Skip to content
2000
image of Potential Targets and Mechanism of Action of Wangwei Powder in Tic Disorder Therapy: Bioinformatics and Network Pharmacology Analyses

Abstract

Introduction

Tic disorders are neuropsychiatric conditions characterized by involuntary motor or vocal tics; however, the mechanisms underlying these disorders and potential therapeutic targets remain unknown. Therefore, this study investigated the mechanisms underlying tic disorders, particularly focusing on the role of mitochondrial energy metabolism, and identified potential targets of traditional Chinese medicine for these disorders.

Methods

Mitochondrial energy metabolism-related genes were retrieved from GeneCards and relevant literature. Additionally, Wangwei powder components and their potential targets were obtained from the TCMSP, HERB, and PubChem databases. Bioinformatic analysis was employed to identify key genes and mechanisms involved in tic disorders.

Results

Notably, 210 target genes of Wangwei powder, 365 mitochondrial energy metabolism-related genes, and 2020 differentially expressed genes in the tic disorder control groups were identified. Based on the intersections of the differentially expressed genes, mitochondrial energy metabolism-related genes, and target genes, aldehyde dehydrogenase 2 (), acetyl-CoA acetyltransferase 1 (), aldehyde dehydrogenase 1a1 (), and adenylate kinase 2 ( were identified as key genes in tic disorder pathophysiology. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the key genes were mainly involved in liver development, cellular detoxification of aldehydes, pyruvate metabolism, and fatty acid degradation pathways. Additionally, immune infiltration analysis highlighted notable discrepancies in immune cell populations between the tic disorder and control groups.

Discussion

and demonstrate potential as therapeutic targets for TD in WWS. The role of in immune modulation and disease progression highlights its promise for immunotherapy. However, further experimental validation is needed to address study limitations.

Conclusion

The results indicate that the key genes (, , , and ) play a crucial role in the pathogenesis of tic disorders through metabolic pathways and immune cell regulation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673386958251016101035
2025-10-31
2025-12-15
Loading full text...

Full text loading...

References

  1. Chouinard S. Ford B. Adult onset tic disorders. J. Neurol. Neurosurg. Psychiatry 2000 68 6 738 743 10.1136/jnnp.68.6.738 10811697
    [Google Scholar]
  2. Cubo E. Review of prevalence studies of tic disorders: Methodological caveats. Tremor Other Hyperkinet Mov 2012 2 tre-02-61-349-1 10.7916/D8445K68 23440028
    [Google Scholar]
  3. Walkup J.T. Ferrão Y. Leckman J.F. Stein D.J. Singer H. Tic disorders: Some key issues for DSM-V. Depress. Anxiety 2010 27 6 600 610 10.1002/da.20711 20533370
    [Google Scholar]
  4. Lu Q. Cui Y.H. Liu Z.S. Sun D. Fang F. Peng J. Zhou S.Z. Wang J.Q. Luo R. Jiang L. Qin J. Jiang Y.W. Zheng Y. Investigation on the status of monotherapy for newly diagnosed tic disorders and its comorbidity in children. Zhonghua Er Ke Za Zhi 2020 58 11 887 892 10.3760/cma.j.cn112140‑20200628‑00671 33120459
    [Google Scholar]
  5. Ganos C. Sarva H. Kurvits L. Gilbert D.L. Hartmann A. Worbe Y. Mir P. Müller-Vahl K.R. Münchau A. Shprecher D. Singer H.S. Deeb W. Okun M.S. Malaty I.A. Hallett M. Tijssen M.A.J. Pringsheim T. Martino D. Clinical practice patterns in tic disorders among movement disorder society members. Tremor Other Hyperkinet. Mov. 2021 11 1 43 10.5334/tohm.656 34754602
    [Google Scholar]
  6. Ueda K. Black K.J. A comprehensive review of tic disorders in children. J. Clin. Med. 2021 10 11 2479 10.3390/jcm10112479 34204991
    [Google Scholar]
  7. Esmaeilzadeh H. Yousefi M.R. Mortazavi N. Gholami M.A. Vali M. Dastgheib S.A. Tic disorder in allergic rhinitis children and adolescents: A case-control study. BMC Pediatr. 2024 24 1 20 10.1186/s12887‑023‑04482‑4 38183026
    [Google Scholar]
  8. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T.I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics 2016 54 1 30.1 , 33 10.1002/cpbi.5 27322403
    [Google Scholar]
  9. Ye Z. Zhang H. Kong F. Lan J. Yi S. Jia W. Zheng S. Guo Y. Zhan X. Comprehensive analysis of alteration landscape and its clinical significance of mitochondrial energy metabolism pathway-related genes in lung cancers. Oxid. Med. Cell. Longev. 2021 2021 1 9259297 10.1155/2021/9259297 34970420
    [Google Scholar]
  10. Liu J. Zhang F. Zhong J. Zheng Z. Signature and molecular mechanism of mitochondrial energy metabolism pathway-related genes in lung adenocarcinoma. Dis. Markers 2022 2022 1 1 19 10.1155/2022/3201600 36046378
    [Google Scholar]
  11. Cao Z. Lin J. Fu G. Niu L. Yang Z. Cai W. An integrated bioinformatic investigation of mitochondrial energy metabolism genes in colon adenocarcinoma followed by preliminary validation of CPT2 in tumor immune infiltration. Front. Immunol. 2022 13 959967 10.3389/fimmu.2022.959967 36177002
    [Google Scholar]
  12. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  13. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  14. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  15. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  16. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  17. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014 8 S4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  18. Yang X. Li Y. Lv R. Qian H. Chen X. Yang C.F. Study on the multitarget mechanism and key active ingredients of herba siegesbeckiae and volatile oil against rheumatoid arthritis based on network pharmacology. Evid. Based Complement. Alternat. Med. 2019 2019 1 1 15 10.1155/2019/8957245 31885670
    [Google Scholar]
  19. Mi H. Muruganujan A. Ebert D. Huang X. Thomas P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019 47 D1 D419 D426 10.1093/nar/gky1038 30407594
    [Google Scholar]
  20. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  21. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  22. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  23. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  24. Grados M.A. Riddle M.A. Samuels J.F. Liang K.Y. Hoehn-Saric R. Bienvenu O.J. Walkup J.T. Song D. Nestadt G. The familial phenotype of obsessive-compulsive disorder in relation to tic disorders: The Hopkins OCD family study. Biol. Psychiatry 2001 50 8 559 565 10.1016/S0006‑3223(01)01074‑5 11690590
    [Google Scholar]
  25. Kircanski K. Woods D.W. Chang S.W. Ricketts E.J. Piacentini J.C. Cluster analysis of the Yale Global Tic Severity Scale (YGTSS): Symptom dimensions and clinical correlates in an outpatient youth sample. J. Abnorm. Child Psychol. 2010 38 6 777 788 10.1007/s10802‑010‑9410‑5 20386987
    [Google Scholar]
  26. Kim J.S. Kim Y.J. Kim T.Y. Song J.Y. Cho Y.H. Park Y.C. Chung H.W. Association of Aldh2 polymorphism with sensitivity to acetaldehyde-induced micronuclei and facial flushing after alcohol intake. Toxicology 2005 210 2-3 169 174 10.1016/j.tox.2005.01.016 15840430
    [Google Scholar]
  27. Quintanilla M.E. Tampier L. Sapag A. Israel Y. Polymorphisms in the mitochondrial aldehyde dehydrogenase gene (Aldh2) determine peak blood acetaldehyde levels and voluntary ethanol consumption in rats. Pharmacogenet. Genomics 2005 15 6 427 431 10.1097/01213011‑200506000‑00009 15900217
    [Google Scholar]
  28. Isse T. Oyama T. Matsuno K. Ogawa M. Narai-Suzuki R. Yamaguchi T. Murakami T. Kinaga T. Uchiyama I. Kawamoto T. Paired acute inhalation test reveals that acetaldehyde toxicity is higher in aldehyde dehydrogenase 2 knockout mice than in wild-type mice. J. Toxicol. Sci. 2005 30 4 329 337 10.2131/jts.30.329 16404141
    [Google Scholar]
  29. Huang L.H. Melton E.M. Li H. Sohn P. Jung D. Tsai C.Y. Ma T. Sano H. Ha H. Friedline R.H. Kim J.K. Usherwood E. Chang C.C.Y. Chang T.Y. Myeloid-specific Acat1 ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2018 315 3 E340 E356 10.1152/ajpendo.00174.2017 29533741
    [Google Scholar]
  30. Han P. Wu S. Li L. Li D. Zhao J. Zhang H. Wang Y. Zhong X. Zhang Z. Li P. Matskova L. Zhou X. Epigenetic inactivation of Acat1 promotes epithelial-mesenchymal transition of clear cell renal cell carcinoma. Genes Genomics 2022 44 4 487 497 10.1007/s13258‑021‑01211‑y 34985712
    [Google Scholar]
  31. Lei X. Fujiwara Y. Chang C.C.Y. Chang T.Y. Takeya M. Sakashita N. Association of Acat1-positive vesicles with late endosomes/lysosomes in cholesterol-rich human macrophages. J. Atheroscler. Thromb. 2010 17 7 740 750 10.5551/jat.4416 20523008
    [Google Scholar]
  32. Landen C.N. Jr Goodman B. Katre A.A. Steg A.D. Nick A.M. Stone R.L. Miller L.D. Mejia P.V. Jennings N.B. Gershenson D.M. Bast R.C. Jr Coleman R.L. Lopez-Berestein G. Sood A.K. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol. Cancer Ther. 2010 9 12 3186 3199 10.1158/1535‑7163.MCT‑10‑0563 20889728
    [Google Scholar]
  33. Nikhil K. Viccaro K. Shah K. Multifaceted regulation of Aldh1a1 by Cdk5 in Alzheimer’s disease pathogenesis. Mol. Neurobiol. 2019 56 2 1366 1390 10.1007/s12035‑018‑1114‑9 29948941
    [Google Scholar]
  34. Yiew N.K.H. Finck B.N. The mitochondrial pyruvate carrier at the crossroads of intermediary metabolism. Am. J. Physiol. Endocrinol. Metab. 2022 323 1 E33 E52 10.1152/ajpendo.00074.2022 35635330
    [Google Scholar]
  35. Gray L.R. Tompkins S.C. Taylor E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci. 2014 71 14 2577 2604 10.1007/s00018‑013‑1539‑2 24363178
    [Google Scholar]
  36. Kim M.J. Lee H. Chanda D. Thoudam T. Kang H.J. Harris R.A. Lee I.K. The role of pyruvate metabolism in mitochondrial quality control and inflammation. Mol. Cells 2023 46 5 259 267 10.14348/molcells.2023.2128 36756776
    [Google Scholar]
  37. Bos-Veneman N.G.P. Bijzet J. Limburg P.C. Minderaa R.B. Kallenberg C.G. Hoekstra P.J. Cytokines and soluble adhesion molecules in children and adolescents with a tic disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010 34 8 1390 1395 10.1016/j.pnpbp.2010.06.028 20599460
    [Google Scholar]
  38. Liu X. Wang X. Zhang X. Cao A. Allergic diseases influence symptom severity and T lymphocyte subgroups of children with tic disorders. J. Investig. Med. 2021 69 8 1453 1457 10.1136/jim‑2021‑001788 34257142
    [Google Scholar]
  39. Hoekstra P.J. Minderaa R.B. Tic disorders and obsessive-compulsive disorder: Is autoimmunity involved? Int. Rev. Psychiatry 2005 17 6 497 502 10.1080/02646830500382003 16401548
    [Google Scholar]
  40. Yeh C.B. Wu C.H. Tsung H.C. Chen C.W. Shyu J.F. Leckman J.F. Antineural antibody in patients with Tourette’s syndrome and their family members. J. Biomed. Sci. 2006 13 1 101 112 10.1007/s11373‑005‑9033‑y 16215701
    [Google Scholar]
  41. Li Y. Wang X. Yang H. Li Y. Gui J. Cui Y. Profiles of proinflammatory cytokines and T cells in patients with Tourette syndrome: A meta-analysis. Front. Immunol. 2022 13 843247 10.3389/fimmu.2022.843247 35693824
    [Google Scholar]
  42. Martino D. Dale R.C. Gilbert D.L. Giovannoni G. Leckman J.F. Immunopathogenic mechanisms in tourette syndrome: A critical review. Mov. Disord. 2009 24 9 1267 1279 10.1002/mds.22504 19353683
    [Google Scholar]
  43. Zhao L. Cheng N. Sun B. Wang S. Li A. Wang Z. Wang Y. Qi F. Regulatory effects of Ningdong granule on microglia-mediated neuroinflammation in a rat model of Tourette’s syndrome. Biosci. Trends 2020 14 4 271 278 10.5582/bst.2020.03262 32741856
    [Google Scholar]
  44. Leckman J.F. Katsovich L. Kawikova I. Lin H. Zhang H. Krönig H. Morshed S. Parveen S. Grantz H. Lombroso P.J. King R.A. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette’s syndrome. Biol. Psychiatry 2005 57 6 667 673 10.1016/j.biopsych.2004.12.004 15780855
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673386958251016101035
Loading
/content/journals/cmc/10.2174/0109298673386958251016101035
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: immune infiltration ; transcription factor ; TD ; immune cell ; Tic disorders ; TCM
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test