Skip to content
2000
image of 
CD47-SIRPα: A Pivotal Signaling Pathway for Targeting Immunotherapy in Non-Small Cell Lung Cancer

Abstract

Non-Small Cell Lung Cancer (NSCLC) remains a major oncologic challenge with high mortality. The CD47-SIRPα pathway is critical for tumor immune escape by mediating “don't eat me” signaling. Despite progress, the specific mechanism of action of this pathway in NSCLC remains unclear, and the specific role of the CD47-signal in regulating immune escape needs to be further explored. This paper comprehensively analyzes the latest research progress on the CD47-SIRPα signaling pathway in NSCLC, as well as the challenges of CD47-SIRPα as a potential therapeutic target.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673383976250911101532
2025-09-29
2025-11-05
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Catalán R. Orozco-Morales M. Hernández-Pedro N.Y. Guijosa A. Colín-González A.L. Ávila-Moreno F. Arrieta O. CD47-SIRPalpha axis as a biomarker and therapeutic target in cancer: Current perspectives and future challenges in nonsmall cell lung cancer. J. Immunol. Res. 2020 2020 1 8 10.1155/2020/9435030 33015199
    [Google Scholar]
  4. Leclair P. Lim C.J. CD47 (Cluster of differentiation 47): An anti-phagocytic receptor with a multitude of signaling functions. Anim. Cells Syst. 2020 24 5 243 252 10.1080/19768354.2020.1818618 33224442
    [Google Scholar]
  5. Zhang T. Wang F. Xu L. Yang Y.G. Structural–functional diversity of CD47 proteoforms. Front. Immunol. 2024 15 1329562 10.3389/fimmu.2024.1329562 38426113
    [Google Scholar]
  6. Polara R. Ganesan R. Pitson S.M. Robinson N. Cell autonomous functions of CD47 in regulating cellular plasticity and metabolic plasticity. Cell Death Differ. 2024 31 10 1255 1266 10.1038/s41418‑024‑01347‑w 39039207
    [Google Scholar]
  7. Oldenborg P.A. Zheleznyak A. Fang Y.F. Lagenaur C.F. Gresham H.D. Lindberg F.P. Role of CD47 as a marker of self on red blood cells. Science 2000 288 5473 2051 2054 10.1126/science.288.5473.2051 10856220
    [Google Scholar]
  8. Chao M.P. Takimoto C.H. Feng D.D. McKenna K. Gip P. Liu J. Volkmer J.P. Weissman I.L. Majeti R. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front. Oncol. 2020 9 1380 10.3389/fonc.2019.01380 32038992
    [Google Scholar]
  9. Pan L. Wang B. Chen M. Ma Y. Cui B. Chen Z. Song Y. Hu L. Jiang Z. Lack of SIRP -alpha reduces lung cancer growth in mice by promoting anti-tumour ability of macrophages and neutrophils. Cell Prolif. 2023 56 2 e13361 10.1111/cpr.13361 36419386
    [Google Scholar]
  10. Erdem N. Chen K.T. Qi M. Zhao Y. Wu X. Garcia I. Ku H.T. Montero E. Al-Abdullah I.H. Kandeel F. Roep B.O. Isenberg J.S. Thrombospondin-1, CD47, and SIRPα display cell-specific molecular signatures in human islets and pancreata. Am. J. Physiol. Endocrinol. Metab. 2023 324 4 E347 E357 10.1152/ajpendo.00221.2022 36791324
    [Google Scholar]
  11. Montero E. Isenberg J.S. The TSP1-CD47-SIRPα interactome: An immune triangle for the checkpoint era. Cancer Immunol. Immunother. 2023 72 9 2879 2888 10.1007/s00262‑023‑03465‑9 37217603
    [Google Scholar]
  12. Sharp R.C. Brown M.E. Shapiro M.R. Posgai A.L. Brusko T.M. The immunoregulatory role of the signal regulatory protein family and CD47 signaling pathway in type 1 diabetes. Front. Immunol. 2021 12 739048 10.3389/fimmu.2021.739048 34603322
    [Google Scholar]
  13. van Beek E.M. Cochrane F. Barclay A.N. van den Berg T.K. Signal regulatory proteins in the immune system. J. Immunol. 2005 175 12 7781 7787 10.4049/jimmunol.175.12.7781 16339510
    [Google Scholar]
  14. Hatherley D. Graham S.C. Turner J. Harlos K. Stuart D.I. Barclay A.N. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell 2008 31 2 266 277 10.1016/j.molcel.2008.05.026 18657508
    [Google Scholar]
  15. Barclay A.N. van den Berg T.K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annu. Rev. Immunol. 2014 32 1 25 50 10.1146/annurev‑immunol‑032713‑120142 24215318
    [Google Scholar]
  16. Vladimirova Y.V. Mølmer M.K. Antonsen K.W. Møller N. Rittig N. Nielsen M.C. Møller H.J. A new serum macrophage checkpoint biomarker for innate immunotherapy: Soluble signal-regulatory protein alpha (sSIRPalpha). Biomolecules 2022 12 7 937 10.3390/biom12070937 35883493
    [Google Scholar]
  17. Feng M. Jiang W. Kim B.Y.S. Zhang C.C. Fu Y.X. Weissman I.L. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 2019 19 10 568 586 10.1038/s41568‑019‑0183‑z 31462760
    [Google Scholar]
  18. Chao M.P. Jaiswal S. Weissman-Tsukamoto R. Alizadeh A.A. Gentles A.J. Volkmer J. Weiskopf K. Willingham S.B. Raveh T. Park C.Y. Majeti R. Weissman I.L. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2010 2 63 63ra94 10.1126/scitranslmed.3001375 21178137
    [Google Scholar]
  19. Feng M. Marjon K.D. Zhu F. Weissman-Tsukamoto R. Levett A. Sullivan K. Kao K.S. Markovic M. Bump P.A. Jackson H.M. Choi T.S. Chen J. Banuelos A.M. Liu J. Gip P. Cheng L. Wang D. Weissman I.L. Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nat. Commun. 2018 9 1 3194 10.1038/s41467‑018‑05211‑7 30097573
    [Google Scholar]
  20. Kaur S. Roberts D.D. Emerging functions of thrombospondin-1 in immunity. Semin. Cell Dev. Biol. 2024 155 Pt B 22 31 10.1016/j.semcdb.2023.05.008 37258315
    [Google Scholar]
  21. Banerjee R. Meyer TJ. Cam MC. Kaur S. Roberts DD. Differential regulation by CD47 and thrombospondin-1 of extramedullary erythropoiesis in mouse spleen. elife 2024 12 92679 10.7554/eLife.92679
    [Google Scholar]
  22. Lang B. Wang M. Zhang Z. Fu Y. Han X. Hu Q. Ding H. Shang H. Jiang Y. Inhibitory receptor CD47 binding to plasma TSP1 suppresses NK-cell IFN-γ production via activating the JAK/STAT3 pathway during HIV infection. J. Transl. Med. 2023 21 1 869 10.1186/s12967‑023‑04667‑6 38037074
    [Google Scholar]
  23. Singla B. Aithbathula R.V. Pervaiz N. Kathuria I. Swanson M. Ekuban F.A. Ahn W. Park F. Gyamfi M. Cherian-Shaw M. Singh U.P. Kumar S. CD47 activation by thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2023 43 7 1234 1250 10.1161/ATVBAHA.122.318904 37259865
    [Google Scholar]
  24. Julovi S.M. Sanganeria B. Minhas N. Ghimire K. Nankivell B. Rogers N.M. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis. Lab. Invest. 2020 100 9 1184 1196 10.1038/s41374‑020‑0434‑3 32366943
    [Google Scholar]
  25. Zhao H. Wang J. Kong X. Li E. Liu Y. Du X. Kang Z. Tang Y. Kuang Y. Yang Z. Zhou Y. Wang Q. CD47 promotes tumor invasion and metastasis in non-small cell lung cancer. Sci. Rep. 2016 6 1 29719 10.1038/srep29719 27411490
    [Google Scholar]
  26. Jiang Z. Sun H. Yu J. Tian W. Song Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 2021 14 1 180 10.1186/s13045‑021‑01197‑w 34717705
    [Google Scholar]
  27. Yang Z. Peng Y. Guo W. Xu J. Li L. Tian H. Li R. Liu L. Tan F. Gao S. He J. PD-L1 and CD47 co-expression predicts survival and enlightens future dual-targeting immunotherapy in non-small cell lung cancer. Thorac. Cancer 2021 12 11 1743 1751 10.1111/1759‑7714.13989 33979899
    [Google Scholar]
  28. Peng Y. Qiu B. Tan F. Xu J. Bie F. He H. Liu L. Tian H. Bai G. Zhou B. Li Y. Huai Q. Yang Z. Gao S. TIGIT / CD47 dual high expression predicts prognosis and is associated with immunotherapy response in lung squamous cell carcinoma. Thorac. Cancer 2022 13 14 2014 2023 10.1111/1759‑7714.14478 35611464
    [Google Scholar]
  29. Lau A.P.Y. Khavkine Binstock S.S. Thu K.L. CD47: The next frontier in immune dheckpoint blockade for non-small cell lung cancer. Cancers 2023 15 21 5229 10.3390/cancers15215229 37958404
    [Google Scholar]
  30. Torres J.A. Brito A.B.C. Silva V.S. Messias I.M. Braun A.C. Ruano A.P.C. Buim M.E.C. Carraro D.M. Chinen L.T.D. CD47 expression in circulating tumor cells and circulating tumor microemboli from non-small cell lung cancer patients is a poor prognosis factor. Int. J. Mol. Sci. 2023 24 15 11958 10.3390/ijms241511958 37569332
    [Google Scholar]
  31. Gong J. Ji Y. Liu X. Zheng Y. Zhen Y. Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression. Biochem. Pharmacol. 2022 197 114894 10.1016/j.bcp.2021.114894 34968486
    [Google Scholar]
  32. Samanta D. Park Y. Ni X. Li H. Zahnow C.A. Gabrielson E. Pan F. Semenza G.L. Chemotherapy induces enrichment of CD47 + /CD73 + /PDL1 + immune evasive triple-negative breast cancer cells. Proc. Natl. Acad. Sci. USA 2018 115 6 E1239 E1248 10.1073/pnas.1718197115 29367423
    [Google Scholar]
  33. Betancur P.A. Abraham B.J. Yiu Y.Y. Willingham S.B. Khameneh F. Zarnegar M. Kuo A.H. McKenna K. Kojima Y. Leeper N.J. Ho P. Gip P. Swigut T. Sherwood R.I. Clarke M.F. Somlo G. Young R.A. Weissman I.L. A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat. Commun. 2017 8 1 14802 10.1038/ncomms14802 28378740
    [Google Scholar]
  34. Logtenberg M.E.W. Jansen J.H.M. Raaben M. Toebes M. Franke K. Brandsma A.M. Matlung H.L. Fauster A. Gomez-Eerland R. Bakker N.A.M. van der Schot S. Marijt K.A. Verdoes M. Haanen J.B.A.G. van den Berg J.H. Neefjes J. van den Berg T.K. Brummelkamp T.R. Leusen J.H.W. Scheeren F.A. Schumacher T.N. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat. Med. 2019 25 4 612 619 10.1038/s41591‑019‑0356‑z 30833751
    [Google Scholar]
  35. Yao H. Xu J. Regulation of cancer immune checkpoint: Mono- and poly-ubiquitination: Tags for fate. Adv. Exp. Med. Biol. 2020 1248 295 324 10.1007/978‑981‑15‑3266‑5_13 32185716
    [Google Scholar]
  36. Huang W. Wang W.T. Fang K. Chen Z.H. Sun Y.M. Han C. Sun L.Y. Luo X.Q. Chen Y.Q. MIR-708 promotes phagocytosis to eradicate T-ALL cells by targeting CD47. Mol. Cancer 2018 17 1 12 10.1186/s12943‑018‑0768‑2 29368647
    [Google Scholar]
  37. Beizavi Z. Gheibihayat S.M. Moghadasian H. Zare H. Yeganeh B.S. Askari H. Vakili S. Tajbakhsh A. Savardashtaki A. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Mol. Biol. Rep. 2021 48 7 5707 5722 10.1007/s11033‑021‑06547‑y 34275112
    [Google Scholar]
  38. Xi Q. Chen Y. Yang G.Z. Zhang J.Y. Zhang L.J. Guo X.D. Zhao J.Y. Xue Z.Y. Li Y. Zhang R. miR-128 regulates tumor cell CD47 expression and promotes anti-tumor immunity in pancreatic cancer. Front. Immunol. 2020 11 890 10.3389/fimmu.2020.00890 32536914
    [Google Scholar]
  39. Qu S. Jiao Z. Lu G. Xu J. Yao B. Wang T. Wang J. Yao Y. Yan X. Wang T. Liang H. Zen K. Human lung adenocarcinoma CD47 is upregulated by interferon-γ and promotes tumor metastasis. Mol. Ther. Oncolytics 2022 25 276 287 10.1016/j.omto.2022.04.011 35663227
    [Google Scholar]
  40. Wan X. Fang M. Chen T. Wang H. Zhou Q. Wei Y. Zheng L. Zhou Y. Chen K. The mechanism of low- dose radiation-induced upregulation of immune checkpoint molecule expression in lung cancer cells. Biochem. Biophys. Res. Commun. 2022 608 102 107 10.1016/j.bbrc.2022.03.158 35397421
    [Google Scholar]
  41. Zhang L. Yu J. Zheng M. Zhen H. Xie Q. Zhang C. Zhou Z. Jin G. RAGA prevents tumor immune evasion of LUAD by promoting CD47 lysosome degradation. Commun. Biol. 2023 6 1 211 10.1038/s42003‑023‑04581‑z 36823443
    [Google Scholar]
  42. Chen D.S. Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature 2017 541 7637 321 330 10.1038/nature21349 28102259
    [Google Scholar]
  43. Gniadek T.J. Li Q.K. Tully E. Chatterjee S. Nimmagadda S. Gabrielson E. Heterogeneous expression of PD-L1 in pulmonary squamous cell carcinoma and adenocarcinoma: Implications for assessment by small biopsy. Mod. Pathol. 2017 30 4 530 538 10.1038/modpathol.2016.213 28059094
    [Google Scholar]
  44. Zhang X. Wang Y. Fan J. Chen W. Luan J. Mei X. Wang S. Li Y. Ye L. Li S. Tian W. Yin K. Ju D. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer. J. Immunother. Cancer 2019 7 1 346 10.1186/s40425‑019‑0812‑9 31829270
    [Google Scholar]
  45. Zhuang Z. Zhou J. Qiu M. Li J. Lin Z. Yi H. Liu X. Huang C. Tang B. Liu B. Li X. The combination of anti-CD47 antibody with CTLA4 blockade enhances anti-tumor immunity in non-small cell lung cancer via normalization of tumor vasculature and reprogramming of the immune microenvironment. Cancers 2024 16 4 832 10.3390/cancers16040832 38398223
    [Google Scholar]
  46. Liu J. Meng Z. Xu T. Kuerban K. Wang S. Zhang X. Fan J. Ju D. Tian W. Huang X. Huang X. Pan D. Chen H. Zhao W. Ye L. A SIRPαFc fusion protein conjugated with the collagen-binding domain for targeted immunotherapy of non-small cell lung cancer. Front. Immunol. 2022 13 845217 10.3389/fimmu.2022.845217 35422796
    [Google Scholar]
  47. Hu H. Cheng R. Wang Y. Wang X. Wu J. Kong Y. Zhan S. Zhou Z. Zhu H. Yu R. Liang G. Wang Q. Zhu X. Zhang C.Y. Yin R. Yan C. Chen X. Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47. J. Clin. Invest. 2023 133 2 e153470 10.1172/JCI153470 36413402
    [Google Scholar]
  48. Binnewies M. Roberts E.W. Kersten K. Chan V. Fearon D.F. Merad M. Coussens L.M. Gabrilovich D.I. Ostrand-Rosenberg S. Hedrick C.C. Vonderheide R.H. Pittet M.J. Jain R.K. Zou W. Howcroft T.K. Woodhouse E.C. Weinberg R.A. Krummel M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018 24 5 541 550 10.1038/s41591‑018‑0014‑x 29686425
    [Google Scholar]
  49. Davuluri G.V.N. Chan C.H. Regulation of intrinsic and extrinsic metabolic pathways in tumour-associated macrophages. FEBS J. 2023 290 12 3040 3058 10.1111/febs.16465 35486022
    [Google Scholar]
  50. Zou Z. Lin H. Li M. Lin B. Tumor−associated macrophage polarization in the inflammatory tumor microenvironment. Front. Oncol. 2023 13 1103149 10.3389/fonc.2023.1103149 36816959
    [Google Scholar]
  51. Lin Z.H. Lo H.C. Chang C.C. Lu M.K. Tseng A.J. Chao C.H. Chao C.H. Lin T.Y. Sulfated polysaccharide from Antrodia cinnamomea mycelium cultured with zinc sulfate stimulates M1 polarization of macrophages through AKT/mTOR pathways. Int. J. Biol. Macromol. 2024 279 Pt 4 135548 10.1016/j.ijbiomac.2024.135548 39270905
    [Google Scholar]
  52. Sun Y. Lian Y. Mei X. Xia J. Feng L. Gao J. Xu H. Zhang X. Yang H. Hao X. Feng Y. Cinobufagin inhibits M2-like tumor-associated macrophage polarization to attenuate the invasion and migration of lung cancer cells. Int. J. Oncol. 2024 65 5 102 10.3892/ijo.2024.5690 39301639
    [Google Scholar]
  53. Abe T. Tanaka Y. Piao J. Tanimine N. Oue N. Hinoi T. Garcia N.V. Miyasaka M. Matozaki T. Yasui W. Ohdan H. Signal regulatory protein alpha blockade potentiates tumoricidal effects of macrophages on gastroenterological neoplastic cells in syngeneic immunocompetent mice. Ann. Gastroenterol. Surg. 2018 2 6 451 462 10.1002/ags3.12205 30460349
    [Google Scholar]
  54. Guo Y. Lu X. Chen Y. Rendon B. Mitchell R.A. Cuatrecasas M. Cortés M. Postigo A. Liu Y. Dean D.C. Zeb1 induces immune checkpoints to form an immunosuppressive envelope around invading cancer cells. Sci. Adv. 2021 7 21 eabd7455 10.1126/sciadv.abd7455 34020945
    [Google Scholar]
  55. Giatromanolaki A. Mitrakas A. Anestopoulos I. Kontosis A. Koukourakis I.M. Pappa A. Panayiotidis M.I. Koukourakis M.I. Expression of CD47 and SIRPalpha macrophage immune-checkpoint pathway in non-small-cell lung cancer. Cancers 2022 14 7 1801 10.3390/cancers14071801 35406573
    [Google Scholar]
  56. Yamada-Hunter S.A. Theruvath J. McIntosh B.J. Freitas K.A. Lin F. Radosevich M.T. Leruste A. Dhingra S. Martinez-Velez N. Xu P. Huang J. Delaidelli A. Desai M.H. Good Z. Polak R. May A. Labanieh L. Bjelajac J. Murty T. Ehlinger Z. Mount C.W. Chen Y. Heitzeneder S. Marjon K.D. Banuelos A. Khan O. Wasserman S.L. Spiegel J.Y. Fernandez-Pol S. Kuo C.J. Sorensen P.H. Monje M. Majzner R.G. Weissman I.L. Sahaf B. Sotillo E. Cochran J.R. Mackall C.L. Engineered CD47 protects T cells for enhanced antitumour immunity. Nature 2024 630 8016 457 465 10.1038/s41586‑024‑07443‑8 38750365
    [Google Scholar]
  57. Deuse T. Hu X. Agbor-Enoh S. Jang M.K. Alawi M. Saygi C. Gravina A. Tediashvili G. Nguyen V.Q. Liu Y. Valantine H. Lanier L.L. Schrepfer S. The SIRPα–CD47 immune checkpoint in NK cells. J. Exp. Med. 2021 218 3 e20200839 10.1084/jem.20200839 33416832
    [Google Scholar]
  58. Wang S. Wu Q. Chen T. Su R. Pan C. Qian J. Huang H. Yin S. Xie H. Zhou L. Zheng S. Blocking CD47 promotes antitumour immunity through CD103+ dendritic cell–NK cell axis in murine hepatocellular carcinoma model. J. Hepatol. 2022 77 2 467 478 10.1016/j.jhep.2022.03.011 35367532
    [Google Scholar]
  59. Taucher E. Taucher V. Fink-Neuboeck N. Lindenmann J. Smolle-Juettner F.M. Role of tumor-associated neutrophils in the molecular carcinogenesis of the lung. Cancers 2021 13 23 5972 10.3390/cancers13235972 34885082
    [Google Scholar]
  60. Barrera L. Montes-Servín E. Hernandez-Martinez J.M. García-Vicente M.Á. Montes-Servín E. Herrera- Martínez M. Crispín J.C. Borbolla-Escoboza J.R. Arrieta O. CD47 overexpression is associated with decreased neutrophil apoptosis/phagocytosis and poor prognosis in non-small-cell lung cancer patients. Br. J. Cancer 2017 117 3 385 397 10.1038/bjc.2017.173 28632731
    [Google Scholar]
  61. Zen K. Guo Y. Bian Z. Lv Z. Zhu D. Ohnishi H. Matozaki T. Liu Y. Inflammation-induced proteolytic processing of the SIRPα cytoplasmic ITIM in neutrophils propagates a proinflammatory state. Nat. Commun. 2013 4 1 2436 10.1038/ncomms3436 24026300
    [Google Scholar]
  62. Azcutia V. Kelm M. Luissint A.C. Boerner K. Flemming S. Quiros M. Newton G. Nusrat A. Luscinskas F.W. Parkos C.A. Neutrophil expressed CD47 regulates CD11b/CD18-dependent neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunol. 2021 14 2 331 341 10.1038/s41385‑020‑0316‑4 32561828
    [Google Scholar]
  63. Bouti P. Zhao X.W. Verkuijlen P.J.J.H. Tool A.T.J. van Houdt M. Köker N. Köker M.Y. Keskin O. Akbayram S. van Bruggen R. Kuijpers T.W. Matlung H.L. van den Berg T.K. Kindlin3-dependent CD11b/CD18-integrin activation is required for potentiation of neutrophil cytotoxicity by CD47-SIRPalpha checkpoint disruption. Cancer Immunol. Res. 2021 9 2 147 155 10.1158/2326‑6066.CIR‑20‑0491 33355195
    [Google Scholar]
  64. Arrieta O. Aviles-Salas A. Orozco-Morales M. Hernández-Pedro N. Cardona A.F. Cabrera-Miranda L. Barrios-Bernal P. Soca-Chafre G. Cruz-Rico G. Peña-Torres M.L. Moncada-Claudio G. Ramirez-Tirado L.A. Association between CD47 expression, clinical characteristics and prognosis in patients with advanced non-small cell lung cancer. Cancer Med. 2020 9 7 2390 2402 10.1002/cam4.2882 32043750
    [Google Scholar]
  65. Fu F. Zhang Y. Gao Z. Zhao Y. Wen Z. Han H. Li Y. Hu H. Chen H. Combination of CD47 and CD68 expression predicts survival in eastern-Asian patients with non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 2021 147 3 739 747 10.1007/s00432‑020‑03477‑3 33392661
    [Google Scholar]
  66. Oronsky B. Guo X. Wang X. Cabrales P. Sher D. Cannizzo L. Wardle B. Abrouk N. Lybeck M. Caroen S. Oronsky A. Reid T.R. Discovery of RRx-001, a Myc and CD47 downregulating small molecule with tumor targeted cytotoxicity and healthy tissue cytoprotective properties in clinical development. J. Med. Chem. 2021 64 11 7261 7271 10.1021/acs.jmedchem.1c00599 34043360
    [Google Scholar]
  67. Cabrales P. RRx-001 Acts as a Dual Small Molecule Checkpoint inhibitor by downregulating CD47 on cancer cells and SIRP-alpha on monocytes/macrophages. Transl. Oncol. 2019 12 4 626 632 10.1016/j.tranon.2018.12.001 30738349
    [Google Scholar]
  68. Dai S. Liu Y. Zhao F. Wang H. Shao T. Xu Z. Shou L. Chen S. Zhang G. Shu Q. Aqueous extract of Taxus chinensis var. Mairei targeting CD47 enhanced antitumor effects in non-small cell lung cancer. Biomed. Pharmacother. 2022 154 113628 10.1016/j.biopha.2022.113628 36058145
    [Google Scholar]
  69. Nigro A. Ricciardi L. Salvato I. Sabbatino F. Vitale M. Crescenzi M.A. Montico B. Triggiani M. Pepe S. Stellato C. Casolaro V. Dal Col J. Enhanced expression of CD47 Is associated with off-target resistance to tyrosine kinase inhibitor Gefitinib in NSCLC. Front. Immunol. 2020 10 3135 10.3389/fimmu.2019.03135 32082304
    [Google Scholar]
  70. Meng J. Liu L. Wang D. Yan Z. Chen G. Hydrogen gas represses the progression of lung cancer via down-regulating CD47. Biosci. Rep. 2020 40 4 BSR20192761 10.1042/BSR20192761 32314789
    [Google Scholar]
  71. Tang L. Yin Y. Cao Y. Fu C. Liu H. Feng J. Wang W. Liang X.J. Extracellular vesicles-derived hybrid nanoplatforms for amplified CD47 blockade-based cancer immunotherapy. Adv. Mater. 2023 35 35 2303835 10.1002/adma.202303835 37384818
    [Google Scholar]
  72. Pan L. Hu L. Chen M. Song Y. Chen Z. Gu Y. Li C. Jiang Z. A novel CD47-blocking peptide fused to pro-apoptotic KLA repeat inhibits lung cancer growth in mice. Cancer Immunol. Immunother. 2023 72 12 4179 4194 10.1007/s00262‑023‑03554‑9 37831145
    [Google Scholar]
  73. Yu J. Li S. Chen D. Liu D. Guo H. Yang C. Zhang W. Zhang L. Zhao G. Tu X. Peng L. Liu S. Bai X. Song Y. Jiang Z. Zhang R. Tian W. IMM0306, a fusion protein of CD20 mAb with the CD47 binding domain of SIRPα, exerts excellent cancer killing efficacy by activating both macrophages and NK cells via blockade of CD47-SIRPα interaction and FcɣR engagement by simultaneously binding to CD47 and CD20 of B cells. Leukemia 2023 37 3 695 698 10.1038/s41375‑022‑01805‑9 36575242
    [Google Scholar]
  74. Chen X. Zou Z. Li W. Dong X. Chen Y. Lu Y. Zhu M. Li M. Lin B. α-Conotoxin recombinant protein ImI-AFP3 efficiently inhibits the growth and migration of lung cancer cells. Protein Expr. Purif. 2024 215 106405 10.1016/j.pep.2023.106405 37979629
    [Google Scholar]
  75. Guo Y. Bao Q. Hu P. Shi J. Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy. Nat. Commun. 2023 14 1 7306 10.1038/s41467‑023‑42972‑2 37951973
    [Google Scholar]
  76. Cui Z. Xu D. Zhang F. Sun J. Song L. Ye W. Zeng J. Zhou M. Ruan Z. Zhang L. Ren R. CD47 blockade enhances therapeutic efficacy of cisplatin against lung carcinoma in a murine model. Exp. Cell Res. 2021 405 2 112677 10.1016/j.yexcr.2021.112677 34111474
    [Google Scholar]
  77. Lu J. Li J. Lin Z. Li H. Lou L. Ding W. Ouyang S. Wu Y. Wen Y. Chen X. Yue P. Wang Y. Liu P. Lu J. Zhang J. Feng W. Zhang X. Reprogramming of TAMs via the STAT3/CD47-SIRPα axis promotes acquired resistance to EGFR-TKIs in lung cancer. Cancer Lett. 2023 564 216205 10.1016/j.canlet.2023.216205 37146936
    [Google Scholar]
  78. Son J. Hsieh R.C.E. Lin H.Y. Krause K.J. Yuan Y. Biter A.B. Welsh J. Curran M.A. Hong D.S. Inhibition of the CD47-SIRPα axis for cancer therapy: A systematic review and meta-analysis of emerging clinical data. Front. Immunol. 2022 13 1027235 10.3389/fimmu.2022.1027235 36439116
    [Google Scholar]
  79. Andrechak J.C. Dooling L.J. Tobin M.P. Zhang W. Hayes B.H. Lee J.Y. Jin X. Irianto J. Discher D.E. CD47-SIRPalpha checkpoint disruption in metastases requires tumor-targeting antibody for molecular and engineered macrophage therapies. Cancers 2022 14 8 1930 10.3390/cancers14081930 35454837
    [Google Scholar]
  80. Nishiga Y. Drainas A.P. Baron M. Bhattacharya D. Barkal A.A. Ahrari Y. Mancusi R. Ross J.B. Takahashi N. Thomas A. Diehn M. Weissman I.L. Graves E.E. Sage J. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. Nat. Cancer 2022 3 11 1351 1366 10.1038/s43018‑022‑00456‑0 36411318
    [Google Scholar]
  81. Lakhani N.J. Chow L.Q.M. Gainor J.F. LoRusso P. Lee K.W. Chung H.C. Lee J. Bang Y.J. Hodi F.S. Kim W.S. Santana-Davila R. Fanning P. Squifflet P. Jin F. Kuo T.C. Wan H.I. Pons J. Randolph S.S. Messersmith W.A. Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): a first-in-human, open-label, multicentre, phase 1 dose-escalation and dose- expansion study. Lancet Oncol. 2021 22 12 1740 1751 10.1016/S1470‑2045(21)00584‑2 34793719
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673383976250911101532
Loading
/content/journals/cmc/10.2174/0109298673383976250911101532
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immunotherapy ; amino terminal ; SIRPα ; immune checkpoints ; non-small cell lung cancer ; CD47
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test