Skip to content
2000
image of Computational Analysis and In Vitro Verification Insights into Quercetin’s Suppression of Neuroinflammation in BV2 Microglia through NF-κB Pathway Inhibition

Abstract

Introduction

Neuroinflammation, primarily mediated by activated microglia, is a significant contributor to neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Quercetin (QCT), a dietary flavonoid, has demonstrated anti-inflammatory and neuroprotective properties; however, the detailed molecular mechanisms behind these effects remain unclear. This study aimed to investigate the anti-inflammatory actions of QCT, particularly focusing on its potential to suppress the activation of microglia and subsequent neuroinflammation.

Methods

BV2 microglial cells were stimulated with lipopolysaccharide (LPS) to induce an inflammatory response and were subsequently treated with various concentrations of QCT. Cell viability was assessed using the MTT assay. Levels of pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide (NO) were quantified through ELISA and Griess reaction methods, respectively. Western blot analysis was conducted to examine inducible nitric oxide synthase (iNOS), NF-κB, IκBα, and phosphorylated IκBα protein expressions. approaches, including protein-protein interaction (PPI) network analysis and molecular docking, were employed to explore potential molecular mechanisms involving NF-κB signaling pathways.

Results

Treatment with QCT significantly reduced the secretion of IL-6 (96%) and TNF-α (87%), as well as NO production (42%), in a dose-dependent manner. Western blot results demonstrated a marked reduction in iNOS expression and inhibition of NF-κB activation through reduced phosphorylation of IκBα following QCT treatment. Molecular docking indicated a strong binding affinity between QCT and IKKβ, suggesting inhibition of the NF-κB pathway.

Discussion

The findings indicated QCT to exert potent anti-inflammatory effects in LPS-stimulated BV2 cells by modulating key proteins involved in the NF-κB signaling pathway. Specifically, the docking results implied QCT’s direct interaction with the catalytic subunit IKKβ, inhibiting IκBα phosphorylation and subsequent NF-κB activation. The results have been found to be consistent with previous literature, reinforcing QCT's role in reducing neuroinflammation through specific molecular targets and pathways. Further studies are necessary to validate the findings.

Conclusion

Quercetin effectively suppressed neuroinflammation in microglial cells through inhibition of the NF-κB signaling pathway, reducing levels of critical pro-inflammatory mediators. The outcomes have highlighted the potential of quercetin as a preventive nutraceutical for neurodegenerative diseases, necessitating future investigations to confirm its therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673395813250901012530
2025-10-08
2025-11-05
Loading full text...

Full text loading...

References

  1. Aguilar-Castillo M.J. Cabezudo-García P. García-Martín G. Lopez-Moreno Y. Estivill-Torrús G. Ciano-Petersen N.L. Oliver-Martos B. Narváez-Pelaez M. Serrano-Castro P.J. A systematic review of the predictive and diagnostic uses of neuroinflammation biomarkers for epileptogenesis. Int. J. Mol. Sci. 2024 25 12 6488 10.3390/ijms25126488 38928193
    [Google Scholar]
  2. Shan C. Zhang C. Zhang C. The role of IL-6 in neurodegenerative disorders. Neurochem. Res. 2024 49 4 834 846 10.1007/s11064‑023‑04085‑6 38227113
    [Google Scholar]
  3. Bian Y. Qiao N. Han S. Gao J. Lv X. Yuan L. Zhang L. Wei Z. Anti-neuroinflammatory effect of ombuin from Rhamnus erythroxylon Pall. leaves in LPS-induced BV2 Microglia by Targeting Src and suppressing the PI3K-AKT/NF-κB signaling pathway. Int. J. Mol. Sci. 2024 25 16 8789 10.3390/ijms25168789 39201475
    [Google Scholar]
  4. Guo J. Li C. Mai F. Liang J. Chen Z. Luo J. Zhou M. Wang Y. Yang W. Lithospermic acid targeting heat shock protein 90 attenuates LPS-induced inflammatory response via NF-кB signalling pathway in BV2 microglial cells. Immunol. Res. 2025 73 1 54 10.1007/s12026‑025‑09600‑1 39969702
    [Google Scholar]
  5. Ben-Azu B. Adebayo O.G. Adebesin A. Oparaji K.C. Ojiakor V.O. Pender G.C. Odeghe B.O. Omeiza N.A. Abdulrahim H.A. Ezieshi V. Ighosotu G. Omo-Odudu E. Monye E.I. Diosgenin reverses posttraumatic stress disorder in mice by augmenting neurochemical release and inhibiting HPA axis dysfunction, oxidative stress, and neuroinflammation. J. Affect. Disord. Rep. 2024 17 100814 10.1016/j.jadr.2024.100814
    [Google Scholar]
  6. Pszczołowska M. Walczak K. Misków W. Antosz K. Batko J. Karska J. Leszek J. Molecular cross-talk between long COVID-19 and Alzheimer’s disease. Geroscience 2024 46 3 2885 2899 10.1007/s11357‑024‑01096‑1 38393535
    [Google Scholar]
  7. Huang P. Zhang L.Y. Tan Y.Y. Chen S.D. Links between COVID-19 and Parkinson’s disease/Alzheimer’s disease: reciprocal impacts, medical care strategies and underlying mechanisms. Transl. Neurodegener. 2023 12 1 5 10.1186/s40035‑023‑00337‑1 36717892
    [Google Scholar]
  8. Theoharides T.C. Could SARS-CoV-2 spike protein be responsible for long-COVID Syndrome? Mol. Neurobiol. 2022 59 3 1850 1861 10.1007/s12035‑021‑02696‑0 35028901
    [Google Scholar]
  9. Yang D. Wang T. Long M. Li P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev. 2020 2020 1 13 10.1155/2020/8825387 33488935
    [Google Scholar]
  10. Lasure V.U. Singh Gautam A. Singh R.K. Quercetin ameliorates neuroinflammatory and neurodegenerative biomarkers in the brain and improves neurobehavioral parameters in a repeated intranasal amyloid-beta exposed model of Alzheimer’s disease. Food Funct. 2024 15 17 8712 8728 10.1039/D4FO02602K 39087409
    [Google Scholar]
  11. Wang L.Y. Huang C.S. Chen Y.H. Chen C.C. Chen C.C. Chuang C.H. Anti-inflammatory effect of erinacine C on NO production through down-regulation of NF-κB and activation of Nrf2-mediated HO-1 in BV2 microglial cells treated with LPS. Molecules 2019 24 18 3317 10.3390/molecules24183317 31547327
    [Google Scholar]
  12. Nuzzo D. Role of natural antioxidants on neuroprotection and neuroinflammation. Antioxidants 2021 10 4 608 10.3390/antiox10040608 33920923
    [Google Scholar]
  13. Zhang L. Ma J. Yang F. Li S. Ma W. Chang X. Yang L. Neuroprotective effects of Quercetin on ischemic stroke: A Literature review. Front. Pharmacol. 2022 13 854249 10.3389/fphar.2022.854249 35662707
    [Google Scholar]
  14. Ahmadi S. Majidi M. Koraei M. Vasef S. The inflammation/NF-κB and BDNF/TrkB/CREB pathways in the cerebellum are implicated in the changes in spatial working memory after both morphine dependence and withdrawal in rat. Mol. Neurobiol. 2024 61 9 6721 6733 10.1007/s12035‑024‑03993‑0 38347284
    [Google Scholar]
  15. Wang H.P. Li M.C. Yang J. Zhou J. Meng Z.P. Hu Y.Y. Lyu Y.J. Chen Y.Q. Han Y.M. Pei W.L. Based on the dual pathway of interaction-mediated nf-κb in cell apoptosis and immune inflammation to study the effect of Danzhi Xiaoyao Powder on the learning and cognitive ability of AD model rats. Degener. Neurol. Neuromuscul. Dis. 2025 15 41 64 10.2147/DNND.S475290 40297714
    [Google Scholar]
  16. Li L. Jiang W. Yu B. Liang H. Mao S. Hu X. Feng Y. Xu J. Chu L. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomed. Pharmacother. 2023 168 115653 10.1016/j.biopha.2023.115653 37812891
    [Google Scholar]
  17. Zhu Q. Han Y. He Y. Meng P. Fu Y. Yang H. He G. Long M. Shi Y. Quercetin inhibits neuronal Ferroptosis and promotes immune response by targeting lipid metabolism-related gene PTGS2 to alleviate breast cancer-related depression. Phytomedicine 2024 130 155560 10.1016/j.phymed.2024.155560 38815404
    [Google Scholar]
  18. Vollmannová A. Bojňanská T. Musilová J. Lidiková J. Cifrová M. Quercetin as one of the most abundant represented biological valuable plant components with remarkable chemoprotective effects: A review. Heliyon 2024 10 12 e33342 10.1016/j.heliyon.2024.e33342 39021910
    [Google Scholar]
  19. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  20. Huckvale E.D. Moseley H.N.B. Predicting the pathway involvement of all pathway and associated compound entries defined in the kyoto encyclopedia of genes and genomes. Metabolites 2024 14 11 582 10.3390/metabo14110582 39590818
    [Google Scholar]
  21. Aleksander S.A. Balhoff J. Carbon S. Cherry J.M. Drabkin H.J. Ebert D. The Gene Ontology knowledgebase in 2023. Genetics 2023 224 10.1093/genetics/iyad031
    [Google Scholar]
  22. Kim S.Y. Jeon J.C. Park B. Kim D.E. Extracellular baskets in inner hair cells and perineuronal nets in auditory nerves: Changes in noise-induced hearing loss rats. Neurosci. Lett. 2025 850 138147 10.1016/j.neulet.2025.138147 39922528
    [Google Scholar]
  23. Bagal A Borkar T Ghige T Kulkarni A Kumbhar A Devane G Molecular docking–Useful tool in drug discovery. Asian J. Res. Chem 2022 15 2 10.52711/0974‑4150.2022.00020
    [Google Scholar]
  24. Ahmad S. Bano N. Raza K. RCSB Protein Data Bank: revolutionising drug discovery and design for over five decades. Med. Data. Min 2025 8 8
    [Google Scholar]
  25. Kim S. Bolton E.E. A Large-Scale Public Chemical Database for Drug Discovery. In: Open Access Databases and Datasets for Drug Discovery; Wiley, 2024, 39-66.
    [Google Scholar]
  26. Pettersen E.F. Goddard T.D. Huang C.C. Meng E.C. Couch G.S. Croll T.I. Morris J.H. Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021 30 1 70 82 10.1002/pro.3943 32881101
    [Google Scholar]
  27. Tang S.M. Deng X.T. Zhou J. Li Q.P. Ge X.X. Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020 121 109604 10.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  28. Sheikhnia F. Fazilat A. Rashidi V. Azizzadeh B. Mohammadi M. Maghsoudi H. Majidinia M. Exploring the therapeutic potential of quercetin in cancer treatment: Targeting long non-coding RNAs. Pathol. Res. Pract. 2024 260 155374 10.1016/j.prp.2024.155374 38889494
    [Google Scholar]
  29. Raut B.K. Upadhyaya S.R. Bashyal J. Parajuli N. In silico and in vitro analyses to repurpose quercetin as a human pancreatic α-amylase inhibitor. ACS Omega. 2023 8 43617 10.1021/acsomega.3c05082
    [Google Scholar]
  30. Cantero-Fortiz Y. Boada M. The role of inflammation in neurological disorders: A brief overview of multiple sclerosis, Alzheimer’s, and Parkinson’s disease’. Front. Neurol. 2024 15 1439125 10.3389/fneur.2024.1439125 39539666
    [Google Scholar]
  31. Balestri W. Sharma R. da Silva V.A. Bobotis B.C. Curle A.J. Kothakota V. Kalantarnia F. Hangad M.V. Hoorfar M. Jones J.L. Tremblay M.È. El-Jawhari J.J. Willerth S.M. Reinwald Y. Modeling the neuroimmune system in Alzheimer’s and Parkinson’s diseases. J. Neuroinflammation 2024 21 1 32 10.1186/s12974‑024‑03024‑8 38263227
    [Google Scholar]
  32. Planas A.M. Role of microglia in stroke. Glia 2024 72 6 1016 1053 10.1002/glia.24501 38173414
    [Google Scholar]
  33. Asadizeidabadi A. Hosseini S. Pyatkov A. Effects of repetitive transcranial magnetic stimulation on tumor necrosis factor alpha in neuropsychological disorders: A systematic review and meta-analysis. Brain Behav. 2025 15 2 e70329 10.1002/brb3.70329 39935210
    [Google Scholar]
  34. Salvagno M. Sterchele E.D. Zaccarelli M. Mrakic-Sposta S. Welsby I.J. Balestra C. Taccone F.S. Oxidative stress and cerebral vascular tone: The role of reactive oxygen and nitrogen species. Int. J. Mol. Sci. 2024 25 5 3007 10.3390/ijms25053007 38474253
    [Google Scholar]
  35. Picón-Pagès P. Garcia-Buendia J. Muñoz F.J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis. 2019 1865 8 1949 1967 10.1016/j.bbadis.2018.11.007 30500433
    [Google Scholar]
  36. Rashidi S.K. Khodagholi F. Rafie S. Kashipazha D. Safarian H. Khoshnam S.E. Dezfouli M.A. Methamphetamine and the brain: Emerging molecular targets and signaling pathways involved in neurotoxicity. Toxin Rev. 2024 43 4 553 571 10.1080/15569543.2024.2360425
    [Google Scholar]
  37. Reutov V.P. Pasikova N.V. Sorokina E.G. Typical pathological process in glutamate neurotoxicity: The role of reactive nitrogen and oxygen species. Biophysics (Oxf.) 2024 69 5 905 936 10.1134/S0006350924701008
    [Google Scholar]
  38. Kannan G. Paul B.M. Thangaraj P. Stimulation, regulation, and inflammaging interventions of natural compounds on nuclear factor kappa B (NF-kB) pathway: A comprehensive review. Inflammopharmacology 2025 33 1 145 162 10.1007/s10787‑024‑01635‑4 39776026
    [Google Scholar]
  39. Guo Q. Jin Y. Chen X. Ye X. Shen X. Lin M. Zeng C. Zhou T. Zhang J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  40. Kurhaluk N. Tkaczenko H. L-Arginine and nitric oxide in vascular regulation—experimental findings in the context of blood donation. Nutrients 2025 17 4 665 10.3390/nu17040665 40004994
    [Google Scholar]
  41. Zhang J. Zhang R. Li W. Ma X.C. Qiu F. Sun C.P. IκB kinase β (IKKβ): Structure, transduction mechanism, biological function, and discovery of its inhibitors. Int. J. Biol. Sci. 2023 19 13 4181 4203 10.7150/ijbs.85158 37705738
    [Google Scholar]
  42. Anilkumar S. Wright-Jin E. NF-κB as an inducible regulator of inflammation in the central nervous system. Cells 2024 13 6 485 10.3390/cells13060485 38534329
    [Google Scholar]
  43. Wu J. Xu X. Li Y. Kou J. Huang F. Liu B. Liu K. Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur. J. Pharmacol. 2014 745 59 68 10.1016/j.ejphar.2014.09.046 25446924
    [Google Scholar]
  44. Kang C.H. Choi Y.H. Moon S.K. Kim W.J. Kim G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 2013 17 3 808 813 10.1016/j.intimp.2013.09.009 24076371
    [Google Scholar]
  45. Sun G.Y. Chen Z. Jasmer K.J. Chuang D.Y. Gu Z. Hannink M. Simonyi A. Quercetin attenuates inflammatory responses in BV2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One 2015 10 10 e0141509 10.1371/journal.pone.0141509 26505893
    [Google Scholar]
  46. Comalada M. Camuesco D. Sierra S. Ballester I. Xaus J. Gálvez J. Zarzuelo A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur. J. Immunol. 2005 35 2 584 592 10.1002/eji.200425778 15668926
    [Google Scholar]
  47. Nazari-Khanamiri F. Ghasemnejad-Berenji M. Quercetin and heart health: From molecular pathways to clinical findings. J. Food Biochem. 2023 2023 1 9 10.1155/2023/8459095
    [Google Scholar]
  48. Le K. Song Z. Deng J. Peng X. Zhang J. Wang L. Zhou L. Bi H. Liao Z. Feng Z. Quercetin alleviates neonatal hypoxic-ischemic brain injury by inhibiting microglia-derived oxidative stress and TLR4-mediated inflammation. Inflamm. Res. 2020 69 12 1201 1213 10.1007/s00011‑020‑01402‑5 32944799
    [Google Scholar]
  49. Chiang M.C. Tsai T.Y. Wang C.J. The potential benefits of quercetin for brain health: A review of anti-inflammatory and neuroprotective mechanisms. Int. J. Mol. Sci. 2023 24 7 6328 10.3390/ijms24076328 37047299
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673395813250901012530
Loading
/content/journals/cmc/10.2174/0109298673395813250901012530
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: brain degeneration ; quercetin ; neuroinflammation ; BV2 cells ; anti-inflammation ; Microglia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test