Skip to content
2000
image of EGF Family-Based Prognostic Model Reveals AREG as a Key Regulator in Cervical Cancer Progression

Abstract

Introduction

This study investigates the prognostic value of Epidermal Growth Factor (EGF) family genes in Cervical Cancer (CC) and experimentally validates the role of AREG in the progression of CC.

Methods

Transcriptome and clinical data of CC were obtained from the TCGA database. We constructed a prognostic model using LASSO Cox regression analysis based on candidate EGF family genes. Multiple bioinformatics approaches were employed to analyze functional pathways and immune characteristics. The biological function of Amphiregulin (AREG) was validated through experiments, including colony formation, CCK8 proliferation assay, wound healing assay, transwell assay, macrophage polarization analysis using the co-culture system, and subcutaneous tumor formation in nude mice. Combination therapy with anti-AREG and anti-PD-L1 antibodies was evaluated in a murine C57BL/6 model.

Results

We identified 116 EGF family-related genes associated with CC progression and established a prognostic model. High-risk and low-risk groups showed distinct functional enrichment patterns and immune characteristics. AREG emerged as a key prognostic factor, with significantly elevated expression in CC cells. Knockdown of AREG suppressed CC cell proliferation, migration, and invasion, potentially through modulating Epithelial-Mesenchymal Transition (EMT). AREG promoted M2 macrophage polarization, fostering an immunosuppressive tumor microenvironment. Anti-AREG antibody treatment demonstrated antitumor effects and , synergizing with anti-PD-L1 therapy to significantly inhibit tumor growth and reverse EMT.

Discussion

Our findings establish the first EGF family-based prognostic model for CC and reveal AREG's dual role in promoting EMT and reshaping the immune microenvironment. The observed synergy between AREG inhibition and PD-L1 blockade provides mechanistic insights for overcoming immunotherapy resistance. Limitations include retrospective data analysis and a lack of multi-omics validation.

Conclusion

Our study establishes a robust EGF family gene-based prognostic model for CC patients and identifies AREG as a promising therapeutic target. These findings provide new insights for CC prognosis assessment and treatment strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673397451251105070115
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Perkins R.B. Wentzensen N. Guido R.S. Schiffman M. Cervical cancer screening. JAMA 2023 330 6 547 558 10.1001/jama.2023.13174 37552298
    [Google Scholar]
  3. Wu C. Li M. Meng H. Liu Y. Niu W. Zhou Y. Zhao R. Duan Y. Zeng Z. Li X. Li G. Xiong W. Zhou M. Analysis of status and countermeasures of cancer incidence and mortality in china. Sci. China Life Sci. 2019 62 5 640 647 10.1007/s11427‑018‑9461‑5 30900169
    [Google Scholar]
  4. Rahangdale L. Mungo C. O’Connor S. Chibwesha C.J. Brewer N.T. Human papillomavirus vaccination and cervical cancer risk. BMJ 2022 379 e070115 10.1136/bmj‑2022‑070115 36521855
    [Google Scholar]
  5. Yuan Y. Cai X. Shen F. Ma F. HPV post-infection microenvironment and cervical cancer. Cancer Lett. 2021 497 243 254 10.1016/j.canlet.2020.10.034 33122098
    [Google Scholar]
  6. Jha A.K. Mithun S. Sherkhane U.B. Jaiswar V. Osong B. Purandare N. Kannan S. Prabhash K. Gupta S. Vanneste B. Rangarajan V. Dekker A. Wee L. Systematic review and meta-analysis of prediction models used in cervical cancer. Artif. Intell. Med. 2023 139 102549 10.1016/j.artmed.2023.102549 37100501
    [Google Scholar]
  7. Hu Z. Ma D. The precision prevention and therapy of HPV -related cervical cancer: New concepts and clinical implications. Cancer Med. 2018 7 10 5217 5236 10.1002/cam4.1501 30589505
    [Google Scholar]
  8. Feng X. Chen H. Li L. Gao L. Wang L. Bai X. Postoperative adjuvant chemotherapy improved the prognosis in locally advanced cervical cancer patients with optimal response to neoadjuvant chemotherapy. Front. Oncol. 2020 10 608333 10.3389/fonc.2020.608333 33365274
    [Google Scholar]
  9. John T. Taylor A. Wang H. Eichinger C. Freeman C. Ahn M.J. Uncommon EGFR mutations in non-small-cell lung cancer: A systematic literature review of prevalence and clinical outcomes. Cancer Epidemiol. 2022 76 102080 10.1016/j.canep.2021.102080 34922050
    [Google Scholar]
  10. Damare R. Engle K. Kumar G. Targeting epidermal growth factor receptor and its downstream signaling pathways by natural products: A mechanistic insight. Phytother. Res. 2024 38 5 2406 2447 10.1002/ptr.8166 38433568
    [Google Scholar]
  11. Atwell B. Chalasani P. Schroeder J. Nuclear epidermal growth factor receptor as a therapeutic target. Exploration of Targeted Anti-tumor Therapy 2023 4 4 616 629 10.37349/etat.2023.00156 37720348
    [Google Scholar]
  12. Li K. Du Y. Li L. Wei D.Q. Bioinformatics Approaches for Anti-cancer Drug Discovery. Curr. Drug Targets 2019 21 1 3 17 10.2174/1389450120666190923162203 31549592
    [Google Scholar]
  13. Lin X. Zheng J. Li Y. Liu L. Liu Q. Lin J. Sun Y. Mitochondria-related genes as prognostic signature of endometrial cancer and the effect of MACC1 on tumor cells. PLoS One 2025 20 5 e0323002 10.1371/journal.pone.0323002 40354443
    [Google Scholar]
  14. Zheng J. Jiang S. Lin X. Wang H. Liu L. Cai X. Sun Y. Comprehensive analyses of mitophagy-related genes and mitophagy-related lncRNAs for patients with ovarian cancer. BMC Womens Health 2024 24 1 37 10.1186/s12905‑023‑02864‑5 38218807
    [Google Scholar]
  15. Lin X. Zheng J. Cai X. Liu L. Jiang S. Liu Q. Sun Y. Glycometabolism and lipid metabolism related genes predict the prognosis of endometrial carcinoma and their effects on tumor cells. BMC Cancer 2024 24 1 571 10.1186/s12885‑024‑12327‑1 38720279
    [Google Scholar]
  16. Wang S. Xiong Y. Zhao L. Gu K. Li Y. Zhao F. Li J. Wang M. Wang H. Tao Z. Wu T. Zheng Y. Li X. Liu X.S. UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data. Bioinformatics 2022 38 2 527 529 10.1093/bioinformatics/btab561 34323947
    [Google Scholar]
  17. Stanfill A.G. Cao X. Enhancing research through the use of the genotype-tissue expression (GTEx) Database. Biol. Res. Nurs. 2021 23 3 533 540 10.1177/1099800421994186 33596660
    [Google Scholar]
  18. Mudge J.M. Carbonell-Sala S. Diekhans M. Martinez J.G. Hunt T. Jungreis I. Loveland J.E. Arnan C. Barnes I. Bennett R. Berry A. Bignell A. Cerdán-Vélez D. Cochran K. Cortés L.T. Davidson C. Donaldson S. Dursun C. Fatima R. Hardy M. Hebbar P. Hollis Z. James B.T. Jiang Y. Johnson R. Kaur G. Kay M. Mangan R.J. Maquedano M. Gómez L.M. Mathlouthi N. Merritt R. Ni P. Palumbo E. Perteghella T. Pozo F. Raj S. Sisu C. Steed E. Sumathipala D. Suner M.M. Uszczynska-Ratajczak B. Wass E. Yang Y.T. Zhang D. Finn R.D. Gerstein M. Guigó R. Hubbard T.J.P. Kellis M. Kundaje A. Paten B. Tress M.L. Birney E. Martin F.J. Frankish A. GENCODE 2025: reference gene annotation for human and mouse. Nucleic Acids Res. 2025 53 D1 D966 D975 10.1093/nar/gkae1078 39565199
    [Google Scholar]
  19. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S Stein TI Nudel R Lieder I Mazor Y Kaplan S Dahary D Warshawsky D Guan-Golan Y Kohn A Rappaport N Safran M Lancet D The genecards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016 Jun 20 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  20. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  21. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  22. Stocking JC Taylor SL Fan S Wingert T Drake C Aldrich JM Ong MK Amin AN Marmor RA Godat L Cannesson M Gropper MA Utter GH Sandrock CE Bime C Mosier J Subbian V Adams JY Kenyon NJ Albertson TE Garcia JGN Abraham I A least absolute shrinkage and selection operator-derived predictive model for postoperative respiratory failure in a heterogeneous adult elective surgery patient population. CHEST Crit. Care 2023 1 3 100025 10.1016/j.chstcc.2023.100025 38434477 PMC10907009
    [Google Scholar]
  23. Balachandran V.P. Gonen M. Smith J.J. DeMatteo R.P. Nomograms in oncology: More than meets the eye. Lancet. Oncol. 2015 16 4 e173 e180 10.1016/S1470‑2045(14)71116‑7 25846097
    [Google Scholar]
  24. Konishi T Principal component analysis for designed experiments. BMC Bioinformatics 2015 16 Suppl 18 S7 10.1186/1471‑2105‑16‑S18‑S7 26678818 PMC4682404
    [Google Scholar]
  25. Cheng Y. Wang X. Xia Y. Supervised t-distributed stochastic neighbor embedding for data visualization and classification. INFORMS J. Comput. 2021 33 2 419 835 34354339
    [Google Scholar]
  26. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  27. Wu B. Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer 2021 21 1 733 10.1186/s12885‑021‑08412‑4 34174849
    [Google Scholar]
  28. Zeng D. Ye Z. Shen R. Yu G. Wu J. Xiong Y. Zhou R. Qiu W. Huang N. Sun L. Li X. Bin J. Liao Y. Shi M. Liao W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 2021 12 687975 10.3389/fimmu.2021.687975 34276676
    [Google Scholar]
  29. Huang X. Zhang G. Tang T. Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol. Cancer 2021 20 1 44 10.1186/s12943‑021‑01310‑0 33648511
    [Google Scholar]
  30. Miao Y.R. Zhang Q. Lei Q. Luo M. Xie G.Y. Wang H. Guo A.Y. ImmuCellAI: A unique method for comprehensive T-Cell subsets abundance prediction and its application in cancer immunotherapy. Adv. Sci. 2020 7 7 1902880 10.1002/advs.201902880 32274301
    [Google Scholar]
  31. Cao K. Wei S. Ma T. Yang X. Wang Y. He X. Lu M. Bai Y. Qi C. Zhang L. Li L. Meng H. Ma J. Zhu J. Integrating bulk, single-cell, and spatial transcriptomics to identify and functionally validate novel targets to enhance immunotherapy in NSCLC. NPJ. Precis. Oncol. 2025 9 1 112 10.1038/s41698‑025‑00893‑x 40240582
    [Google Scholar]
  32. Maeser D. Gruener R.F. Huang R.S. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 2021 22 6 bbab260 10.1093/bib/bbab260 34260682
    [Google Scholar]
  33. Stancil I.T. Michalski J.E. Davis-Hall D. Chu H.W. Park J.A. Magin C.M. Yang I.V. Smith B.J. Dobrinskikh E. Schwartz D.A. Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional. Nat. Commun. 2021 12 1 4566 10.1038/s41467‑021‑24853‑8 34315881
    [Google Scholar]
  34. Zhao R. Wang Z. Wang G. Geng J. Wu H. Liu X. Bin E. Sui J. Dai H. Tang N. Sustained amphiregulin expression in intermediate alveolar stem cells drives progressive fibrosis. Cell Stem Cell 2024 31 9 1344 1358.e6 10.1016/j.stem.2024.07.004 39096904
    [Google Scholar]
  35. Liu T. Huang T. Li J. Li A. Li C. Huang X. Li D. Wang S. Liang M. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One 2023 18 7 e0286056 10.1371/journal.pone.0286056 37459313
    [Google Scholar]
  36. Qu X. Wang Y. Jiang Q. Ren T. Guo C. Hua K. Qiu J. Interactions of indoleamine 2,3-dioxygenase-expressing LAMP3 + dendritic cells with CD4 + regulatory T cells and CD8 + exhausted T cells: Synergistically remodeling of the immunosuppressive microenvironment in cervical cancer and therapeutic implications. Cancer Commun. 2023 43 11 1207 1228 10.1002/cac2.12486 37794698
    [Google Scholar]
  37. Cui Y. Zhao Y. Shen G. Lv Q. Ma L. CDYL loss promotes cervical cancer aggression by increasing PD-L1 expression via the suppression of IRF2BP2 transcription. Transl. Oncol. 2024 47 102038 10.1016/j.tranon.2024.102038 38991463
    [Google Scholar]
  38. Zhang L. Song Y. Dai X. Xu W. Li M. Zhu Y. Inhibition of IDH3α enhanced the efficacy of chemoimmunotherapy by regulating acidic tumor microenvironments. Cancers 2023 15 6 1802 10.3390/cancers15061802
    [Google Scholar]
  39. Chandra J. Dutton J.L. Li B. Woo W.P. Xu Y. Tolley L.K. Yong M. Wells J.W. R Leggatt G. Finlayson N. Frazer I.H. DNA Vaccine encoding HPV16 oncogenes E6 and E7 induces potent cell-mediated and humoral immunity which protects in tumor challenge and drives E7-expressing skin graft rejection. J. Immunother. 2017 40 2 62 70 10.1097/CJI.0000000000000156 28166181
    [Google Scholar]
  40. Sun R. Zhao H. Gao D.S. Ni A. Li H. Chen L. Lu X. Chen K. Lu B. Amphiregulin couples IL1RL1 + regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity. Sci. Adv. 2023 9 34 eadd7399 10.1126/sciadv.add7399 37611111
    [Google Scholar]
  41. Piffkó A. Yang K. Panda A. Heide J. Tesak K. Wen C. Zawieracz K. Wang L. Naccasha E.Z. Bugno J. Fu Y. Chen D. Donle L. Lengyel E. Tilley D.G. Mack M. Rock R.S. Chmura S.J. Vokes E.E. He C. Pitroda S.P. Liang H.L. Weichselbaum R.R. Radiation-induced amphiregulin drives tumour metastasis. Nature 2025 643 8072 810 819 10.1038/s41586‑025‑08994‑0 40369065
    [Google Scholar]
  42. Ha H. Debnath B. Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 2017 7 6 1543 1588 10.7150/thno.15625 28529637
    [Google Scholar]
  43. Zhang X. Yang J. Feng Q. Gu L. Qin G. Cheng C. The immune landscape and prognostic analysis of CXCL8 immune-related genes in cervical squamous cell carcinoma. Environ. Toxicol. 2024 38597597
    [Google Scholar]
  44. Long J. Zhao W. Xiang Y. Wang Y. Xiang W. Liu X. Jiang M. Song Y. Hu J. STAT3 promotes cytoplasmic-nuclear translocation of RNA-binding protein HuR to inhibit IL-1β-induced IL-8 production. Int. Immunopharmacol. 2024 133 112065 10.1016/j.intimp.2024.112065 38608448
    [Google Scholar]
  45. Tao L. Liu S. Xiong J. Yang H. Wu Y. Xu A. Gong Y. IL-1β promotes cervical cancer through activating NF-κB/CCL-2. Int. J. Clin. Exp. Pathol. 2021 14 4 426 433 33936364
    [Google Scholar]
  46. Tomecka P. Kunachowicz D. Górczyńska J. Gebuza M. Kuźnicki J. Skinderowicz K. Choromańska A. Factors determining epithelial-mesenchymal transition in cancer progression. Int. J. Mol. Sci. 2024 25 16 8972 10.3390/ijms25168972 39201656
    [Google Scholar]
  47. Alejandra W.P. Miriam Irene J.P. Fabio Antonio G.S. Patricia R.G.R. Elizabeth T.A. Aleman-Aguilar J.P. Rebeca G.V. Production of monoclonal antibodies for therapeutic purposes: A review. Int. Immunopharmacol. 2023 120 110376 10.1016/j.intimp.2023.110376 37244118
    [Google Scholar]
  48. Chang Y.C. Li C.H. Chan M.H. Chen M.H. Yeh C.N. Hsiao M. Regorafenib inhibits epithelial-mesenchymal transition and suppresses cholangiocarcinoma metastasis via YAP1-AREG axis. Cell Death Dis. 2022 13 4 391 10.1038/s41419‑022‑04816‑7 35449153
    [Google Scholar]
  49. Carvalho S. Lindzen M. Lauriola M. Shirazi N. Sinha S. Abdul-Hai A. Levanon K. Korach J. Barshack I. Cohen Y. Onn A. Mills G. Yarden Y. An antibody to amphiregulin, an abundant growth factor in patients’ fluids, inhibits ovarian tumors. Oncogene 2016 35 4 438 447 10.1038/onc.2015.93 25915843
    [Google Scholar]
  50. Schrevel M. Osse E.M. Prins F.A. Trimbos J.B.M.Z. Fleuren G.J. Gorter A. Jordanova E.S. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer. Int. J. Oncol. 2017 50 6 1947 1954 10.3892/ijo.2017.3980 28498437
    [Google Scholar]
  51. Ring K.L. Yemelyanova A.V. Soliman P.T. Frumovitz M.M. Jazaeri A.A. Potential immunotherapy targets in recurrent cervical cancer. Gynecol. Oncol. 2017 145 3 462 468 10.1016/j.ygyno.2017.02.027 28233576
    [Google Scholar]
  52. Wang Z. Cheng L. Li G. Cheng H. Epithelial and macrophage cell interaction in cervical cancer through single-cell RNA-sequencing and spatial analysis. Front. Immunol. 2025 16 1537785 10.3389/fimmu.2025.1537785 40270962
    [Google Scholar]
  53. Kawachi A. Yoshida H. Kitano S. Ino Y. Kato T. Hiraoka N. Tumor-associated CD 204 + M2 macrophages are unfavorable prognostic indicators in uterine cervical adenocarcinoma. Cancer Sci. 2018 109 3 863 870 10.1111/cas.13476 29274107
    [Google Scholar]
  54. Guo F. Feng Y. Zhao G. Zhang R. Cheng Z. Kong W. Wu H. Xu B. Lv X. Ma X. Tumor-associated CD163+ M2 macrophage infiltration is highly associated with pd-l1 expression in cervical cancer. Cancer Manag. Res. 2020 12 5831 5843 10.2147/CMAR.S257692 32765086
    [Google Scholar]
  55. Rocha Martins P. Luciano Pereira Morais K. de Lima Galdino N.A. Jacauna A. Paula S.O.C. Magalhães W.C.S. Zuccherato L.W. Campos L.S. Salles P.G.O. Gollob K.J. Linking tumor immune infiltrate and systemic immune mediators to treatment response and prognosis in advanced cervical cancer. Sci. Rep. 2023 13 1 22634 10.1038/s41598‑023‑49441‑2 38114557
    [Google Scholar]
  56. Kim H.Y. Cho S. Kim S.B. Song E.C. Jung W. Shin Y.G. Suh J.H. Choi J. Yoon I. Kim U. Ban H. Hwang S. Mun J. Park J. Kim N. Lee Y. Kim M.H. Kim S. Specific targeting of cancer vaccines to antigen-presenting cells via an endogenous TLR2/6 ligand derived from cysteinyl-tRNA synthetase 1. Mol. Ther. 2024 32 10 3597 3617 10.1016/j.ymthe.2024.07.014 39066478
    [Google Scholar]
  57. Eun T.J. Perkins R.B. Screening for cervical cancer. Med. Clin. North Am. 2020 104 6 1063 1078 10.1016/j.mcna.2020.08.006 33099451
    [Google Scholar]
  58. Molina M.A. Steenbergen R.D.M. Pumpe A. Kenyon A.N. Melchers W.J.G. HPV integration and cervical cancer: A failed evolutionary viral trait. Trends Mol. Med. 2024 30 9 890 902 10.1016/j.molmed.2024.05.009 38853085
    [Google Scholar]
  59. Chen J. Sun Y. Chen L. Zang L. Lin C. Lu Y. Lin L. Lin A. Dan H. Chen Y. He H. Prognostic factors and treatment of neuroendocrine tumors of the uterine cervix based on the FIGO 2018 staging system: A single-institution study of 172 patients. PeerJ 2021 9 e11563 10.7717/peerj.11563 34268005
    [Google Scholar]
  60. Gopu P. Antony F. Cyriac S. Karakasis K. Oza A.M. Updates on systemic therapy for cervical cancer. Indian J. Med. Res. 2021 154 2 293 302 10.4103/ijmr.IJMR_4454_20 35295013
    [Google Scholar]
  61. Castle P.E. Einstein M.H. Sahasrabuddhe V.V. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA Cancer J. Clin. 2021 71 6 505 526 10.3322/caac.21696 34499351
    [Google Scholar]
  62. Liu L. Zheng J. Xia H. Wu Q. Cai X. Ji L. Sun Y. Construction and comprehensive analysis of a curoptosis-related lncRNA signature for predicting prognosis and immune response in cervical cancer. Front. Genet. 2023 14 1023613 10.3389/fgene.2023.1023613 36777734
    [Google Scholar]
  63. Yu Z. Yu Q. Xu H. Dai X. Yu Y. Cui L. Chen Y. Gu J. Zhang X. Guo C. Shi Y. IL-17A promotes psoriasis-associated keratinocyte proliferation through ACT1-Dependent Activation of YAP–AREG Axis. J. Invest. Dermatol. 2022 142 9 2343 2352 10.1016/j.jid.2022.02.016 35304250
    [Google Scholar]
  64. Nakanishi T. Koma Y. Miyako S. Torigoe R. Yokoo H. Omori M. Yamanaka K. Ishihara N. Tsukamoto S. Kodama T. Nishio M. Shigeoka M. Yokozaki H. Kakeji Y. AREG upregulation in cancer cells via direct interaction with cancer-associated fibroblasts promotes esophageal squamous cell carcinoma progression through EGFR-Erk/p38 MAPK signaling. Cells 2024 13 20 1733 10.3390/cells13201733 39451251
    [Google Scholar]
  65. Conticelli D. Volante M. Pietrantonio F. Orrù C. Olivero M. Nottegar A. Borghi F. Baiocchi G.L. Crotti G. Fumagalli Romario U. De Manzoni G. Reddavid R. Porporato R. Kılıç D. Ghione R. Calabrò E. Petty R. Corso S. Giordano S. Migliore C. AREG and EREG are predictive biomarkers of response to egfr inhibition in gastroesophageal cancer. Cancer Res. 2025 85 16 3111 3122 10.1158/0008‑5472.CAN‑25‑0073 40637454
    [Google Scholar]
  66. Yoon S.Y. Jeong Y. Ryu J.M. Lee S.K. Chae B.J. Yu J. Kim S.W. Nam S.J. Kim S. Lee J.E. 17β-estradiol promotes tumorigenicity through an autocrine AREG/EGFR loop in ER-α-positive breast cancer cells. Cells 2025 14 10 703 10.3390/cells14100703 40422206
    [Google Scholar]
  67. Fang L. Sun Y.P. Cheng J.C. The role of amphiregulin in ovarian function and disease. Cell. Mol. Life Sci. 2023 80 3 60 10.1007/s00018‑023‑04709‑8 36749397
    [Google Scholar]
  68. Seligmann J.F. Elliott F. Richman S. Hemmings G. Brown S. Jacobs B. Williams C. Tejpar S. Barrett J.H. Quirke P. Seymour M. Clinical and molecular characteristics and treatment outcomes of advanced right-colon, left-colon and rectal cancers: Data from 1180 patients in a phase III trial of panitumumab with an extended biomarker panel. Ann. Oncol. 2020 31 8 1021 1029 10.1016/j.annonc.2020.04.476 32387453
    [Google Scholar]
  69. Hu Y. Wang R. Diao J. An L. Liu J. Sun D. Molecular Dissection of the AHR-AREG driven EGFR-ERK1/2-CyclinD1 axis in acquired lenvatinib resistance of Hepatocellular carcinoma. Biochem. Pharmacol. 2025 239 117032 10.1016/j.bcp.2025.117032 40482839
    [Google Scholar]
  70. Huang Y. Hong W. Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022 15 1 129 10.1186/s13045‑022‑01347‑8 36076302
    [Google Scholar]
  71. Singh M. Yelle N. Venugopal C. Singh S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther. 2018 182 80 94 10.1016/j.pharmthera.2017.08.009 28834698
    [Google Scholar]
  72. Pastushenko I. Blanpain C. EMT Transition states during tumor progression and metastasis. Trends Cell Biol. 2019 29 3 212 226 10.1016/j.tcb.2018.12.001 30594349
    [Google Scholar]
  73. Qureshi R. Arora H. Rizvi M.A. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett. 2015 356 2 2 Pt B 321 331 10.1016/j.canlet.2014.09.021 25281477
    [Google Scholar]
  74. Jonckheere S. Adams J. De Groote D. Campbell K. Berx G. Goossens S. Epithelial-mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs 2022 211 2 157 182 10.1159/000512218 33401271
    [Google Scholar]
  75. Cheng W.L. Feng P.H. Lee K.Y. Chen K.Y. Sun W.L. Van Hiep N. Luo C.S. Wu S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021 22 23 12828 10.3390/ijms222312828 34884633
    [Google Scholar]
  76. Guo F. Kong W. Li D. Zhao G. Anwar M. Xia F. Zhang Y. Ma C. Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur. J. Med. Res. 2024 29 1 357 10.1186/s40001‑024‑01897‑2 38970071
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673397451251105070115
Loading
/content/journals/cmc/10.2174/0109298673397451251105070115
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: AREG ; Cervical cancer ; EMT ; epidermal growth factor ; bioinformatics ; prognosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test