Skip to content
2000
image of Association between Serum Klotho Levels and Sarcopenia: Result from the NHANES (2011-2016)

Abstract

Introduction

Klotho is a multifunctional protein with anti-aging properties that plays a role in regulating vitamin D and phosphate metabolism. Sarcopenia is characterized by the loss of muscle mass and strength and is an important public health concern due to its negative effects on health. The aim of this study was to investigate the association between α-Klotho levels and the frequency of sarcopenia in a diverse population.

Methods

This study analyzed data from 1,250 participants in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016. Participants were divided into four subgroups based on serum α-Klotho levels. Sarcopenia was assessed using skeletal muscle index and handgrip strength measurements. Multivariable logistic regression analysis was used to determine the association between serum α-Klotho levels and sarcopenia.

Results

There was a significant difference in serum α-Klotho levels between patients with sarcopenia and patients without sarcopenia. In an unadjusted multivariable logistic regression model, higher α-Klotho serum levels were associated with a lower risk of sarcopenia ( < 0.05). This trend was maintained in the partially adjusted model, indicating that higher levels of α-Klotho were associated with a lower risk of sarcopenia. However, the fully adjusted model did not show significance.

Discussion

Several factors significantly influence the relationship between serum α-Klotho levels and sarcopenia, including sex, ethnicity, alcohol consumption, body mass index (BMI), vitamin D levels, and disease status. Our findings indicate that the risk of sarcopenia is elevated in individuals within the lowest quartile of serum α-Klotho levels. Furthermore, a negative correlation exists between α-Klotho levels and grip strength, observed in both the overall sample and the aging-related subgroup. These results highlight the necessity for further investigation into the complex interplay between α-Klotho and grip strength, particularly in the context of sarcopenia associated with renal disease.

Conclusion

Serum α-Klotho levels in different populations are negatively correlated with the risk of sarcopenia, suggesting that α-Klotho may be involved in the occurrence and development of sarcopenia. Therefore, measuring α-Klotho levels in clinical practice may be a valuable diagnostic tool to identify individuals at high risk of developing sarcopenia.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673387906250905160742
2025-10-01
2025-11-06
Loading full text...

Full text loading...

References

  1. Cruz-Jentoft A.J. Baeyens J.P. Bauer J.M. Boirie Y. Cederholm T. Landi F. Martin F.C. Michel J.P. Rolland Y. Schneider S.M. Topinková E. Vandewoude M. Zamboni M. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010 39 4 412 423 10.1093/ageing/afq034 20392703
    [Google Scholar]
  2. Sayer A.A. Cooper R. Arai H. Cawthon P.M. Ntsama Essomba M.J. Fielding R.A. Grounds M.D. Witham M.D. Cruz-Jentoft A.J. Sarcopenia. Nat. Rev. Dis. Primers 2024 10 1 68 10.1038/s41572‑024‑00550‑w 39300120
    [Google Scholar]
  3. Distefano G. Goodpaster B.H. Effects of exercise and aging on skeletal muscle. Cold Spring Harb. Perspect. Med. 2018 8 3 a029785 10.1101/cshperspect.a029785 28432116
    [Google Scholar]
  4. Joanisse S. Nederveen J.P. Baker J.M. Snijders T. Iacono C. Parise G. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J. 2016 30 9 3256 3268 10.1096/fj.201600143RR 27306336
    [Google Scholar]
  5. Nishikawa H. Fukunishi S. Asai A. Yokohama K. Nishiguchi S. Higuchi K. Pathophysiology and mechanisms of primary sarcopenia (Review). Int. J. Mol. Med. 2021 48 2 156 10.3892/ijmm.2021.4989 34184088
    [Google Scholar]
  6. Cruz-Jentoft A.J. Sayer A.A. Sarcopenia. Lancet 2019 393 10191 2636 2646 10.1016/S0140‑6736(19)31138‑9 31171417
    [Google Scholar]
  7. Troutman A.D. Arroyo E. Lim K. Moorthi R.N. Avin K.G. Skeletal muscle complications in chronic kidney disease. Curr. Osteoporos. Rep. 2022 20 6 410 421 10.1007/s11914‑022‑00751‑w 36149594
    [Google Scholar]
  8. Bossi P. Delrio P. Mascheroni A. Zanetti M. The spectrum of malnutrition/cachexia/sarcopenia in oncology according to different cancer types and settings: A narrative review. Nutrients 2021 13 6 1980 10.3390/nu13061980 34207529
    [Google Scholar]
  9. Wang X.H. Mitch W.E. Price S.R. Pathophysiological mechanisms leading to muscle loss in chronic kidney disease. Nat. Rev. Nephrol. 2022 18 3 138 152 10.1038/s41581‑021‑00498‑0 34750550
    [Google Scholar]
  10. Wang X.H. Mitch W.E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014 10 9 504 516 10.1038/nrneph.2014.112 24981816
    [Google Scholar]
  11. Merchant R.A. Vathsala A. Healthy aging and chronic kidney disease. Kidney Res. Clin. Pract. 2022 41 6 644 656 10.23876/j.krcp.22.112 36328991
    [Google Scholar]
  12. Souza V.A. Oliveira D. Barbosa S.R. Corrêa J.O.A. Colugnati F.A.B. Mansur H.N. Fernandes N.M.S. Bastos M.G. Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One 2017 12 4 10.1371/journal.pone.0176230 28448584
    [Google Scholar]
  13. Hommos M.S. Glassock R.J. Rule A.D. Structural and functional changes in human kidneys with healthy aging. J. Am. Soc. Nephrol. 2017 28 10 2838 2844 10.1681/ASN.2017040421 28790143
    [Google Scholar]
  14. Tsai C.C. Wang P.C. Hsiung T. Fan Y.H. Wu J.T. Kan W.C. Shiao C.C. Sarcopenia in chronic kidney disease: A narrative review from pathophysiology to therapeutic approaches. Biomedicines 2025 13 2 352 10.3390/biomedicines13020352 40002765
    [Google Scholar]
  15. Kuro-o M. Matsumura Y. Aizawa H. Kawaguchi H. Suga T. Utsugi T. Ohyama Y. Kurabayashi M. Kaname T. Kume E. Iwasaki H. Iida A. Shiraki-Iida T. Nishikawa S. Nagai R. Nabeshima Y. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997 390 6655 45 51 10.1038/36285 9363890
    [Google Scholar]
  16. Li S.S. Sheng M. Sun Z.Y. Liang Y. Yu L.X. Liu Q.F. Upstream and downstream regulators of Klotho expression in chronic kidney disease. Metabolism 2023 142 10.1016/j.metabol.2023.155530 36868370
    [Google Scholar]
  17. Ito S. Kinoshita S. Shiraishi N. Nakagawa S. Sekine S. Fujimori T. Nabeshima Y. Molecular cloning and expression analyses of mouse βklotho, which encodes a novel Klotho family protein. Mech. Dev. 2000 98 1-2 115 119 10.1016/S0925‑4773(00)00439‑1 11044614
    [Google Scholar]
  18. Matsumura Y. Aizawa H. Shiraki-Iida T. Nagai R. Kuro-o M. Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 1998 242 3 626 630 10.1006/bbrc.1997.8019 9464267
    [Google Scholar]
  19. Sun T. Yu X. FGF23 actions in CKD-MBD and other organs during CKD. Curr. Med. Chem. 2023 30 7 841 856 10.2174/0929867329666220627122733 35761503
    [Google Scholar]
  20. Neyra J.A. Hu M.C. Moe O.W. Klotho in clinical nephrology: Diagnostic and therapeutic implications. Clin. J. Am. Soc. Nephrol. 2020 16 1 162 176 10.2215/CJN.02840320 32699047
    [Google Scholar]
  21. Kharitonenkov A. Dunbar J.D. Bina H.A. Bright S. Moyers J.S. Zhang C. Ding L. Micanovic R. Mehrbod S.F. Knierman M.D. Hale J.E. Coskun T. Shanafelt A.B. FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J. Cell. Physiol. 2008 215 1 1 7 10.1002/jcp.21357 18064602
    [Google Scholar]
  22. Yoshida T. Fujimori T. Nabeshima Y.I. Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002 143 2 683 689 10.1210/endo.143.2.8657 11796525
    [Google Scholar]
  23. Shimada T. Kakitani M. Yamazaki Y. Hasegawa H. Takeuchi Y. Fujita T. Fukumoto S. Tomizuka K. Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 2004 113 4 561 568 10.1172/JCI200419081 14966565
    [Google Scholar]
  24. Castner S.A. Gupta S. Wang D. Moreno A.J. Park C. Chen C. Poon Y. Groen A. Greenberg K. David N. Boone T. Baxter M.G. Williams G.V. Dubal D.B. Longevity factor klotho enhances cognition in aged nonhuman primates. Nat. Aging 2023 3 8 931 937 10.1038/s43587‑023‑00441‑x 37400721
    [Google Scholar]
  25. Zhang Y. Guo J.Y. Wang F. Li C.W. Yu K. Start with muscle mass or muscle strength in diagnosis and management of sarcopenia? A systematic review of guidance documents. Asia Pac. J. Clin. Nutr. 2024 33 2 247 271 10.6133/apjcn.202406_33(2).0011 38794984
    [Google Scholar]
  26. Cruz-Jentoft A.J. Bahat G. Bauer J. Boirie Y. Bruyère O. Cederholm T. Cooper C. Landi F. Rolland Y. Sayer A.A. Schneider S.M. Sieber C.C. Topinkova E. Vandewoude M. Visser M. Zamboni M. Bautmans I. Baeyens J-P. Cesari M. Cherubini A. Kanis J. Maggio M. Martin F. Michel J-P. Pitkala K. Reginster J-Y. Rizzoli R. Sánchez-Rodríguez D. Schols J. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019 48 1 16 31 10.1093/ageing/afy169 30312372
    [Google Scholar]
  27. Levey A.S. Stevens L.A. Schmid C.H. Zhang Y.L. Castro A.F. III Feldman H.I. Kusek J.W. Eggers P. Van Lente F. Greene T. Coresh J. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009 150 9 604 612 10.7326/0003‑4819‑150‑9‑200905050‑00006 19414839
    [Google Scholar]
  28. Beaudart C. Demonceau C. Reginster J.Y. Locquet M. Cesari M. Jentoft A.J.C. Sarcopenia and health-related quality of life: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2023 14 3 1228 1243 10.1002/jcsm.13243 37139947
    [Google Scholar]
  29. Ooi H. Welch C. Obstacles to the early diagnosis and management of sarcopenia: Current perspectives. Clin. Interv. Aging 2024 19 323 332 10.2147/CIA.S438144 38404480
    [Google Scholar]
  30. Mota J. Lima A.M.M. Gomes J.I.S. Klotho in cancer: Potential diagnostic and prognostic applications. Diagnostics 2023 13 21 3357 10.3390/diagnostics13213357 37958253
    [Google Scholar]
  31. Zj H. Xc W. Lc Z. Ym Y. Tt C.J.X. Circulating Klotho is linked to prognosis of acute intracerebral hemorrhage. Clin. Chim. Acta 2019 497 114 119 10.1016/j.cca.2019.07.023 31344366
    [Google Scholar]
  32. Jiang M. Tang X. Wang P. Yang L. Du R. Association between daily alcohol consumption and serum alpha klotho levels among U.S. adults over 40 years old: A cross-sectional study. BMC Public Health 2023 23 1 1901 10.1186/s12889‑023‑16830‑1 37784055
    [Google Scholar]
  33. Lee J. Kim D. Lee H. Choi J.Y. Min J.Y. Min K.B. Association between serum klotho levels and cardiovascular disease risk factors in older adults. BMC Cardiovasc. Disord. 2022 22 1 442 10.1186/s12872‑022‑02885‑2 36221064
    [Google Scholar]
  34. Chen S. Kong Y. Wang N. Kang N. Chen H. Zhang Z. Liu L. Chen L. Association between weight change and serum anti-aging protein α-Klotho: A cross-sectional study in middle-aged and older adults. Sci. Rep. 2024 14 1 18624 10.1038/s41598‑024‑69556‑4 39128946
    [Google Scholar]
  35. Zhang Y. Zhao C. Zhang H. Chen M. Meng Y. Pan Y. Zhuang Q. Zhao M. Association between serum soluble α-klotho and bone mineral density (BMD) in middle-aged and older adults in the United States: A population-based cross-sectional study. Aging Clin. Exp. Res. 2023 35 10 2039 2049 10.1007/s40520‑023‑02483‑y 37368163
    [Google Scholar]
  36. Mizuno T. Hosoyama T. Tomida M. Yamamoto Y. Nakamichi Y. Kato S. Kawai-Takaishi M. Ishizuka S. Nishita Y. Tange C. Shimokata H. Imagama S. Otsuka R. Influence of vitamin D on sarcopenia pathophysiology: A longitudinal study in humans and basic research in knockout mice. J. Cachexia Sarcopenia Muscle 2022 13 6 2961 2973 10.1002/jcsm.13102 36237134
    [Google Scholar]
  37. Rosenberg I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997 127 5 Suppl 990S 991S 10.1093/jn/127.5.990S 9164280
    [Google Scholar]
  38. Donini L.M. Busetto L. Bischoff S.C. Cederholm T. Ballesteros-Pomar M.D. Batsis J.A. Bauer J.M. Boirie Y. Cruz-Jentoft A.J. Dicker D. Frara S. Frühbeck G. Genton L. Gepner Y. Giustina A. Gonzalez M.C. Han H.S. Heymsfield S.B. Higashiguchi T. Laviano A. Lenzi A. Nyulasi I. Parrinello E. Poggiogalle E. Prado C.M. Salvador J. Rolland Y. Santini F. Serlie M.J. Shi H. Sieber C.C. Siervo M. Vettor R. Villareal D.T. Volkert D. Yu J. Zamboni M. Barazzoni R. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes. Facts 2022 15 3 321 335 10.1159/000521241 35196654
    [Google Scholar]
  39. Mirzai S. Carbone S. Batsis J.A. Kritchevsky S.B. Kitzman D.W. Shapiro M.D. Sarcopenic obesity and cardiovascular disease: An overlooked but high-risk syndrome. Curr. Obes. Rep. 2024 13 3 532 544 10.1007/s13679‑024‑00571‑2 38753289
    [Google Scholar]
  40. Tarantino G. Sinatti G. Citro V. Santini S. Balsano C. Sarcopenia, a condition shared by various diseases: Can we alleviate or delay the progression? Intern. Emerg. Med. 2023 18 7 1887 1895 10.1007/s11739‑023‑03339‑z 37490203
    [Google Scholar]
  41. Prajapati P. Kumar A. Chaudary R. Mangrulkar S. Arya M. Kushwaha S. A comprehensive review of essential aspects of molecular pathophysiological mechanisms with emerging interventions for sarcopenia in older people. Curr. Mol. Pharmacol. 2024 17 1 e080323214478 10.2174/1874467216666230308142137 36892022
    [Google Scholar]
  42. Aczel D. Torma F. Jokai M. McGreevy K. Boros A. Seki Y. Boldogh I. Horvath S. Radak Z. The circulating level of klotho is not dependent upon physical fitness and age-associated methylation increases at the promoter region of the klotho gene. Genes 2023 14 2 525 10.3390/genes14020525 36833453
    [Google Scholar]
  43. Guan Z. Ma L. Wu C. Association between serum klotho and physical frailty in middle-aged and older adults: Finding from the national health and nutrition examination survey. J. Am. Med. Dir. Assoc. 2023 24 8 1173 1178.e2 10.1016/j.jamda.2023.02.103 37001558
    [Google Scholar]
  44. Shardell M. Semba R.D. Kalyani R.R. Bandinelli S. Prather A.A. Chia C.W. Ferrucci L. Plasma klotho and frailty in older adults: Findings from the InCHIANTI Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019 74 7 1052 1057 10.1093/gerona/glx202 29053774
    [Google Scholar]
  45. Phelps M. Pettan-Brewer C. Ladiges W. Yablonka-Reuveni Z. Decline in muscle strength and running endurance in klotho deficient C57BL/6 mice. Biogerontology 2013 14 6 729 739 10.1007/s10522‑013‑9447‑2 24030242
    [Google Scholar]
  46. Semba R.D. Cappola A.R. Sun K. Bandinelli S. Dalal M. Crasto C. Guralnik J.M. Ferrucci L. Relationship of low plasma klotho with poor grip strength in older community-dwelling adults: The InCHIANTI study. Eur. J. Appl. Physiol. 2012 112 4 1215 1220 10.1007/s00421‑011‑2072‑3 21769735
    [Google Scholar]
  47. Arroyo E. Leber C.A. Burney H.N. Narayanan G. Moorthi R. Avin K.G. Warden S.J. Moe S.M. Lim K. Relationship between klotho and physical function in healthy aging. Sci. Rep. 2023 13 1 21158 10.1038/s41598‑023‑47791‑5 38036596
    [Google Scholar]
  48. Ohsawa Y. Ohtsubo H. Munekane A. Ohkubo K. Murakami T. Fujino M. Nishimatsu S. Hagiwara H. Nishimura H. Kaneko R. Suzuki T. Tatsumi R. Mizunoya W. Hinohara A. Fukunaga M. Sunada Y. Circulating α-klotho counteracts transforming growth factor-β–induced sarcopenia. Am. J. Pathol. 2023 193 5 591 607 10.1016/j.ajpath.2023.01.009 36773783
    [Google Scholar]
  49. Sahu A. Mamiya H. Shinde S.N. Cheikhi A. Winter L.L. Vo N.V. Stolz D. Roginskaya V. Tang W.Y. St Croix C. Sanders L.H. Franti M. Van Houten B. Rando T.A. Barchowsky A. Ambrosio F. Age-related declines in α-Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nat. Commun. 2018 9 1 4859 10.1038/s41467‑018‑07253‑3 30451844
    [Google Scholar]
  50. Kaszubowska L. Foerster J. Kaczor J.J. Karnia M.J. Kmieć Z. Anti-inflammatory klotho protein serum concentration correlates with interferon gamma expression related to the cellular activity of both NKT-like and T cells in the process of human aging. Int. J. Mol. Sci. 2023 24 9 8393 10.3390/ijms24098393 37176100
    [Google Scholar]
  51. Mao Q. Deng M. Zhao J. Zhou D. Chen M. Liu Q. Xu S. Zhao X. Low serum Klotho reflects senile inflammation in middle-aged and elderly patients with coronary atherosclerosis. Cytokine 2023 167 10.1016/j.cyto.2023.156213 37121091
    [Google Scholar]
  52. Li R. Zhou B. Deng X. Tian W. Huang Y. Wang J. Xu L. α -Klotho: The hidden link between dietary inflammatory index and accelerated ageing. Br. J. Nutr. 2024 132 5 558 564 10.1017/S0007114524001417 39300827
    [Google Scholar]
  53. Wilkinson T.J. Miksza J. Yates T. Lightfoot C.J. Baker L.A. Watson E.L. Zaccardi F. Smith A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021 12 3 586 598 10.1002/jcsm.12705 33949807
    [Google Scholar]
  54. Gungor O. Ulu S. Hasbal N.B. Anker S.D. Kalantar-Zadeh K. Effects of hormonal changes on sarcopenia in chronic kidney disease: Where are we now and what can we do? J. Cachexia Sarcopenia Muscle 2021 12 6 1380 1392 10.1002/jcsm.12839 34676694
    [Google Scholar]
  55. Chang J. Liang Y. Sun P. Fang X. Sun Q. Molecular and cellular mechanisms linking chronic kidney disease and sarcopenia in aging: An integrated perspective. Clin. Interv. Aging 2025 20 449 458 10.2147/CIA.S516704 40226833
    [Google Scholar]
  56. Al Saedi A. Debruin D.A. Hayes A. Hamrick M. Lipid metabolism in sarcopenia. Bone 2022 164 10.1016/j.bone.2022.116539 36007811
    [Google Scholar]
  57. Gulcicek S Seyahi N. Factors associated with sarcopenia in patients with chronic kidney disease: A cross-sectional single-center study. Med. Sci. Monit. 2023 29 e939457 10.12659/MSM.939457 37153984
    [Google Scholar]
  58. Park M.J. Choi K.M. Interplay of skeletal muscle and adipose tissue: Sarcopenic obesity. Metabolism 2023 144 10.1016/j.metabol.2023.155577 37127228
    [Google Scholar]
  59. Aldahhan R.A. Motawei K.H. Al-Hariri M.T. Lipotoxicity-related sarcopenia: A review. J. Med. Life 2022 15 11 1334 1339 10.25122/jml‑2022‑0157 36567835
    [Google Scholar]
  60. Li C. Yu K. Shyh-Chang N. Jiang Z. Liu T. Ma S. Luo L. Guang L. Liang K. Ma W. Miao H. Cao W. Liu R. Jiang L. Yu S. Li C. Liu H. Xu L. Liu R. Zhang X. Liu G. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022 13 2 781 794 10.1002/jcsm.12901 35106971
    [Google Scholar]
  61. Qian J. Zhong J. Liu S. Yan M. Cheng P. Hao C. Gu Y. Lai L. α-klotho, plasma asymmetric dimethylarginine, and kidney disease progression. Kidney Med. 2021 3 6 984 991.e1 10.1016/j.xkme.2021.05.008 34939007
    [Google Scholar]
  62. Buchanan S. Combet E. Stenvinkel P. Shiels P.G. Klotho, aging, and the failing kidney. Front. Endocrinol. 2020 11 560 10.3389/fendo.2020.00560 32982966
    [Google Scholar]
  63. Clemens Z. Sivakumar S. Pius A. Sahu A. Shinde S. Mamiya H. Luketich N. Cui J. Dixit P. Hoeck J.D. Kreuz S. Franti M. Barchowsky A. Ambrosio F. The biphasic and age-dependent impact of klotho on hallmarks of aging and skeletal muscle function. eLife 2021 10 10.7554/eLife.61138 33876724
    [Google Scholar]
  64. Dong Y. Yuan H. Ma G. Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell. Mol. Life Sci. 2024 81 1 310 10.1007/s00018‑024‑05331‑y 39066929
    [Google Scholar]
  65. Pierantoni M. Le Cann S. Sotiriou V. Ahmed S. Bodey A.J. Jerjen I. Nowlan N.C. Isaksson H. Muscular loading affects the 3D structure of both the mineralized rudiment and growth plate at early stages of bone formation. Bone 2021 145 10.1016/j.bone.2021.115849 33454374
    [Google Scholar]
  66. Leek C.C. Soulas J.M. Bhattacharya I. Ganji E. Locke R.C. Smith M.C. Bhavsar J.D. Polson S.W. Ornitz D.M. Killian M.L. Deletion of Fibroblast growth factor 9 globally and in skeletal muscle results in enlarged tuberosities at sites of deltoid tendon attachments. Dev. Dyn. 2021 250 12 1778 1795 10.1002/dvdy.383 34091985
    [Google Scholar]
  67. Mera P. Laue K. Ferron M. Confavreux C. Wei J. Galán-Díez M. Lacampagne A. Mitchell S.J. Mattison J.A. Chen Y. Bacchetta J. Szulc P. Kitsis R.N. de Cabo R. Friedman R.A. Torsitano C. McGraw T.E. Puchowicz M. Kurland I. Karsenty G. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. 2017 25 1 218 10.1016/j.cmet.2016.12.003 28076763
    [Google Scholar]
  68. Bär L. Stournaras C. Lang F. Föller M. Regulation of fibroblast growth factor 23 ( FGF 23) in health and disease. FEBS Lett. 2019 593 15 1879 1900 10.1002/1873‑3468.13494 31199502
    [Google Scholar]
  69. Chen G. Liu Y. Goetz R. Fu L. Jayaraman S. Hu M.C. Moe O.W. Liang G. Li X. Mohammadi M. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 2018 553 7689 461 466 10.1038/nature25451 29342138
    [Google Scholar]
  70. Saar-Kovrov V. Donners M.M.P.C. van der Vorst E.P.C. Shedding of Klotho: Functional implications in chronic kidney disease and associated vascular disease. Front. Cardiovasc. Med. 2021 7 617842 10.3389/fcvm.2020.617842 33585584
    [Google Scholar]
  71. Ohnishi M. Razzaque M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010 24 9 3562 3571 10.1096/fj.09‑152488 20418498
    [Google Scholar]
  72. Xu Y. Sun Z. Molecular basis of Klotho: From gene to function in aging. Endocr. Rev. 2015 36 2 174 193 10.1210/er.2013‑1079 25695404
    [Google Scholar]
  73. Mencke R. Harms G. Mirković K. Struik J. Van Ark J. Van Loon E. Verkaik M. De Borst M.H. Zeebregts C.J. Hoenderop J.G. Vervloet M.G. Hillebrands J.L. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc. Res. 2015 108 2 220 231 10.1093/cvr/cvv187 26116633
    [Google Scholar]
  74. Gutiérrez O.M. Mannstadt M. Isakova T. Rauh-Hain J.A. Tamez H. Shah A. Smith K. Lee H. Thadhani R. Jüppner H. Wolf M. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 2008 359 6 584 592 10.1056/NEJMoa0706130 18687639
    [Google Scholar]
  75. Grabner A. Faul C. The role of FGF23 and klotho in uremic cardiomyopathy. Curr. Opin. Nephrol. Hypertens. 2016 25 4 314 324 10.1097/MNH.0000000000000231 27219043
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673387906250905160742
Loading
/content/journals/cmc/10.2174/0109298673387906250905160742
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test