Skip to content
2000
image of Comprehensive Pan-cancer analysis of Pyroglutamylated RFamide Peptide Receptor: Its Potential Biological Functions and Associations with Prognosis and Immunity

Abstract

Introduction

The receptor for pyroglutamylated RF amide peptide (QRFPR) is a G protein-coupled receptor that plays a role in various physiological and pathological processes. However, a gap remains in our understanding of QRFPR's pan-cancer properties.

Methods

This study performs an extensive pan-cancer analysis of QRFPR utilizing large-scale genomic datasets, including The Cancer Genome Atlas (TCGA). We evaluated QRFPR expression levels in multiple malignancies and examined their correlations with clinical outcomes. Additionally, we investigated associations between QRFPR expression and immune cell infiltration using bioinformatics tools.

Results

Our results reveal significant alterations in QRFPR expression across several cancer types, particularly breast, colorectal, and prostate cancers. Elevated levels of QRFPR are linked to poor prognosis in certain malignancies, such as uterine corpus endometrial carcinoma (UCEC) and mesothelioma (MESO), and correlate with increased infiltration of immune cells, especially T cells and macrophages. Pathway enrichment analyses suggest that QRFPR may impact critical signaling pathways associated with cell growth, apoptosis, and immune regulation.

Discussion

The observed variations in QRFPR expression across cancer types suggest its diverse roles in tumor biology. Its association with unfavorable clinical outcomes in specific cancers, as well as its link to immune cell infiltration, highlights its multifaceted impact on tumor progression and microenvironment modulation.

Conclusion

Our findings underscore the potential of QRFPR as a prognostic biomarker and therapeutic target in cancer biology. Further investigations into its functional mechanisms could pave the way for precision medicine approaches in oncology.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673386201250806154911
2025-09-27
2025-11-04
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Kedar P. Saraf A. Maheshwari R. Sharma M. Advances in dendritic systems and dendronized nanoparticles: Paradigm shifts in cancer targeted therapy and diagnostics. Mol. Pharm. 2025 22 1 28 57 10.1021/acs.molpharmaceut.4c00856 39707984
    [Google Scholar]
  3. Li G. Wang Y. Wang W. Lv G. Li X. Wang J. Liu X. Yuan D. Deng S. You D. BIRC5 as a prognostic and diagnostic biomarker in pan-cancer: An integrated analysis of expression, immune subtypes, and functional networks. Front. Genet. 2024 15 1509342 10.3389/fgene.2024.1509342 39703228
    [Google Scholar]
  4. Zhang Y. Huang Z. Lu W. Liu Z. Alternative polyadenylation in cancer: Molecular mechanisms and clinical application. Crit. Rev. Oncol. Hematol. 2025 206 104599 10.1016/j.critrevonc.2024.104599 39701503
    [Google Scholar]
  5. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  6. Joshi R. Telang B. Soni G. Khalife A. Overview of perspectives on cancer, newer therapies, and future directions. Oncol. Transl. Med. 2024 10 105 109 10.1097/ot9.0000000000000039
    [Google Scholar]
  7. Chen Y. Dai S. Cheng C. Chen L. Lenvatinib and immune-checkpoint inhibitors in hepatocellular carcinoma: mechanistic insights, clinical efficacy, and future perspectives. J. Hematol. Oncol. 2024 17 1 130 10.1186/s13045‑024‑01647‑1 39709431
    [Google Scholar]
  8. Jiang Y. Luo L. Gustafson E.L. Yadav D. Laverty M. Murgolo N. Vassileva G. Zeng M. Laz T.M. Behan J. Qiu P. Wang L. Wang S. Bayne M. Greene J. Monsma F. Jr Zhang F.L. Identification and characterization of a novel RF-amide peptide ligand for orphan G-protein-coupled receptor SP9155. J. Biol. Chem. 2003 278 30 27652 27657 10.1074/jbc.M302945200 12714592
    [Google Scholar]
  9. Fukusumi S. Yoshida H. Fujii R. Maruyama M. Komatsu H. Habata Y. Shintani Y. Hinuma S. Fujino M. A new peptidic ligand and its receptor regulating adrenal function in rats. J. Biol. Chem. 2003 278 47 46387 46395 10.1074/jbc.M305270200 12960173
    [Google Scholar]
  10. Arora C. Matic M. Bisceglia L. Di Chiaro P. De Oliveira Rosa N. Carli F. Clubb L. Nemati Fard L.A. Kargas G. Diaferia G.R. Vukotic R. Licata L. Wu G. Natoli G. Gutkind J.S. Raimondi F. The landscape of cancer-rewired GPCR signaling axes. Cell Genomics 2024 4 5 100557 10.1016/j.xgen.2024.100557 38723607
    [Google Scholar]
  11. Dockray G.J. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp. Physiol. 2004 89 3 229 235 10.1113/expphysiol.2004.027169 15123557
    [Google Scholar]
  12. Iwama A. Kise R. Akasaka H. Sano F.K. Oshima H.S. Inoue A. Shihoya W. Nureki O. Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103. Nat. Commun. 2024 15 1 4769 10.1038/s41467‑024‑49030‑5 38897996
    [Google Scholar]
  13. Cook C. Nunn N. Worth A.A. Bechtold D.A. Suter T. Gackeheimer S. Foltz L. Emmerson P.J. Statnick M.A. Luckman S.M. The hypothalamic RFamide, QRFP, increases feeding and locomotor activity: The role of Gpr103 and orexin receptors. PLoS One 2022 17 10 e0275604 10.1371/journal.pone.0275604 36251705
    [Google Scholar]
  14. Kawan MA. Kyrou I. Ramanjaneya M. Williams K. Jeyaneethi J. Randeva HS. Karteris E. Involvement of the glutamine RF-amide peptide and its cognate receptor GPR103 in prostate cancer. Oncol. Rep. 2019 41 2 1140 1150 10.3892/or.2018.6893 30483810
    [Google Scholar]
  15. Alonzeau J. Alexandre D. Jeandel L. Courel M. Hautot C. El Yamani FZ. Gobet F. Leprince J. Magoul R. Amarti A. Pfister C. Yon L. Anouar Y. Chartrel N. The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells. Eur J Cancer 2013 49 2 511 519 10.1016/j.ejca.2012.05.028 22863147
    [Google Scholar]
  16. Devère M. Takhlidjt S. Prévost G. Chartrel N. Leprince J. Picot M. The 26RFa (QRFP)/GPR103 neuropeptidergic system: A key regulator of energy and glucose metabolism. Neuroendocrinology 2024 115 2 111 127 10.1159/000538629 38599200
    [Google Scholar]
  17. Liu H. Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene 2022 822 146325 10.1016/j.gene.2022.146325 35183683
    [Google Scholar]
  18. Liu H. Tang T. A bioinformatic study of IGFBPs in glioma regarding their diagnostic, prognostic, and therapeutic prediction value. Am. J. Transl. Res. 2023 15 3 2140 2155 37056850
    [Google Scholar]
  19. Liu H. Hamaia S.W. Dobson L. Weng J. Hernández F.L. Beaudoin C.A. Salvage S.C. Huang C.L.H. Machesky L.M. Jackson A.P. The voltage-gated sodium channel β3 subunit modulates C6 glioma cell motility independently of channel activity. Biochim. Biophys. Acta Mol. Basis Dis. 2025 1871 6 167844 10.1016/j.bbadis.2025.167844 40245999
    [Google Scholar]
  20. Nojima Y. Yao R. Suzuki T. Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2025 1871 3 167693 10.1016/j.bbadis.2025.167693 39870146
    [Google Scholar]
  21. Liu H. Dong A. Rasteh A.M. Wang P. Weng J. Identification of the novel exhausted T cell CD8+ markers in breast cancer. Sci. Rep. 2024 14 1 19142 10.1038/s41598‑024‑70184‑1 39160211
    [Google Scholar]
  22. Liu H. Li Y. Potential roles of cornichon family AMPA receptor auxiliary protein 4 (CNIH4) in head and neck squamous cell carcinoma. Cancer Biomark. 2022 35 4 439 450 10.3233/CBM‑220143 36404537
    [Google Scholar]
  23. Li Y. Liu H. Clinical powers of aminoacyl tRNA synthetase complex interacting multifunctional protein 1 (AIMP1) for head-neck squamous cell carcinoma. Cancer Biomark. 2022 34 3 359 374 10.3233/CBM‑210340 35068446
    [Google Scholar]
  24. Liu H. Guo Z. Wang P. Genetic expression in cancer research: Challenges and complexity. Gene Rep. 2024 37 000 102042 10.1016/j.genrep.2024.102042
    [Google Scholar]
  25. Liu H. Li Y. Karsidag M. Tu T. Wang P. Technical and biological biases in bulk transcriptomic data mining for cancer research. J. Cancer 2025 16 1 34 43 10.7150/jca.100922 39744578
    [Google Scholar]
  26. Ma Q. Cao Z. Li H. Wang W. Tian Y. Yan L. Liao Y. Chen X. Chen Y. Shi Y. Tang S. Zhou N. Two naturally occurring mutations of human GPR103 define distinct G protein selection bias. Biochim. Biophys. Acta Mol. Cell Res. 2021 1868 7 119046 10.1016/j.bbamcr.2021.119046 33872671
    [Google Scholar]
  27. Lefranc B. Alim K. Neveu C. Le Marec O. Dubessy C. Boutin J.A. Chuquet J. Vaudry D. Prévost G. Picot M. Vaudry H. Chartrel N. Leprince J. Point-substitution of phenylalanine residues of 26RFa neuropeptide: A structure-activity relationship study. Molecules 2021 26 14 4312 10.3390/molecules26144312 34299587
    [Google Scholar]
  28. Ukena K. Osugi T. Leprince J. Vaudry H. Tsutsui K. Molecular evolution of GPCRS: 26Rfa/GPR103. J. Mol. Endocrinol. 2014 52 3 T119 T131 10.1530/JME‑13‑0207 24532655
    [Google Scholar]
  29. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  30. El Azzouzi M. El Ahanidi H. Hafidi Alaoui C. Chaoui I. Benbacer L. Tetou M. Hassan I. Bensaid M. Oukabli M. Ameur A. Al Bouzidi A. El Mzibri M. Attaleb M. Evaluation of DNA methylation in promoter regions of hTERT, TWIST1, VIM and NID2 genes in Moroccan bladder cancer patients. Cancer Genet. 2022 260-261 41 45 10.1016/j.cancergen.2021.12.001 34922269
    [Google Scholar]
  31. Gorse M. Bianchi C. Proudhon C. Epigenetics and cancer: The role of DNA methylation. Med. Sci. 2024 40 12 925 934 10.1051/medsci/2024180 39705563
    [Google Scholar]
  32. Wan M. Meng H. Li H. Potential role of TWIST1 and its methylation in bladder urothelial carcinoma. Transl. Cancer Res. 2024 13 11 6070 6086 10.21037/tcr‑24‑1029 39697731
    [Google Scholar]
  33. Recillas-Targa F. Cancer epigenetics: An overview. Arch. Med. Res. 2022 53 8 732 740 10.1016/j.arcmed.2022.11.003 36411173
    [Google Scholar]
  34. Lolas-Hamameh S. Lieberman S. Sarahneh A. Walsh T. Lee MK. Gulsuner S. Rabie G. Beeri R. Aburayyan A. Mandell JB. Fridman H. Lazer-Derbeko G. Klopstock T. Freireich O. Lahad A. King MC Levy-Lahad E. Kanaan MN. TP53 missense allele predisposing to high risk of breast cancer but not pediatric cancers. J Natl Cancer Inst 2025 117 5 1069 1073 10.1093/jnci/djae334 39673796
    [Google Scholar]
  35. Xiong K. Fang Y. Qiu B. Chen C. Huang N. Liang F. Huang C. Lu T. Zheng L. Zhao J. Zhu B. Investigation of cellular communication and signaling pathways in tumor microenvironment for high TP53-expressing osteosarcoma cells through single-cell RNA sequencing. Med. Oncol. 2024 41 5 93 10.1007/s12032‑024‑02318‑4 38526643
    [Google Scholar]
  36. Weng J. Shan Y. Chang Q. Cao C. Liu X. Research progress on N6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. Prog. Biophys. Mol. Biol. 2025 195 57 70 10.1016/j.pbiomolbio.2024.12.003 39710080
    [Google Scholar]
  37. Zhao Y. Li J. Dian M. Bie Y. Peng Z. Zhou Y. Zhou B. Hao W. Wang X. Role of N6-methyladenosine methylation in nasopharyngeal carcinoma: current insights and future prospective. Cell. Death. Discov. 2024 10 1 490 10.1038/s41420‑024‑02266‑y 39695216
    [Google Scholar]
  38. Wang X. Ma X. Chen S. Fan M. Jin C. Chen Y. Wang S. Wang Z. Meng F. Zhang C. Yang L. Harnessing m1A modification: A new frontier in cancer immunotherapy. Front. Immunol. 2024 15 1517604 10.3389/fimmu.2024.1517604 39687616
    [Google Scholar]
  39. Zhao D. Yu X. Huang H. Zou S. Zhu P. Lin Y. Song M. Fu F. Yang H. Association of the SNPs in CCL2 and CXCL12 genes with the susceptibility to breast cancer: A case-control study in China. Front. Oncol. 2024 14 1475979 10.3389/fonc.2024.1475979 39703847
    [Google Scholar]
  40. Masih M. Agarwal S. Kaur R. Gautam P.K. Role of chemokines in breast cancer. Cytokine 2022 155 155909 10.1016/j.cyto.2022.155909 35597171
    [Google Scholar]
  41. Palacios-Arreola MI. Nava-Castro KE. Castro JI. García-Zepeda E. Carrero JC. Morales-Montor J. The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J. Immunol. Res. 2014 2014 849720 10.1155/2014/849720 25165728
    [Google Scholar]
  42. Nagarsheth N. Wicha M.S. Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 2017 17 9 559 572 10.1038/nri.2017.49 28555670
    [Google Scholar]
  43. Yan L. Li W. Chen F. Wang J. Chen J. Chen Y. Ye W. Inflammation as a mediator of microbiome dysbiosis-associated dna methylation changes in gastric premalignant lesions. Phenomics 2023 3 5 496 501 10.1007/s43657‑023‑00118‑w 37881317
    [Google Scholar]
  44. Hoekstra M.E. Slagter M. Urbanus J. Toebes M. Slingerland N. de Rink I. Kluin R.J.C. Nieuwland M. Kerkhoven R. Wessels L.F.A. Schumacher T.N. Distinct spatiotemporal dynamics of CD8+ T cell-derived cytokines in the tumor microenvironment. Cancer Cell 2024 42 1 157 167.e9 10.1016/j.ccell.2023.12.010 38194914
    [Google Scholar]
  45. Schneider C. Hilbert J. Genevaux F. Höfer S. Krauß L. Schicktanz F. Contreras C.T. Jansari S. Papargyriou A. Richter T. Alfayomy A.M. Falcomatà C. Schneeweis C. Orben F. Öllinger R. Wegwitz F. Boshnakovska A. Rehling P. Müller D. Ströbel P. Ellenrieder V. Conradi L. Hessmann E. Ghadimi M. Grade M. Wirth M. Steiger K. Rad R. Kuster B. Sippl W. Reichert M. Saur D. Schneider G. A novel AMPK inhibitor sensitizes pancreatic cancer cells to ferroptosis induction. Adv. Sci. 2024 11 31 2307695 10.1002/advs.202307695 38885414
    [Google Scholar]
  46. Williams N.O. Quiroga D. Johnson C. Brufsky A. Chambers M. Bhattacharya S. Patterson M. Sardesai S.D. Stover D. Lustberg M. Noonan A.M. Cherian M. Bystry D.M. Hill K.L. Chen M. Phelps M.A. Grever M. Stephens J.A. Ramaswamy B. Carson W.E. III Wesolowski R. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer. Ther. Adv. Med. Oncol. 2023 15 17588359231217976 10.1177/17588359231217976 38152697
    [Google Scholar]
  47. Shapiro G.I. Kwak E. Dezube B.J. Yule M. Ayrton J. Lyons J. Mahadevan D. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin. Cancer Res. 2015 21 1 87 97 10.1158/1078‑0432.CCR‑14‑0979 25336693
    [Google Scholar]
  48. Reschke R. Enk AH. Hassel JC. Prognostic biomarkers in evolving melanoma immunotherapy. Am. J. Clin. Dermatol. 2025 26 2 213 223 10.1007/s40257‑024‑00910‑y 39707058
    [Google Scholar]
  49. Jahangiri L. Updates on liquid biopsies in neuroblastoma for treatment response, relapse and recurrence assessment. Cancer Genet. 2024 288-289 32 39 10.1016/j.cancergen.2024.09.001 39241395
    [Google Scholar]
  50. Ohyama H. Hirotsu Y. Amemiya K. Mikata R. Amano H. Hirose S. Oyama T. Iimuro Y. Kojima Y. Mochizuki H. Kato N. Omata M. Development of a molecular barcode detection system for pancreaticobiliary malignancies and comparison with next-generation sequencing. Cancer Genet. 2024 280-281 6 12 10.1016/j.cancergen.2023.12.002 38113555
    [Google Scholar]
  51. Gonzalez T. Nie Q. Chaudhary L.N. Basel D. Reddi H.V. Methylation signatures as biomarkers for non-invasive early detection of breast cancer: A systematic review of the literature. Cancer Genet. 2024 282-283 1 8 10.1016/j.cancergen.2023.12.003 38134587
    [Google Scholar]
  52. Liu H. Weng J. Huang C.L.H. Jackson A.P. Voltage-gated sodium channels in cancers. Biomark. Res. 2024 12 1 70 10.1186/s40364‑024‑00620‑x 39060933
    [Google Scholar]
  53. Liu H. Tang T. Pan-cancer genetic analysis of disulfidptosis-related gene set. Cancer Genet. 2023 278-279 91 103 10.1016/j.cancergen.2023.10.001 37879141
    [Google Scholar]
  54. Liu H. Tang T. Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front. Oncol. 2022 12 952290 10.3389/fonc.2022.952290 36276096
    [Google Scholar]
  55. Liu H. Pan-cancer profiles of the cuproptosis gene set. Am. J. Cancer Res. 2022 12 8 4074 4081 36119826
    [Google Scholar]
  56. Kang Z.R. Jiang S. Han J.X. Gao Y. Xie Y. Chen J. Liu Q. Yu J. Zhao X. Hong J. Chen H. Chen Y.X. Chen H. Fang J.Y. Deficiency of BCAT2-mediated branched-chain amino acid catabolism promotes colorectal cancer development. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 2 166941 10.1016/j.bbadis.2023.166941 37926361
    [Google Scholar]
  57. Lee S.J. Jeon S.H. Cho S. Kim C.M. Yoo J.K. Oh S.H. Kim J.H. Yang Y.D. Kim J.K. hsa-miR-CHA2, a novel microRNA, exhibits anticancer effects by suppressing cyclin E1 in human non-small cell lung cancer cells. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 6 167250 10.1016/j.bbadis.2024.167250 38763409
    [Google Scholar]
  58. Singh M. Morris V.K. Bandey I.N. Hong D.S. Kopetz S. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer 2024 10 7 598 609 10.1016/j.trecan.2024.05.001 38821852
    [Google Scholar]
  59. Splendiani E. Besharat Z.M. Covre A. Maio M. Di Giacomo A.M. Ferretti E. Immunotherapy in melanoma: Can we predict response to treatment with circulating biomarkers? Pharmacol. Ther. 2024 256 108613 10.1016/j.pharmthera.2024.108613 38367867
    [Google Scholar]
  60. Ramapriyan R. Vykunta V.S. Vandecandelaere G. Richardson L.G.K. Sun J. Curry W.T. Choi B.D. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol. Ther. 2024 259 108667 10.1016/j.pharmthera.2024.108667 38763321
    [Google Scholar]
  61. Yu X. Zhai X. Wu J. Feng Q. Hu C. Zhu L. Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 1 166881 10.1016/j.bbadis.2023.166881 37696462
    [Google Scholar]
  62. Niu L. Wang Q. Feng F. Yang W. Xie Z. Zheng G. Zhou W. Duan L. Du K. Li Y. Tian Y. Chen J. Xie Q. Fan A. Dan H. Liu J. Fan D. Hong L. Zhang J. Zheng J. Small extracellular vesicles-mediated cellular interactions between tumor cells and tumor-associated macrophages: Implication for immunotherapy. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 2 166917 10.1016/j.bbadis.2023.166917 37820821
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673386201250806154911
Loading
/content/journals/cmc/10.2174/0109298673386201250806154911
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: prognosis ; immune regulation ; QRFPR ; pan-cancer ; drug sensitivity ; methylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test