bridge A. Hyka-Nouspikel N. Morgat A. Aleksander S.A. Cherry J.M. Engel S.R. Karra K. Miyasato S.R. Nash R.S. Skrzypek M.S. Weng S. Wong E.D. Bakker E. Berardini T.Z. Reiser L. Auchincloss A. Axelsen K. Argoud-Puy G. Blatter M.C. Boutet E. Breuza L. Bridge A. Casals-Casas C. Coudert E. Estreicher A. Livia Famiglietti M. Feuermann M. Gos A. Gruaz-Gumowski N. Hulo C. Hyka-Nouspikel N. Jungo F. Le Mercier P. Lieberherr D. Masson P. Morgat A. Pedruzzi I. Pourcel L. Poux S. Rivoire C. Sundaram S. Bateman A. Bowler-Barnett E. Bye-A-Jee H. Denny P. Ignatchenko A. Ishtiaq R. Lock A. Lussi Y. Magrane M. Martin M.J. Orchard S. Raposo P. Speretta E. Tyagi N. Warner K. Zaru R. Diehl A.D. Lee R. Chan J. Diamantakis S. Raciti D. Zarowiecki M. Fisher M. James-Zorn C. Ponferrada V. Zorn A. Ramachandran S. Ruzicka L. Westerfield M. Aleksander S.A. Balhoff J. Carbon S. Cherry J.M. Drabkin H.J. Ebert D. Feuermann M. Gaudet P. Harris N.L. Hill D.P. Lee R. Mi H. Moxon S. Mungall C.J. Muruganugan A. Mushayahama T. Sternberg P.W. Thomas P.D. Van Auken K. Ramsey J. Siegele D.A. Chisholm R.L. Fey P. Aspromonte M.C. Nugnes M.V. Quaglia F. Tosatto S. Giglio M. Nadendla S. Antonazzo G. Attrill H. dos Santos G. Marygold S. Strelets V. Tabone C.J. Thurmond J. Zhou P. Ahmed S.H. Asanitthong P. Luna Buitrago D. Erdol M.N. Gage M.C. Ali Kadhum M. Li K.Y.C. Long M. Michalak A. Pesala A. Pritazahra A. Saverimuttu S.C.C. Su R. Thurlow K.E. Lovering R.C. Logie C. Oliferenko S. Blake J. Christie K. Corbani L. Dolan M.E. Drabkin H.J. Hill D.P. Ni L. Sitnikov D. Smith C. Cuzick A. Seager J. Cooper L. Elser J. Jaiswal P. Gupta P. Jaiswal P. Naithani S. Lera-Ramirez M. Rutherford K. Wood V. De Pons J.L. Dwinell M.R. Hayman G.T. Kaldunski M.L. Kwitek A.E. Laulederkind S.J.F. Tutaj M.A. Vedi M. Wang S-J. D’Eustachio P. Aimo L. Axelsen K. Bridge A. Hyka-Nouspikel N. Morgat A. Aleksander S.A. Cherry J.M. Engel S.R. Karra K. Miyasato S.R. Nash R.S. Skrzypek M.S. Weng S. Wong E.D. Bakker E. Berardini T.Z. Reiser L. Auchincloss A. Axelsen K. Argoud-Puy G. Blatter M-C. Boutet E. Breuza L. Bridge A. Casals-Casas C. Coudert E. Estreicher A. Livia Famiglietti M. Feuermann M. Gos A. Gruaz-Gumowski N. Hulo C. Hyka-Nouspikel N. Jungo F. Le Mercier P. Lieberherr D. Masson P. Morgat A. Pedruzzi I. Pourcel L. Poux S. Rivoire C. Sundaram S. Bateman A. Bowler-Barnett E. Bye-A-Jee H. Denny P. Ignatchenko A. Ishtiaq R. Lock A. Lussi Y. Magrane M. Martin M.J. Orchard S. Raposo P. Speretta E. Tyagi N. Warner K. Zaru R. Diehl A.D. Lee R. Chan J. Diamantakis S. Raciti D. Zarowiecki M. Fisher M. James-Zorn C. Ponferrada V. Zorn A. Ramachandran S. Ruzicka L. Westerfield M. The gene ontology knowledgebase in 2023. Genetics 2023 224 1 iyad031 10.1093/genetics/iyad031 36866529
    [Google Scholar]
  29. Milacic M. Beavers D. Conley P. Gong C. Gillespie M. Griss J. Haw R. Jassal B. Matthews L. May B. Petryszak R. Ragueneau E. Rothfels K. Sevilla C. Shamovsky V. Stephan R. Tiwari K. Varusai T. Weiser J. Wright A. Wu G. Stein L. Hermjakob H. D’Eustachio P. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024 52 D1 D672 D678 10.1093/nar/gkad1025 37941124
    [Google Scholar]
  30. Hagenbuchner J. Obsilova V. Kaserer T. Kaiser N. Rass B. Psenakova K. Docekal V. Alblova M. Kohoutova K. Schuster D. Aneichyk T. Vesely J. Obexer P. Obsil T. Ausserlechner M.J. Modulating FOXO3 transcriptional activity by small, DBD-binding molecules. eLife 2019 8 48876 10.7554/eLife.48876 31789593
    [Google Scholar]
  31. Bugnon M. Röhrig U.F. Goullieux M. Perez M.A.S. Daina A. Michielin O. Zoete V. SwissDock 2024: Major enhancements for small-molecule docking with Attracting Cavities and AutoDock Vina. Nucleic Acids Res. 2024 52 W1 W324 W332 10.1093/nar/gkae300 38686803
    [Google Scholar]
  32. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  33. Whitty A. Zhong M. Viarengo L. Beglov D. Hall D.R. Vajda S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today 2016 21 5 712 717 10.1016/j.drudis.2016.02.005 26891978
    [Google Scholar]
  34. Dossou S.S.K. Xu F. Dossa K. Zhou R. Zhao Y. Wang L. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): A comprehensive review and future prospects. J. Integr. Agric. 2023 22 1 14 30 10.1016/j.jia.2022.08.097
    [Google Scholar]
  35. Andargie M. Vinas M. Rathgeb A. Möller E. Karlovsky P. Lignans of sesame (Sesamum indicum L.): A comprehensive review. Molecules 2021 26 4 883 10.3390/molecules26040883 33562414
    [Google Scholar]
  36. Hemalatha S. Ghafoorunissa Sesame lignans enhance the thermal stability of edible vegetable oils. Food Chem. 2007 105 3 1076 1085 10.1016/j.foodchem.2007.05.023
    [Google Scholar]
  37. Chen W.L. Lu H.C. Huang H.Y. Hwang G.Y. Tzen J.T.C. Sesame lignans significantly alleviate liver damage of rats caused by carbon tetrachloride in combination with kava. Yao Wu Shi Pin Fen Xi 2020 18 4 10.38212/2224‑6614.2241
    [Google Scholar]
  38. Hadipour E. Emami S.A. Tayarani-Najaran N. Tayarani-Najaran Z. Effects of sesame (Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci. Nutr. 2023 11 7 3729 3757 10.1002/fsn3.3407 37457142
    [Google Scholar]
  39. Ide T. Nakashima Y. Iida H. Yasumoto S. Katsuta M. Lipid metabolism and nutrigenomics - impact of sesame lignans on gene expression profiles and fatty acid oxidation in rat liver. Forum Nutr. 2009 61 10 24 10.1159/000212735 19367107
    [Google Scholar]
  40. Wei P. Zhao F. Wang Z. Wang Q. Chai X. Hou G. Meng Q. Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients 2022 14 19 4079 10.3390/nu14194079 36235731
    [Google Scholar]
  41. Siao A.C. Hou C.W. Kao Y.H. Jeng K.C. Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells. Asian Pac. J. Cancer Prev. 2015 16 9 3779 3783 10.7314/APJCP.2015.16.9.3779 25987037
    [Google Scholar]
  42. Deng P. Wang C. Chen L. Wang C. Du Y. Yan X. Chen M. Yang G. He G. Sesamin induces cell cycle arrest and apoptosis through the inhibition of signal transducer and activator of transcription 3 signalling in human hepatocellular carcinoma cell line HepG2. Biol. Pharm. Bull. 2013 36 10 1540 1548 10.1248/bpb.b13‑00235 24088253
    [Google Scholar]
  43. Sarkaria J.N. Kitange G.J. James C.D. Plummer R. Calvert H. Weller M. Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin. Cancer Res. 2008 14 10 2900 2908 10.1158/1078‑0432.CCR‑07‑1719 18483356
    [Google Scholar]
  44. Lei Z.N. Tian Q. Teng Q.X. Wurpel J.N.D. Zeng L. Pan Y. Chen Z.S. Understanding and targeting resistance mechanisms in cancer. MedComm 2023 4 3 265 10.1002/mco2.265 37229486
    [Google Scholar]
  45. Feroz W. Sheikh A.M.A. Exploring the multiple roles of guardian of the genome: P53. Egypt. J. Med. Hum. Genet. 2020 21 1 49 10.1186/s43042‑020‑00089‑x
    [Google Scholar]
  46. Ozaki T. Nakagawara A. Role of p53 in cell death and human cancers. Cancers (Basel) 2011 3 1 994 1013 10.3390/cancers3010994 24212651
    [Google Scholar]
  47. Eskandari E. Eaves C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 2022 221 6 202201159 10.1083/jcb.202201159 35551578
    [Google Scholar]
  48. McIlwain D.R. Berger T. Mak T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013 5 4 a008656 10.1101/cshperspect.a008656 23545416
    [Google Scholar]
  49. Elrod H.A. Sun S.Y. PPARγ and apoptosis in cancer. PPAR Res. 2008 2008 1 704165 10.1155/2008/704165 18615184
    [Google Scholar]
  50. Tsao T. Kornblau S. Safe S. Watt J.C. Ruvolo V. Chen W. Qiu Y. Coombes K.R. Ju Z. Abdelrahim M. Schober W. Ling X. Kardassis D. Meyer C. Schimmer A. Kantarjian H. Andreeff M. Konopleva M. Role of peroxisome proliferator-activated receptor-γ and its coactivator DRIP205 in cellular responses to CDDO (RTA-401) in acute myelogenous leukemia. Cancer Res. 2010 70 12 4949 4960 10.1158/0008‑5472.CAN‑09‑1962 20501850
    [Google Scholar]
  51. Augimeri G. Giordano C. Gelsomino L. Plastina P. Barone I. Catalano S. Andò S. Bonofiglio D. The role of pparγ ligands in breast cancer: From basic research to clinical studies. Cancers 2020 12 9 2623 10.3390/cancers12092623 32937951
    [Google Scholar]
  52. Słowikowski B.K. Drzewiecka H. Malesza M. Mądry I. Sterzyńska K. Jagodziński P.P. The influence of conjugated linoleic acid on the expression of peroxisome proliferator-activated receptor-γ and selected apoptotic genes in non-small cell lung cancer. Mol. Cell. Biochem. 2020 466 1-2 65 82 10.1007/s11010‑020‑03689‑8 31993929
    [Google Scholar]
  53. Hong J. Samudio I. Liu S. Abdelrahim M. Safe S. Peroxisome proliferator-activated receptor γ-dependent activation of p21 in Panc-28 pancreatic cancer cells involves Sp1 and Sp4 proteins. Endocrinology 2004 145 12 5774 5785 10.1210/en.2004‑0686 15345676
    [Google Scholar]
  54. Matsuda T. Kato T. Kiyotani K. Tarhan Y.E. Saloura V. Chung S. Ueda K. Nakamura Y. Park J.H. p53-independent p21 induction by MELK inhibition. Oncotarget 2017 8 35 57938 57947 10.18632/oncotarget.18488 28938528
    [Google Scholar]
  55. Aliouat-Denis C.M. Dendouga N. Van den Wyngaert I. Goehlmann H. Steller U. van de Weyer I. Van Slycken N. Andries L. Kass S. Luyten W. Janicot M. Vialard J.E. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2. Mol. Cancer Res. 2005 3 11 627 634 10.1158/1541‑7786.MCR‑05‑0121 16317088
    [Google Scholar]
  56. Stefania Crispi Crispi S. The dual role played by p21 may influence the apoptotic or anti-apoptotic fate in cancer. J. Cancer Res. Updates 2012 1 2 189 202 10.6000/1929‑2279.2012.01.02.5
    [Google Scholar]
  57. Karimian A. Ahmadi Y. Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016 42 63 71 10.1016/j.dnarep.2016.04.008 27156098
    [Google Scholar]
  58. Chen A. Huang X. Xue Z. Cao D. Huang K. Chen J. Pan Y. Gao Y. The role of p21 in apoptosis, proliferation, cell cycle arrest, and antioxidant activity in UVB-irradiated human HaCaT keratinocytes. Med. Sci. Monit. Basic Res. 2015 21 86 95 10.12659/MSMBR.893608 25925725
    [Google Scholar]
  59. Jung Y.S. Qian Y. Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell. Signal. 2010 22 7 1003 1012 10.1016/j.cellsig.2010.01.013 20100570
    [Google Scholar]
  60. Wander S.A. O’Brien N. Litchfield L.M. O’Dea D. Morato Guimaraes C. Slamon D.J. Goel S. Targeting CDK4 and 6 in cancer therapy: Emerging preclinical insights related to abemaciclib. Oncologist 2022 27 10 811 821 10.1093/oncolo/oyac138 35917168
    [Google Scholar]
  61. Hamilton E. Infante J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev. 2016 45 129 138 10.1016/j.ctrv.2016.03.002 27017286
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673401248251028114820
Loading
/content/journals/cmc/10.2174/0109298673401248251028114820
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: cyclin-dependent kinase inhibitor ; Apoptosis ; PPI ; sesamin ; P53 ; CDKN1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test