Skip to content
2000
image of The Potential Mechanism of Quercetin in Treating Diabetic Foot Ulcer Revealed by Network Pharmacology

Abstract

Introduction

To identify the critical genes, biological mechanisms, and signaling pathways involved in the therapeutic effects of quercetin on diabetic foot ulcers using network pharmacology and molecular docking approaches.

Methods

We identified pathological targets of diabetic foot ulcers (DFU) from GeneCards, OMIM, and TTD, and pharmacological targets of quercetin from STP, TCMSP, and PharmMapper. Intersection analysis revealed potential therapeutic targets. Core targets were determined GO/KEGG enrichment, PPI network construction, and Cytoscape screening algorithms (Degree, Closeness, Betweenness). Molecular docking and dynamics simulations assessed quercetin-core target interactions and binding affinity.

Results

After screening and intersecting the targets of quercetin and diabetic foot ulcers, 236 genes related to quercetin's anti-diabetic foot ulcer effects were identified, with six key genes emerging as critical: SRC, TP53, MAPK1, JUN, HSP90AA1, and AKT1. Enrichment analysis suggested that quercetin may modulate inflammatory imbalance(HSP90AA1), immunosuppression(JUN), and oxidative stress(SRC, TP53, MAPK1, and AKT1) during diabetic foot ulcer progression.

Discussion

The relationship between these core targets and biological pathways in diabetic foot ulcers requires further experimental validation. Notably, molecular docking and dynamics simulation results confirmed strong binding affinity between quercetin and the core targets, supporting their potential therapeutic relevance.

Conclusion

Quercetin exerts anti-diabetic foot ulcer effects by regulating SRC, TP53, MAPK1, JUN, HSP90AA1, and AKT1. These hub genes may serve as promising candidates for future therapeutic interventions in diabetic foot ulcers.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673384857250904065820
2025-09-30
2025-11-05
Loading full text...

Full text loading...

References

  1. Bandyk D.F. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin. Vasc. Surg. 2018 31 2-4 43 48 10.1053/j.semvascsurg.2019.02.001 30876640
    [Google Scholar]
  2. Yang X. Cao Z. Wu P. Li Z. Effect and mechanism of the bruton tyrosine kinase (BTK) inhibitor ibrutinib on rat model of diabetic foot ulcers. Med. Sci. Monit. 2019 25 7951 7957 10.12659/MSM.916950 31644524
    [Google Scholar]
  3. Ramirez H.A. Pastar I. Jozic I. Stojadinovic O. Stone R.C. Ojeh N. Gil J. Davis S.C. Kirsner R.S. Tomic-Canic M. Staphylococcus aureus triggers induction of miR-15B-5P to diminish DNA repair and deregulate inflammatory response in diabetic foot ulcers. J. Invest. Dermatol. 2018 138 5 1187 1196 10.1016/j.jid.2017.11.038 29273315
    [Google Scholar]
  4. Davis F.M. Kimball A. Boniakowski A. Gallagher K. Dysfunctional wound healing in diabetic foot ulcers: New crossroads. Curr. Diab. Rep. 2018 18 1 2 10.1007/s11892‑018‑0970‑z 29362914
    [Google Scholar]
  5. Eming S.A. Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014 6 265 265sr6 10.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  6. Sawaya A.P. Stone R.C. Brooks S.R. Pastar I. Jozic I. Hasneen K. O’Neill K. Mehdizadeh S. Head C.R. Strbo N. Morasso M.I. Tomic-Canic M. Deregulated immune cell recruitment orchestrated by FOXM1 impairs human diabetic wound healing. Nat. Commun. 2020 11 1 4678 10.1038/s41467‑020‑18276‑0 32938916
    [Google Scholar]
  7. Qi W. Qi W. Xiong D. Long M. Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules 2022 27 19 6545 10.3390/molecules27196545 36235082
    [Google Scholar]
  8. Karoui S. Khaoua O. Benbellat N. Antonczak S. Messaoudi A. Molecular docking, molecular dynamics, pkcsm drug-likeness profiles, toxicity, and DFT study of the antioxidant and anticancer activities of three flavonoid derivatives. ChemistrySelect 2024 9 40 202401776 10.1002/slct.202401776
    [Google Scholar]
  9. Khettache I. Messaoudi A. Antonczak S. A theoretical study of molecular reactivity in medicinal chemistry: Antioxidant properties of isoflavonoid Lupinalbin B in its active forms. J. Indian Chem. Soc. 2025 102 5 101678 10.1016/j.jics.2025.101678
    [Google Scholar]
  10. Yang D. Wang T. Long M. Li P. Quercetin: Its main pharmacological activity and potential application in clinical medicine. Oxid. Med. Cell. Longev. 2020 2020 1 13 10.1155/2020/8825387 33488935
    [Google Scholar]
  11. Jafarinia M. Sadat Hosseini M. kasiri N. Fazel N. Fathi F. Ganjalikhani Hakemi M. Eskandari N. Quercetin with the potential effect on allergic diseases. Allergy Asthma Clin. Immunol. 2020 16 1 36 10.1186/s13223‑020‑00434‑0 32467711
    [Google Scholar]
  12. Abid H.M.U. Hanif M. Mahmood K. Aziz M. Abbas G. Latif H. Wound-healing and antibacterial activity of the quercetin–4-formyl phenyl boronic acid complex against bacterial pathogens of diabetic foot ulcer. ACS Omega 2022 7 28 24415 24422 10.1021/acsomega.2c01819 35874257
    [Google Scholar]
  13. Ahmed O.M. Mohamed T. Moustafa H. Hamdy H. Ahmed R.R. Aboud E. Quercetin and low level laser therapy promote wound healing process in diabetic rats via structural reorganization and modulatory effects on inflammation and oxidative stress. Biomed. Pharmacother. 2018 101 58 73 10.1016/j.biopha.2018.02.040 29477473
    [Google Scholar]
  14. Nusantoro A.P. Kuntaman K. Perdanakusuma D.S. Management of wounds in diabetes by administering allicin and quercetin in emulsion form as wound medicine in diabetic rat models. J. Complement. Integr. Med. 2024 21 3 303 313 10.1515/jcim‑2023‑0177 38308387
    [Google Scholar]
  15. Kant V. Jangir B.L. Sharma M. Kumar V. Joshi V.G. Topical application of quercetin improves wound repair and regeneration in diabetic rats. Immunopharmacol. Immunotoxicol. 2021 43 5 536 553 10.1080/08923973.2021.1950758 34278923
    [Google Scholar]
  16. Chen M. Su W. Chen F. Lai T. Liu Y. Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front. Genet. 2022 13 1056405 10.3389/fgene.2022.1056405 36406124
    [Google Scholar]
  17. Su W. Chen X. Zhang W. Li D. Chen X. Yu D. Therapeutic targets and signaling mechanisms of dasatinib activity against radiation skin ulcer. Front. Public Health 2022 10 1031038 10.3389/fpubh.2022.1031038 36530656
    [Google Scholar]
  18. Jo S. Kim T. Iyer V.G. Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  19. Keshet Y. Seger R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 2010 661 3 38 10.1007/978‑1‑60761‑795‑2_1 20811974
    [Google Scholar]
  20. Cargnello M. Roux P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011 75 1 50 83 10.1128/MMBR.00031‑10 21372320
    [Google Scholar]
  21. Higgins L. Wadsworth S. Cullen B. Silcock D. Ma J.Y. Mangadu R. Kerr I. Chakravarty S. Luedtke G.L. Dugar S. Protter A.A. Higgins L.S. p38 MAPK inhibition reduces diabetes-induced impairment of wound healing. Diabetes Metab. Syndr. Obes. 2009 2 91 100 10.2147/DMSO.S5859 21437122
    [Google Scholar]
  22. Luo D. Cheng J. Xiong Y. Li J. Xia C. Xu C. Wang C. Zhu B. Hu Z. Liao D. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway. Biochem. Biophys. Res. Commun. 2010 391 4 1693 1697 10.1016/j.bbrc.2009.12.132 20044047
    [Google Scholar]
  23. Zenz R. Eferl R. Scheinecker C. Redlich K. Smolen J. Schonthaler H.B. Kenner L. Tschachler E. Wagner E.F. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 2007 10 1 201 10.1186/ar2338 18226189
    [Google Scholar]
  24. Smeets P.J.H. Teunissen B.E.J. Planavila A. de Vogel-van den Bosch H. Willemsen P.H.M. van der Vusse G.J. van Bilsen M. Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARalpha and PPARdelta. J. Biol. Chem. 2008 283 43 29109 29118 10.1074/jbc.M802143200 18701451
    [Google Scholar]
  25. Lindquist S. Craig E.A. The heat-shock proteins. Annu. Rev. Genet. 1988 22 1 631 677 10.1146/annurev.ge.22.120188.003215 2853609
    [Google Scholar]
  26. Rajdev S. Hara K. Kokubo Y. Mestril R. Dillmann W. Weinstein P.R. Sharp F.R. Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Ann. Neurol. 2000 47 6 782 791 10.1002/1531‑8249(200006)47:6<782::AID‑ANA11>3.0.CO;2‑3 10852544
    [Google Scholar]
  27. Okubo S. Wildner O. Shah M.R. Chelliah J.C. Hess M.L. Kukreja R.C. Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 2001 103 6 877 881 10.1161/01.CIR.103.6.877 11171798
    [Google Scholar]
  28. Yenari M.A. Fink S.L. Sun G.H. Chang L.K. Patel M.K. Kunis D.M. Onley D. Ho D.Y. Sapolsky R.M. Steinbrg G.K. Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann. Neurol. 1998 44 4 584 591 10.1002/ana.410440403 9778256
    [Google Scholar]
  29. Yu Chen Voegeli T.S. Liu P.P. Noble E.G. Currie R.W. Heat shock paradox and a new role of heat shock proteins and their receptors as anti-inflammation targets. Inflamm. Allergy Drug Targets 2007 6 2 91 100 10.2174/187152807780832274 17692032
    [Google Scholar]
  30. Atalay M Oksala NK Laaksonen DE Khanna S Nakao C Lappalainen J Roy S Hänninen O Sen CK Exercise training modulates heat shock protein response in diabetic rats. J. Appl. Physiol. 2004 97 2 605 611 10.1152/japplphysiol.01183.2003
    [Google Scholar]
  31. Gul M. Laaksonen D.E. Atalay M. Vider L. Hänninen O. Effects of endurance training on tissue glutathione homeostasis and lipid peroxidation in streptozotocin-induced diabetic rats. Scand. J. Med. Sci. Sports 2002 12 3 163 170 10.1034/j.1600‑0838.2002.120307.x 12135449
    [Google Scholar]
  32. Hightower L.E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 1991 66 2 191 197 10.1016/0092‑8674(91)90611‑2 1855252
    [Google Scholar]
  33. Lima M.H.M. Caricilli A.M. de Abreu L.L. Araújo E.P. Pelegrinelli F.F. Thirone A.C.P. Tsukumo D.M. Pessoa A.F.M. dos Santos M.F. de Moraes M.A. Carvalheira J.B.C. Velloso L.A. Saad M.J.A. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: A double-blind placebo-controlled clinical trial. PLoS One 2012 7 5 36974 10.1371/journal.pone.0036974 22662132
    [Google Scholar]
  34. Hoke G.D. Ramos C. Hoke N.N. Crossland M.C. Shawler L.G. Boykin J.V. Atypical diabetic foot ulcer keratinocyte protein signaling correlates with impaired wound healing. J. Diabetes Res. 2016 2016 1 10 10.1155/2016/1586927 27840833
    [Google Scholar]
  35. Li T. Wang G. Computer-aided targeting of the PI3K/Akt/mTOR pathway: Toxicity reduction and therapeutic opportunities. Int. J. Mol. Sci. 2014 15 10 18856 18891 10.3390/ijms151018856 25334061
    [Google Scholar]
  36. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  37. Teng Y. Fan Y. Ma J. Lu W. Liu N. Chen Y. Pan W. Tao X. The PI3K/Akt pathway: Emerging roles in skin homeostasis and a group of non-malignant skin disorders. Cells 2021 10 5 1219 10.3390/cells10051219 34067630
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673384857250904065820
Loading
/content/journals/cmc/10.2174/0109298673384857250904065820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test