Skip to content
2000
image of Exploring the Anti-Glioma Mechanisms of Oridonin: Network Pharmacology and Experimental Insights into EMT Pathways

Abstract

Introduction

Gliomas are aggressive brain tumors with a poor prognosis and high recurrence. Oridonin, a traditional Chinese medicine, has shown potential in treating various cancers, but its role in glioma treatment, especially in modulating Epithelial-Mesenchymal Transition (EMT), remains underexplored.

Methods

We identified 371 potential target genes of Oridonin using various bioinformatics databases. Enrichment analyses, including Differential Expression Analysis, Gene Set Enrichment Analysis (GSEA), and Weighted Gene Co-expression Network Analysis (WGCNA), were performed to link these targets to glioma characteristics. experiments validated Oridonin's impact on EMT-related gene expression in glioma cells.

Results

Enrichment analyses identified 19 common genes between Oridonin and glioma targets, with 12 EMT-related core genes. KEGG enrichment highlighted PI3K-Akt, MAPK pathways, and glioma pathways, while DO enrichment included high-grade gliomas. CCK8 assay showed Oridonin IC values of 6.92 μM for H4 and 10.54 μM for SW1783 glioma cell lines. WB results indicated increased E-Cadherin and decreased Vimentin, N-Cadherin, and Snail expression after Oridonin treatment. PPI network and single-cell transcriptome analyses identified key genes linked to glioma progression and immune cell infiltration.

Discussion

Oridonin may inhibit glioma progression by targeting EMT-related pathways like PI3K-Akt and MAPK. The upregulation of E-Cadherin and downregulation of Vimentin, N-Cadherin, and Snail suggest a reversal of the EMT process. Future work should validate these effects and explore Oridonin's ability to cross the blood-brain barrier.

Conclusion

Oridonin may provide a novel therapeutic approach for glioma by targeting EMT-related pathways, offering a foundation for further clinical investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673390934250923111917
2025-10-09
2025-12-13
Loading full text...

Full text loading...

References

  1. Hawbir G. Ari N. Muhsin B. Survival outcomes among patients with high-grade glioma: A single institution retrospective study. J. Sulaimani Med. Coll. 2023 13 3 215 226 10.17656/jsmc.10414
    [Google Scholar]
  2. Karimi E. Yu M.W. Maritan S.M. Perus L.J.M. Rezanejad M. Sorin M. Dankner M. Fallah P. Doré S. Zuo D. Fiset B. Kloosterman D.J. Ramsay L. Wei Y. Lam S. Alsajjan R. Watson I.R. Roldan Urgoiti G. Park M. Brandsma D. Senger D.L. Chan J.A. Akkari L. Petrecca K. Guiot M.C. Siegel P.M. Quail D.F. Walsh L.A. Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 2023 614 7948 555 563 10.1038/s41586‑022‑05680‑3 36725935
    [Google Scholar]
  3. Laws E.R. Parney I.F. Huang W. Anderson F. Morris A.M. Asher A. Lillehei K.O. Bernstein M. Brem H. Sloan A. Berger M.S. Chang S. Survival following surgery and prognostic factors for recently diagnosed malignant glioma: Data from the Glioma Outcomes Project. J. Neurosurg. 2003 99 3 467 473 10.3171/jns.2003.99.3.0467 12959431
    [Google Scholar]
  4. Teng C. Zhu Y. Li Y. Dai L. Pan Z. Wanggou S. Li X. Recurrence- and malignant progression-associated biomarkers in low-grade gliomas and their roles in immunotherapy. Front. Immunol. 2022 13 899710 10.3389/fimmu.2022.899710 35677036
    [Google Scholar]
  5. Innocenti L. Ortenzi V. Scarpitta R. Montemurro N. Pasqualetti F. Asseri R. Lazzi S. Szumera-Cieckiewicz A. De Ieso K. Perrini P. Naccarato A.G. Scatena C. Fanelli G.N. The prognostic impact of gender, therapeutic strategies, molecular background, and tumor-infiltrating lymphocytes in glioblastoma: A still unsolved jigsaw. Genes 2023 14 2 501 10.3390/genes14020501 36833428
    [Google Scholar]
  6. Jian A. Jang K. Manuguerra M. Liu S. Magnussen J. Di Ieva A. Machine learning for the prediction of molecular markers in glioma on magnetic resonance imaging: A systematic review and meta-analysis. Neurosurgery 2021 89 1 31 44 10.1093/neuros/nyab103 33826716
    [Google Scholar]
  7. Shaffer A. Kwok S.S. Naik A. Anderson A.T. Lam F. Wszalek T. Arnold P.M. Hassaneen W. Ultra-high-field MRI in the diagnosis and management of gliomas: A systematic review. Front. Neurol. 2022 13 857825 10.3389/fneur.2022.857825 35449515
    [Google Scholar]
  8. Xu S. Tang L. Li X. Fan F. Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett. 2020 476 1 12 10.1016/j.canlet.2020.02.002 32044356
    [Google Scholar]
  9. Thakur A. Faujdar C. Sharma R. Sharma S. Malik B. Nepali K. Liou J.P. Glioblastoma: Current status, emerging targets, and recent advances. J. Med. Chem. 2022 65 13 8596 8685 10.1021/acs.jmedchem.1c01946 35786935
    [Google Scholar]
  10. Thenuwara G. Curtin J. Tian F. Advances in diagnostic tools and therapeutic approaches for gliomas: A comprehensive review. Sensors 2023 23 24 9842 10.3390/s23249842 38139688
    [Google Scholar]
  11. Mishra A. Thakur A. Sharma R. Onuku R. Kaur C. Liou J.P. Hsu S.P. Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: Opportunities and challenges. Expert Opin. Drug Discov. 2024 19 11 1355 1381 10.1080/17460441.2024.2409674 39420580
    [Google Scholar]
  12. Rana M. Liou K.C. Thakur A. Nepali K. Liou J.P. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett. 2025 617 217601 10.1016/j.canlet.2025.217601 40037502
    [Google Scholar]
  13. Yasinjan F. Xing Y. Geng H. Guo R. Yang L. Liu Z. Wang H. Immunotherapy: A promising approach for glioma treatment. Front. Immunol. 2023 14 1255611 10.3389/fimmu.2023.1255611 37744349
    [Google Scholar]
  14. Ranjan S. Warren K.E. Gliomatosis cerebri: Current understanding and controversies. Front. Oncol. 2017 7 165 10.3389/fonc.2017.00165 28824876
    [Google Scholar]
  15. Valtorta S. Salvatore D. Rainone P. Belloli S. Bertoli G. Moresco R.M. Molecular and cellular complexity of glioma. focus on tumour microenvironment and the use of molecular and imaging biomarkers to overcome treatment resistance. Int. J. Mol. Sci. 2020 21 16 5631 10.3390/ijms21165631 32781585
    [Google Scholar]
  16. Zhan Z. Liu Z. Zhang C. Gao H. Lai J. Chen Y. Huang H. Anticancer effects of OSW-1 on glioma cells via regulation of the PI3K/AKT signal pathway: A network pharmacology approach and experimental validation in vitro and in vivo. Front. Pharmacol. 2022 13 967141 10.3389/fphar.2022.967141 36133816
    [Google Scholar]
  17. Arrieta V.A. Dmello C. McGrail D.J. Brat D.J. Lee-Chang C. Heimberger A.B. Chand D. Stupp R. Sonabend A.M. Immune checkpoint blockade in glioblastoma: From tumor heterogeneity to personalized treatment. J. Clin. Invest. 2023 133 2 e163447 10.1172/JCI163447 36647828
    [Google Scholar]
  18. Zhou Q. Xue C. Ke X. Zhou J. Treatment response and prognosis evaluation in high-grade glioma: An imaging review based on MRI. J. Magn. Reson. Imaging 2022 56 2 325 340 10.1002/jmri.28103 35129845
    [Google Scholar]
  19. Wang Y. Zhang Q. Chen Y. Liang C.L. Liu H. Qiu F. Dai Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother. 2020 121 109570 10.1016/j.biopha.2019.109570 31710893
    [Google Scholar]
  20. Wang Q. Wang Q. Wang S.F. Jiao L.J. Zhang R.X. Zhong Y. Zhang J. Xu L. Oral Chinese herbal medicine as maintenance treatment after chemotherapy for advanced non-small-cell lung cancer: a systematic review and meta- analysis. Curr. Oncol. 2017 24 4 269 276 10.3747/co.24.3561 28874897
    [Google Scholar]
  21. Zhang Y. Lou Y. Wang J. Yu C. Shen W. Research status and molecular mechanism of the traditional chinese medicine and antitumor therapy combined strategy based on tumor microenvironment. Front. Immunol. 2021 11 609705 10.3389/fimmu.2020.609705 33552068
    [Google Scholar]
  22. Wang X. Gao M. Wang Z. Cui W. Zhang J. Zhang W. Xia Y. Wei B. Tang Y. Xu X. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase. Sci. Total Environ. 2021 770 145301 10.1016/j.scitotenv.2021.145301 33515877
    [Google Scholar]
  23. Kadioglu O. Saeed M. Kuete V. Greten H.J. Efferth T. Oridonin targets multiple drug-resistant tumor cells as determined by in silico and in vitro analyses. Front. Pharmacol. 2018 9 355 10.3389/fphar.2018.00355 29713280
    [Google Scholar]
  24. He H. Jiang H. Chen Y. Ye J. Wang A. Wang C. Liu Q. Liang G. Deng X. Jiang W. Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun. 2018 9 1 2550 10.1038/s41467‑018‑04947‑6 29959312
    [Google Scholar]
  25. Li J. Wu Y. Wang D. Zou L. Fu C. Zhang J. Leung G.P.H. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects. Pharmacol. Res. 2019 146 104313 10.1016/j.phrs.2019.104313 31202781
    [Google Scholar]
  26. Oh H.N. Seo J.H. Lee M.H. Yoon G. Cho S.S. Liu K. Choi H. Oh K.B. Cho Y.S. Kim H. Han A.L. Chae J.I. Shim J.H. Oridonin induces apoptosis in oral squamous cell carcinoma probably through the generation of reactive oxygen species and the p38/JNK MAPK pathway. Int. J. Oncol. 2018 52 5 1749 1759 10.3892/ijo.2018.4319 29568920
    [Google Scholar]
  27. Lin J. Wu S. Ye S. Papa A.P.D. Yang J. Huang S. Arthur G. Zhuge Q. Zhang Y. Oridonin interrupts cellular bioenergetics to suppress glioma cell growth by down-regulating PCK2. Phytother. Res. 2021 35 5 2624 2638 10.1002/ptr.7009 33438793
    [Google Scholar]
  28. Dal Piaz F. Cotugno R. Lepore L. Vassallo A. Malafronte N. Lauro G. Bifulco G. Belisario M.A. De Tommasi N. Chemical proteomics reveals HSP70 1A as a target for the anticancer diterpene oridonin in Jurkat cells. J. Proteomics 2013 82 14 26 10.1016/j.jprot.2013.01.030 23416714
    [Google Scholar]
  29. Zhou G.B. Kang H. Wang L. Gao L. Liu P. Xie J. Zhang F.X. Weng X.Q. Shen Z.X. Chen J. Gu L.J. Yan M. Zhang D.E. Chen S.J. Wang Z.Y. Chen Z. Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 2007 109 8 3441 3450 10.1182/blood‑2006‑06‑032250 17197433
    [Google Scholar]
  30. Li X. Zhang C.T. Ma W. Xie X. Huang Q. Oridonin: A review of its pharmacology, pharmacokinetics and toxicity. Front. Pharmacol. 2021 12 645824 10.3389/fphar.2021.645824 34295243
    [Google Scholar]
  31. Liu X. Xu J. Zhou J. Shen Q. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance. Genes Dis. 2021 8 4 448 462 10.1016/j.gendis.2020.06.010 34179309
    [Google Scholar]
  32. Yu Y. He S. Kong L. Shi N. Liu Y. Zang J. Guo R. Zhang L. Li X. Li X. Brain-targeted multifunctional micelles delivering Oridonin and Phillyrin for synergistic therapy of Alzheimer’s disease. J. Drug Deliv. Sci. Technol. 2023 87 104794 10.1016/j.jddst.2023.104794
    [Google Scholar]
  33. Tang W. Fan W. Lau J. Deng L. Shen Z. Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019 48 11 2967 3014 10.1039/C8CS00805A 31089607
    [Google Scholar]
  34. Liu D. Dai X. Tao Z. Zhou H. Hong W. Qian H. Cheng H. Wang X. Advances in blood–brain barrier-crossing nanomedicine for anti-glioma. Cancer Nanotechnol. 2023 14 1 58 10.1186/s12645‑023‑00211‑9
    [Google Scholar]
  35. Wang X. Hu Y. Zhou X. Li S. Editorial: Network pharmacology and traditional medicine: Setting the new standards by combining In silico and experimental work. Front. Pharmacol. 2022 13 1002537 10.3389/fphar.2022.1002537 36339546
    [Google Scholar]
  36. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  37. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  38. Lian H. Xiong Y. Zhao G. Yi M. Wang J. Liu H. Zhou Y. Network pharmacology and bioinformatics analysis to identify the molecular targets and its biological mechanisms of sciadopitysin against glioblastoma. J. Cancer 2024 15 12 3675 3683 10.7150/jca.94202 38911393
    [Google Scholar]
  39. Wang Z. Cheng L. Shang Z. Li Z. Zhao Y. Jin W. Li Y. Su F. Mao X. Chen C. Zhang J. Network pharmacology for analyzing the key targets and potential mechanism of wogonin in gliomas. Front. Pharmacol. 2021 12 646187 10.3389/fphar.2021.646187 33897434
    [Google Scholar]
  40. Sun L. Hui A.M. Su Q. Vortmeyer A. Kotliarov Y. Pastorino S. Passaniti A. Menon J. Walling J. Bailey R. Rosenblum M. Mikkelsen T. Fine H.A. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006 9 4 287 300 10.1016/j.ccr.2006.03.003 16616334
    [Google Scholar]
  41. Lambert S.R. Witt H. Hovestadt V. Zucknick M. Kool M. Pearson D.M. Korshunov A. Ryzhova M. Ichimura K. Jabado N. Fontebasso A.M. Lichter P. Pfister S.M. Collins V.P. Jones D.T.W. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol. 2013 126 2 291 301 10.1007/s00401‑013‑1124‑7 23660940
    [Google Scholar]
  42. Yun H.J. Li M. Guo D. Jeon S.M. Park S.H. Lim J.S. Lee S.B. Liu R. Du L. Kim S.H. Shin T.H. Eyun S. Park Y.Y. Lu Z. Lee J.H. AMPK-HIF-1α signaling enhances glucose-derived de novo serine biosynthesis to promote glioblastoma growth. J. Exp. Clin. Cancer Res. 2023 42 1 340 10.1186/s13046‑023‑02927‑3 38098117
    [Google Scholar]
  43. Wang P. Zhang J. He S. Xiao B. Peng X. SLC39A1 contribute to malignant progression and have clinical prognostic impact in gliomas. Cancer Cell Int. 2020 20 1 573 10.1186/s12935‑020‑01675‑0 33292262
    [Google Scholar]
  44. Zhao M. Kong L. Liu Y. Qu H. dbEMT: An epithelial-mesenchymal transition associated gene resource. Sci. Rep. 2015 5 1 11459 10.1038/srep11459 26099468
    [Google Scholar]
  45. Zhao Z. Zhang K.N. Wang Q. Li G. Zeng F. Zhang Y. Wu F. Chai R. Wang Z. Zhang C. Zhang W. Bao Z. Jiang T. Chinese Glioma Genome Atlas (CGGA): A comprehensive resource with functional genomic data from chinese glioma patients. Genomics Proteomics Bioinformatics 2021 19 1 1 12 10.1016/j.gpb.2020.10.005 33662628
    [Google Scholar]
  46. Chen L. Chu C. Lu J. Kong X. Huang T. Cai Y.D. Gene ontology and KEGG pathway enrichment analysis of a drug target-based classification system. PLoS One 2015 10 5 e0126492 10.1371/journal.pone.0126492 25951454
    [Google Scholar]
  47. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  48. Wu T. Hu E. Xu S. Chen M. Guo P. Dai Z. Feng T. Zhou L. Tang W. Zhan L. Fu X. Liu S. Bo X. Yu G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  49. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  50. Guo K. Yang J. Jiang R. Ren X. Liu P. Wang W. Zhou S. Wang X. Ma L. Hu Y. Identification of key immune and cell cycle modules and prognostic genes for glioma patients through transcriptome analysis. Pharmaceuticals 2024 17 10 1295 10.3390/ph17101295 39458936
    [Google Scholar]
  51. Yang Y. Sun H. Zhang Y. Zhang T. Gong J. Wei Y. Duan Y.G. Shu M. Yang Y. Wu D. Yu D. Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data. Cell Rep. 2021 36 4 109442 10.1016/j.celrep.2021.109442 34320340
    [Google Scholar]
  52. Feng D. Zhang F. Li D. Shi X. Xiong Q. Wei Q. Yang L. Developing an immune-related gene prognostic index associated with progression and providing new insights into the tumor immune microenvironment of prostate cancer. Immunology 2022 166 2 197 209 10.1111/imm.13466 35271752
    [Google Scholar]
  53. Zeng D. Ye Z. Shen R. Yu G. Wu J. Xiong Y. Zhou R. Qiu W. Huang N. Sun L. Li X. Bin J. Liao Y. Shi M. Liao W. IOBR: Multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front. Immunol. 2021 12 687975 10.3389/fimmu.2021.687975 34276676
    [Google Scholar]
  54. Zhai Y. Li G. Li R. Chang Y. Feng Y. Wang D. Wu F. Zhang W. Single-cell RNA-sequencing shift in the interaction pattern between glioma stem cells and immune cells during tumorigenesis. Front. Immunol. 2020 11 581209 10.3389/fimmu.2020.581209 33133100
    [Google Scholar]
  55. Zhao Y. Li X. Wang F. Huang S. Du H. Li S. Chen J. Network pharmacology and experimental verification strategies to illustrate the mechanism of jian-pi-yi-shen formula in suppressing epithelial–mesenchymal transition. Front. Pharmacol. 2022 13 873023 10.3389/fphar.2022.873023 35656312
    [Google Scholar]
  56. Nair S.V. Network pharmacology as an appropriate bioinformatics tool for drug discovery. Bioinform. Proteom. Opn. Acc. J. 2018 2 1 000123
    [Google Scholar]
  57. Liu Q.Q. Chen K. Ye Q. Jiang X.H. Sun Y.W. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway. Cancer Cell Int. 2016 16 1 57 10.1186/s12935‑016‑0336‑z 27453691
    [Google Scholar]
  58. Li Y. Wang Y. Wang S. Gao Y. Zhang X. Lu C. Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells. Med. Oncol. 2015 32 1 365 10.1007/s12032‑014‑0365‑1 25491140
    [Google Scholar]
  59. Sun Y. Jiang X. Lu Y. Zhu J. Yu L. Ma B. Zhang Q. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma. Chem. Biol. Interact. 2018 296 57 64 10.1016/j.cbi.2018.09.013 30243739
    [Google Scholar]
  60. Liu W. Wang X. Wang L. Mei Y. Yun Y. Yao X. Chen Q. Zhou J. Kou B. Oridonin represses epithelial-mesenchymal transition and angiogenesis of thyroid cancer via downregulating JAK2/STAT3 signaling. Int. J. Med. Sci. 2022 19 6 965 974 10.7150/ijms.70733 35813296
    [Google Scholar]
  61. Liu W. Huang G. Yang Y. Gao R. Zhang S. Kou B. Oridonin inhibits epithelial-mesenchymal transition of human nasopharyngeal carcinoma cells by negatively regulating AKT/STAT3 signaling pathway. Int. J. Med. Sci. 2021 18 1 81 87 10.7150/ijms.48552 33390776
    [Google Scholar]
  62. Yang H. Wang L. Yang M. Hu J. Zhang E. Peng L. Oridonin attenuates LPS-induced early pulmonary fibrosis by regulating impaired autophagy, oxidative stress, inflammation and EMT. Eur. J. Pharmacol. 2022 923 174931 10.1016/j.ejphar.2022.174931 35398392
    [Google Scholar]
  63. Narita Y. Muragaki Y. Kagawa N. Asai K. Nagane M. Matsuda M. Ueki K. Kuroda J. Date I. Kobayashi H. Kumabe T. Beppu T. Kanamori M. Kasai S. Nishimura Y. Xiong H. Ocampo C. Yamada M. Mishima K. Safety and efficacy of depatuxizumab mafodotin in Japanese patients with malignant glioma: A nonrandomized, phase 1/2 trial. Cancer Sci. 2021 112 12 5020 5033 10.1111/cas.15153 34609773
    [Google Scholar]
  64. Wu J. He J. Zhang J. Ji H. Wang N. Ma S. Yan X. Gao X. Du J. Liu Z. Hu S. Identification of EMT-related genes and prognostic signature with significant implications on biological properties and oncology treatment of lower grade gliomas. Front. Cell Dev. Biol. 2022 10 887693 10.3389/fcell.2022.887693 35656554
    [Google Scholar]
  65. Lu W. Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev. Cell 2019 49 3 361 374 10.1016/j.devcel.2019.04.010 31063755
    [Google Scholar]
  66. Yang B. Song J. Sun H. Xing J. Yang Z. Wei C. Xu T. Yu Z. Zhang Y. Wang Y. Chang H. Xu Z. Hou M. Ji M. Zhang Y. PSMB8 regulates glioma cell migration, proliferation, and apoptosis through modulating ERK1/2 and PI3K/AKT signaling pathways. Biomed. Pharmacother. 2018 100 205 212 10.1016/j.biopha.2018.01.170 29428669
    [Google Scholar]
  67. Lu L. Chen G. Yang J. Ma Z. Yang Y. Hu Y. Lu Y. Cao Z. Wang Y. Wang X. Bone marrow mesenchymal stem cells suppress growth and promote the apoptosis of glioma U251 cells through downregulation of the PI3K/AKT signaling pathway. Biomed. Pharmacother. 2019 112 108625 10.1016/j.biopha.2019.108625 30784920
    [Google Scholar]
  68. Zhang B. Liu Y. Li Y. Zhe X. Zhang S. Zhang L. Neuroglobin promotes the proliferation and suppresses the apoptosis of glioma cells by activating the PI3K/AKT pathway. Mol. Med. Rep. 2017 17 2 2757 2763 10.3892/mmr.2017.8132 29207186
    [Google Scholar]
  69. Yang H. Li X. Meng Q. Sun H. Wu S. Hu W. Liu G. Li X. Yang Y. Chen R. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol. Cancer 2020 19 1 13 10.1186/s12943‑020‑1139‑3 31973707
    [Google Scholar]
  70. Xu Z.Q. Yang M.G. Liu H.J. Su C.Q. Circular RNA hsa_circ_0003221 (circPTK2) promotes the proliferation and migration of bladder cancer cells. J. Cell. Biochem. 2018 119 4 3317 3325 10.1002/jcb.26492 29125888
    [Google Scholar]
  71. Chen W. Wang N. Lian M. CircRNA circPTK2 might suppress cancer cell invasion and migration of glioblastoma by inhibiting miR-23a maturation. Neuropsychiatr. Dis. Treat. 2021 17 2767 2774 10.2147/NDT.S297108 34456566
    [Google Scholar]
  72. Wang L. Tong X. Zhou Z. Wang S. Lei Z. Zhang T. Liu Z. Zeng Y. Li C. Zhao J. Su Z. Zhang C. Liu X. Xu G. Zhang H.T. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol. Cancer 2018 17 1 140 10.1186/s12943‑018‑0889‑7 30261900
    [Google Scholar]
  73. Peyre L. Meyer M. Hofman P. Roux J. TRAIL receptor-induced features of epithelial-to-mesenchymal transition increase tumour phenotypic heterogeneity: Potential cell survival mechanisms. Br. J. Cancer 2021 124 1 91 101 10.1038/s41416‑020‑01177‑w 33257838
    [Google Scholar]
  74. Sharma R. Chiang Y.H. Chen H.C. Lin H.Y. Yang W.B. Nepali K. Lai M.J. Chen K.Y. Liou J.P. Hsu T.I. Dual inhibition of CYP17A1 and HDAC6 by abiraterone-installed hydroxamic acid overcomes temozolomide resistance in glioblastoma through inducing DNA damage and oxidative stress. Cancer Lett. 2024 586 216666 10.1016/j.canlet.2024.216666 38311053
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673390934250923111917
Loading
/content/journals/cmc/10.2174/0109298673390934250923111917
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test