Skip to content
2000
image of Integrated Bioinformatic Analysis of the Shared Molecular Mechanisms Between Osteoporosis and Aortic Stenosis

Abstract

Introduction

Osteoporosis (OP) and aortic stenosis (AS) are highly prevalent age-related disorders that frequently coexist. Epidemiological studies suggest a pathological link between OP and AS beyond age, yet the molecular mechanisms underlying this bone-vascular axis remain poorly defined. This study aimed to identify shared genes and pathways contributing to the comorbidity of OP and AS.

Methods

Publicly available AS and OP transcriptomic datasets were retrieved from the GEO database. Weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis were conducted to identify disease-associated genes. Candidate hub genes were screened through protein-protein interaction (PPI) network analysis using twelve network topology algorithms. High-confidence genes were obtained by intersecting candidates with AS-related genes from the Comparative Toxicogenomics Database (CTD). Independent cohorts were used to validate candidate genes, and least absolute shrinkage and selection operator (LASSO) regression was performed to assess their diagnostic potential.

Results

WGCNA revealed 665 shared genes enriched in immune and inflammatory processes, cell adhesion, and glycosaminoglycan biosynthesis. PPI network analysis identified 32 candidate hub genes, and integration with CTD yielded 15 high-confidence genes. Validation across independent datasets confirmed dysregulated expression of CD4, GZMB, and SDC1 in both AS and OP samples. ROC analysis demonstrated high diagnostic accuracy of these genes, with a combined AUC of 0.94.

Discussion

These findings highlight immune and inflammatory pathways as convergent mechanisms driving both AS and OP. The hub genes CD4, GZMB, and SDC1 participate in immune regulation and extracellular matrix remodeling, suggesting their involvement in the shared pathogenesis of skeletal and cardiovascular degeneration.

Conclusion

Integrative bioinformatics identified CD4, GZMB, and SDC1 as key genes linking OP and AS, providing potential biomarkers and therapeutic targets for managing these age-related comorbidities.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673382922250915061033
2025-10-29
2025-12-13
Loading full text...

Full text loading...

References

  1. Yadgir S. Johnson C.O. Aboyans V. Adebayo O.M. Adedoyin R.A. Afarideh M. Alahdab F. Alashi A. Alipour V. Arabloo J. Azari S. Barthelemy C.M. Benziger C.P. Berman A.E. Bijani A. Carrero J.J. Carvalho F. Daryani A. Durães A.R. Esteghamati A. Farid T.A. Farzadfar F. Fernandes E. Filip I. Gad M.M. Hamidi S. Hay S.I. Ilesanmi O.S. Naghibi Irvani S.S. Jürisson M. Kasaeian A. Kengne A.P. Khan A.R. Kisa A. Kisa S. Kolte D. Manafi N. Manafi A. Mensah G.A. Mirrakhimov E.M. Mohammad Y. Mokdad A.H. Negoi R.I. Thi Nguyen H.L. Nguyen T.H. Nixon M.R. Otto C.M. Patel S. Pilgrim T. Radfar A. Rawaf D.L. Rawaf S. Rawasia W.F. Rezapour A. Roever L. Saad A.M. Saadatagah S. Senthilkumaran S. Sliwa K. Tesfay B.E. Tran B.X. Ullah I. Vaduganathan M. Vasankari T.J. Wolfe C.D.A. Yonemoto N. Roth G.A. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation 2020 141 21 1670 1680 10.1161/CIRCULATIONAHA.119.043391 32223336
    [Google Scholar]
  2. Peeters F.E.C.M. Meex S.J.R. Dweck M.R. Aikawa E. Crijns H.J.G.M. Schurgers L.J. Kietselaer B.L.J.H. Calcific aortic valve stenosis: Hard disease in the heart. Eur. Heart J. 2018 39 28 2618 2624 10.1093/eurheartj/ehx653 29136138
    [Google Scholar]
  3. Boskovski M.T. Gleason T.G. Current therapeutic options in aortic stenosis. Circ. Res. 2021 128 9 1398 1417 10.1161/CIRCRESAHA.121.318040 33914604
    [Google Scholar]
  4. Otto C.M. Newby D.E. Hillis G.S. Calcific aortic stenosis. JAMA 2024 332 23 2014 2026 10.1001/jama.2024.16477 39527048
    [Google Scholar]
  5. Pawade T.A. Newby D.E. Dweck M.R. Calcification in aortic stenosis. J. Am. Coll. Cardiol. 2015 66 5 561 577 10.1016/j.jacc.2015.05.066 26227196
    [Google Scholar]
  6. Guo C. Liu X. Mei Z. Chang M. Li J. Wang B. Ji W. Zhang M. Zhang M. Zhang C. An G. AMBP protects against aortic valve calcification by inhibiting ERK1/2 and JNK pathways mediated by FHL3. Theranostics 2025 15 10 4398 4415 10.7150/thno.109182 40225558
    [Google Scholar]
  7. Goody P.R. Hosen M.R. Christmann D. Niepmann S.T. Zietzer A. Adam M. Bönner F. Zimmer S. Nickenig G. Jansen F. Aortic valve stenosis. Arterioscler. Thromb. Vasc. Biol. 2020 40 4 885 900 10.1161/ATVBAHA.119.313067 32160774
    [Google Scholar]
  8. Di Vito A. Donato A. Presta I. Mancuso T. Brunetti F.S. Mastroroberto P. Amorosi A. Malara N. Donato G. Extracellular matrix in calcific aortic valve disease: Architecture, dynamic and perspectives. Int. J. Mol. Sci. 2021 22 2 913 10.3390/ijms22020913 33477599
    [Google Scholar]
  9. Rajamannan N.M. Subramaniam M. Rickard D. Stock S.R. Donovan J. Springett M. Orszulak T. Fullerton D.A. Tajik A.J. Bonow R.O. Spelsberg T. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 2003 107 17 2181 2184 10.1161/01.CIR.0000070591.21548.69 12719282
    [Google Scholar]
  10. Pfister R. Michels G. Sharp S.J. Luben R. Wareham N.J. Khaw K.T. Inverse association between bone mineral density and risk of aortic stenosis in men and women in EPIC–Norfolk prospective study. Int. J. Cardiol. 2015 178 29 30 10.1016/j.ijcard.2014.10.065 25464212
    [Google Scholar]
  11. Dweck M.R. Khaw H.J. Sng G.K.Z. Luo E.L.C. Baird A. Williams M.C. Makiello P. Mirsadraee S. Joshi N.V. van Beek E.J.R. Boon N.A. Rudd J.H.F. Newby D.E. Aortic stenosis, atherosclerosis, and skeletal bone: Is there a common link with calcification and inflammation? Eur. Heart J. 2013 34 21 1567 1574 10.1093/eurheartj/eht034 23391586
    [Google Scholar]
  12. Massera D. Xu S. Bartz T.M. Bortnick A.E. Ix J.H. Chonchol M. Owens D.S. Barasch E. Gardin J.M. Gottdiener J.S. Robbins J.R. Siscovick D.S. Kizer J.R. Relationship of bone mineral density with valvular and annular calcification in community-dwelling older people: The Cardiovascular Health Study. Arch. Osteoporos. 2017 12 1 52 10.1007/s11657‑017‑0347‑y 28560501
    [Google Scholar]
  13. Tastet L. Shen M. Capoulade R. Arsenault M. Bédard É. Côté N. Clavel M.A. Pibarot P. Bone mineral density and progression rate of calcific aortic valve stenosis. J. Am. Coll. Cardiol. 2020 75 14 1725 1726 10.1016/j.jacc.2020.01.053 32273038
    [Google Scholar]
  14. Kostyunin A.E. Yuzhalin A.E. Ovcharenko E.A. Kutikhin A.G. Development of calcific aortic valve disease: Do we know enough for new clinical trials? J. Mol. Cell. Cardiol. 2019 132 189 209 10.1016/j.yjmcc.2019.05.016 31136747
    [Google Scholar]
  15. Mathieu P. Boulanger M.C. Basic mechanisms of calcific aortic valve disease. Can. J. Cardiol. 2014 30 9 982 993 10.1016/j.cjca.2014.03.029 25085215
    [Google Scholar]
  16. Lindman B.R. Clavel M.A. Mathieu P. Iung B. Lancellotti P. Otto C.M. Pibarot P. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016 2 1 16006 10.1038/nrdp.2016.6 27188578
    [Google Scholar]
  17. Mohler E.R. III Gannon F. Reynolds C. Zimmerman R. Keane M.G. Kaplan F.S. Bone formation and inflammation in cardiac valves. Circulation 2001 103 11 1522 1528 10.1161/01.CIR.103.11.1522 11257079
    [Google Scholar]
  18. Kawai M. Mödder U.I. Khosla S. Rosen C.J. Emerging therapeutic opportunities for skeletal restoration. Nat. Rev. Drug Discov. 2011 10 2 141 156 10.1038/nrd3299 21283108
    [Google Scholar]
  19. Yu B. Wang C.Y. Osteoporosis and periodontal diseases – An update on their association and mechanistic links. Periodontol. 2000 2022 89 1 99 113 10.1111/prd.12422 35244945
    [Google Scholar]
  20. Driscoll K. Cruz A.D. Butcher J.T. Inflammatory and biomechanical drivers of endothelial-interstitial interactions in calcific aortic valve disease. Circ. Res. 2021 128 9 1344 1370 10.1161/CIRCRESAHA.121.318011 33914601
    [Google Scholar]
  21. Sims N.A. Influences of the IL-6 cytokine family on bone structure and function. Cytokine 2021 146 155655 10.1016/j.cyto.2021.155655 34332274
    [Google Scholar]
  22. Qi S.S. Shao M.L. Sun Z. Chen S.M. Hu Y.J. Li X.S. Chen D.J. Zheng H.X. Yue T.L. Chondroitin sulfate alleviates diabetic osteoporosis and repairs bone microstructure via anti-oxidation, anti-inflammation, and regulating bone metabolism. Front. Endocrinol. 2021 12 759843 10.3389/fendo.2021.759843 34777254
    [Google Scholar]
  23. Dayanand P. Sandhyavenu H. Dayanand S. Martinez J. Rangaswami J. Role of bisphosphonates in vascular calcification and bone metabolism: A clinical summary. Curr. Cardiol. Rev. 2018 14 3 192 199 10.2174/1573403X14666180619103258 29921207
    [Google Scholar]
  24. Olsson M. Thyberg J. Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol. 1999 19 5 1218 1222 10.1161/01.ATV.19.5.1218 10323772
    [Google Scholar]
  25. O’Brien K.D. Reichenbach D.D. Marcovina S.M. Kuusisto J. Alpers C.E. Otto C.M. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 1996 16 4 523 532 10.1161/01.ATV.16.4.523 8624774
    [Google Scholar]
  26. Jang H.J. Lim S. Kim J.M. Yoon S. Lee C.Y. Hwang H.J. Shin J.W. Shin K.J. Kim H.Y. Park K.I. Nam D. Lee J.Y. Yea K. Hirabayashi Y. Lee Y.J. Chae Y.C. Suh P.G. Choi J.H. Glucosylceramide synthase regulates adipo-osteogenic differentiation through synergistic activation of PPARγ with GlcCer. FASEB J. 2020 34 1 1270 1287 10.1096/fj.201901437R 31914593
    [Google Scholar]
  27. Szentpétery Á. Horváth Á. Gulyás K. Pethö Z. Bhattoa H.P. Szántó S. Szücs G. FitzGerald O. Schett G. Szekanecz Z. Effects of targeted therapies on the bone in arthritides. Autoimmun. Rev. 2017 16 3 313 320 10.1016/j.autrev.2017.01.014 28159704
    [Google Scholar]
  28. Langfelder P. Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  29. Ogata H. Goto S. Sato K. Fujibuchi W. Bono H. Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999 27 1 29 34 10.1093/nar/27.1.29 9847135
    [Google Scholar]
  30. Xia J Benner MJ Hancock RE NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res. 2014 42 Web Server issue W167 74 10.1093/nar/gku443
    [Google Scholar]
  31. Xia J. Gill E.E. Hancock R.E.W. NetworkAnalyst for statistical, visual and network-based meta-analysis of gene expression data. Nat. Protoc. 2015 10 6 823 844 10.1038/nprot.2015.052 25950236
    [Google Scholar]
  32. Zhou G. Soufan O. Ewald J. Hancock R.E.W. Basu N. Xia J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019 47 W1 W234 W241 10.1093/nar/gkz240 30931480
    [Google Scholar]
  33. Maksimov M.O. Pan S.J. James Link A. Lasso peptides: Structure, function, biosynthesis, and engineering. Nat. Prod. Rep. 2012 29 9 996 1006 10.1039/c2np20070h 22833149
    [Google Scholar]
  34. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. von Mering C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  35. Danielsen R. Aspelund T. Harris T.B. Gudnason V. The prevalence of aortic stenosis in the elderly in Iceland and predictions for the coming decades: The AGES–Reykjavík study. Int. J. Cardiol. 2014 176 3 916 922 10.1016/j.ijcard.2014.08.053 25171970
    [Google Scholar]
  36. Harris K. Zagar C.A. Lawrence K.V. Osteoporosis: Common questions and answers. Am. Fam. Physician 2023 107 3 238 246 36920813
    [Google Scholar]
  37. Ureña P. Malergue M.C. Goldfarb B. Prieur P. Guédon-Rapoud C. Pétrover M. Evolutive aortic stenosis in hemodialysis patients: Analysis of risk factors. Nephrologie 1999 20 4 217 225 10480155
    [Google Scholar]
  38. Malergue MC. Urena P. Prieur P. Guédon-Rapoud C. Pétrover M. Incidence and development of aortic stenosis in chronic hemodialysis. An ultrasonographic and biological study of 112 patients. Arch. Mal. Coeur Vaiss. 1997 90 12 1595 1601 9587439
    [Google Scholar]
  39. Skolnick A.H. Osranek M. Formica P. Kronzon I. Osteoporosis treatment and progression of aortic stenosis. Am. J. Cardiol. 2009 104 1 122 124 10.1016/j.amjcard.2009.02.051 19576331
    [Google Scholar]
  40. Hjortnaes J. Butcher J. Figueiredo J.L. Riccio M. Kohler R.H. Kozloff K.M. Weissleder R. Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: A role for inflammation. Eur. Heart J. 2010 31 16 1975 1984 10.1093/eurheartj/ehq237 20601388
    [Google Scholar]
  41. Rutkovskiy A. Malashicheva A. Sullivan G. Bogdanova M. Kostareva A. Stensløkken K.O. Fiane A. Vaage J. Valve interstitial cells: The key to understanding the pathophysiology of heart valve calcification. J. Am. Heart Assoc. 2017 6 9 006339 10.1161/JAHA.117.006339 28912209
    [Google Scholar]
  42. Yu Chen H. Dina C. Small A.M. Shaffer C.M. Levinson R.T. Helgadóttir A. Capoulade R. Munter H.M. Martinsson A. Cairns B.J. Trudsø L.C. Hoekstra M. Burr H.A. Marsh T.W. Damrauer S.M. Dufresne L. Le Scouarnec S. Messika-Zeitoun D. Ranatunga D.K. Whitmer R.A. Bonnefond A. Sveinbjornsson G. Daníelsen R. Arnar D.O. Thorgeirsson G. Thorsteinsdottir U. Gudbjartsson D.F. Hólm H. Ghouse J. Olesen M.S. Christensen A.H. Mikkelsen S. Jacobsen R.L. Dowsett J. Pedersen O.B.V. Erikstrup C. Ostrowski S.R. O’Donnell C.J. Budoff M.J. Gudnason V. Post W.S. Rotter J.I. Lathrop M. Bundgaard H. Johansson B. Ljungberg J. Näslund U. Le Tourneau T. Smith J.G. Wells Q.S. Söderberg S. Stefánsson K. Schott J.J. Rader D.J. Clarke R. Engert J.C. Thanassoulis G. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: A genome-wide study. Eur. Heart J. 2023 44 21 1927 1939 10.1093/eurheartj/ehad142 37038246
    [Google Scholar]
  43. Xian G. Huang R. Hu D. Xu M. Chen Y. Ren H. Xu D. Zeng Q. Interleukin-37 attenuates aortic valve lesions by inhibiting N 6-methyladenosine-mediated interleukin-1 receptor-associated kinase M degradation. Cardiovasc. Res. 2025 121 3 492 506 10.1093/cvr/cvaf012 39913240
    [Google Scholar]
  44. Ruterbusch M. Pruner K.B. Shehata L. Pepper M. In vivo CD4 + T cell differentiation and function: Revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 2020 38 1 705 725 10.1146/annurev‑immunol‑103019‑085803 32340571
    [Google Scholar]
  45. Wallby L. Janerot-Sjöberg B. Steffensen T. Broqvist M. T lymphocyte infiltration in non-rheumatic aortic stenosis: A comparative descriptive study between tricuspid and bicuspid aortic valves. Br. Heart J. 2002 88 4 348 351 10.1136/heart.88.4.348 12231589
    [Google Scholar]
  46. Wu H.D. Maurer M.S. Friedman R.A. Marboe C.C. Ruiz-Vazquez E.M. Ramakrishnan R. Schwartz A. Tilson M.D. Stewart A.S. Winchester R. The lymphocytic infiltration in calcific aortic stenosis predominantly consists of clonally expanded T cells. J. Immunol. 2007 178 8 5329 5339 10.4049/jimmunol.178.8.5329 17404318
    [Google Scholar]
  47. Winchester R. Wiesendanger M. O’Brien W. Zhang H.Z. Maurer M.S. Gillam L.D. Schwartz A. Marboe C. Stewart A.S. Circulating activated and effector memory T cells are associated with calcification and clonal expansions in bicuspid and tricuspid valves of calcific aortic stenosis. J. Immunol. 2011 187 2 1006 1014 10.4049/jimmunol.1003521 21677140
    [Google Scholar]
  48. Wu L.D. Xiao F. Sun J.Y. Li F. Chen Y.J. Chen J.Y. Zhang J. Qian L.L. Wang R.X. Integrated identification of key immune related genes and patterns of immune infiltration in calcified aortic valvular disease: A network based meta-analysis. Front. Genet. 2022 13 971808 10.3389/fgene.2022.971808 36212153
    [Google Scholar]
  49. Mazur P. Mielimonka A. Natorska J. Wypasek E. Gawęda B. Sobczyk D. Kapusta P. Malinowski K.P. Kapelak B. Lymphocyte and monocyte subpopulations in severe aortic stenosis at the time of surgical intervention. Cardiovasc. Pathol. 2018 35 1 7 10.1016/j.carpath.2018.03.004 29727769
    [Google Scholar]
  50. Masson D. Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 1987 49 5 679 685 10.1016/0092‑8674(87)90544‑7 3555842
    [Google Scholar]
  51. Cao X. Cai S.F. Fehniger T.A. Song J. Collins L.I. Piwnica-Worms D.R. Ley T.J. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 2007 27 4 635 646 10.1016/j.immuni.2007.08.014 17919943
    [Google Scholar]
  52. Bian G. Ding X. Leigh N.D. Tang Y. Capitano M.L. Qiu J. McCarthy P.L. Liu H. Cao X. Granzyme B-mediated damage of CD8+ T cells impairs graft-versus-tumor effect. J. Immunol. 2013 190 3 1341 1350 10.4049/jimmunol.1201554 23264653
    [Google Scholar]
  53. Tibbs E. Cao X. Emerging canonical and non-canonical roles of granzyme b in health and disease. Cancers 2022 14 6 1436 10.3390/cancers14061436 35326588
    [Google Scholar]
  54. Richardson K.C. Jung K. Matsubara J.A. Choy J.C. Granville D.J. Granzyme B in aging and age-related pathologies. Trends Mol. Med. 2024 30 12 1165 1179 10.1016/j.molmed.2024.07.010 39181801
    [Google Scholar]
  55. Shen Y. Cheng F. Sharma M. Merkulova Y. Raithatha S.A. Parkinson L.G. Zhao H. Westendorf K. Bohunek L. Bozin T. Hsu I. Ang L.S. Williams S.J. Bleackley R.C. Eriksson J.E. Seidman M.A. McManus B.M. Granville D.J. Granzyme B deficiency protects against angiotensin II–induced cardiac fibrosis. Am. J. Pathol. 2016 186 1 87 100 10.1016/j.ajpath.2015.09.010 26610869
    [Google Scholar]
  56. Nadir M.A. Wei L. Elder D.H.J. Libianto R. Lim T.K. Pauriah M. Pringle S.D. Doney A.D. Choy A.M. Struthers A.D. Lang C.C. Impact of renin-angiotensin system blockade therapy on outcome in aortic stenosis. J. Am. Coll. Cardiol. 2011 58 6 570 576 10.1016/j.jacc.2011.01.063 21798417
    [Google Scholar]
  57. Chamberlain C.M. Ang L.S. Boivin W.A. Cooper D.M. Williams S.J. Zhao H. Hendel A. Folkesson M. Swedenborg J. Allard M.F. McManus B.M. Granville D.J. Perforin-independent extracellular granzyme B activity contributes to abdominal aortic aneurysm. Am. J. Pathol. 2010 176 2 1038 1049 10.2353/ajpath.2010.090700 20035050
    [Google Scholar]
  58. Guo S. Zhang E. Zhang B. Liu Q. Meng Z. Li Z. Wang C. Gong Z. Wu Y. Identification of Key Non- coding RNAs and Transcription Factors in Calcific Aortic Valve Disease. Front. Cardiovasc. Med. 2022 9 826744 10.3389/fcvm.2022.826744 35845040
    [Google Scholar]
  59. Qin M. Chen Q. Li N. Xu X. Wang C. Wang G. Xu Z. Shared gene characteristics and molecular mechanisms of macrophages M1 polarization in calcified aortic valve disease. Front. Cardiovasc. Med. 2023 9 1058274 10.3389/fcvm.2022.1058274 36684607
    [Google Scholar]
  60. Gharbaran R. Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit. Rev. Oncol. Hematol. 2015 94 1 1 17 10.1016/j.critrevonc.2014.12.003 25563413
    [Google Scholar]
  61. Wernly B. Fuernau G. Masyuk M. Muessig J.M. Pfeiler S. Bruno R.R. Desch S. Muench P. Lichtenauer M. Kelm M. Adams V. Thiele H. Eitel I. Jung C. Syndecan-1 Predicts outcome in patients with st-segment elevation infarction independent from infarct-related myocardial injury. Sci. Rep. 2019 9 1 18367 10.1038/s41598‑019‑54937‑x 31797997
    [Google Scholar]
  62. Schoen F.J. Mechanisms of function and disease of natural and replacement heart valves. Annu. Rev. Pathol. 2012 7 1 161 183 10.1146/annurev‑pathol‑011110‑130257 21942526
    [Google Scholar]
  63. Huang X. Reye G. Momot K.I. Blick T. Lloyd T. Tilley W.D. Hickey T.E. Snell C.E. Okolicsanyi R.K. Haupt L.M. Ferro V. Thompson E.W. Hugo H.J. Heparanase promotes syndecan-1 expression to mediate fibrillar collagen and mammographic density in human breast tissue cultured ex vivo. Front. Cell Dev. Biol. 2020 8 599 10.3389/fcell.2020.00599 32760722
    [Google Scholar]
  64. Liu Y. Xu C. Zhang L. Xu G. Yang Z. Xiang L. Jiao K. Chen Z. Zhang X. Liu Y. Syndecan-1 inhibition promotes antitumor immune response and facilitates the efficacy of anti-PD1 checkpoint immunotherapy. Sci. Adv. 2024 10 37 eadi7764 10.1126/sciadv.adi7764 39259785
    [Google Scholar]
  65. Saunders S. Jalkanen M. O’Farrell S. Bernfield M. Molecular cloning of syndecan, an integral membrane proteoglycan. J. Cell Biol. 1989 108 4 1547 1556 10.1083/jcb.108.4.1547 2494194
    [Google Scholar]
  66. Liu W. Litwack E.D. Stanley M.J. Langford J.K. Lander A.D. Sanderson R.D. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypican have distinct functions. J. Biol. Chem. 1998 273 35 22825 22832 10.1074/jbc.273.35.22825 9712917
    [Google Scholar]
  67. Beauvais D.M. Burbach B.J. Rapraeger A.C. The syndecan-1 ectodomain regulates αvβ3 integrin activity in human mammary carcinoma cells. J. Cell Biol. 2004 167 1 171 181 10.1083/jcb.200404171 15479743
    [Google Scholar]
  68. Purushothaman A. Uyama T. Kobayashi F. Yamada S. Sugahara K. Rapraeger A.C. Sanderson R.D. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010 115 12 2449 2457 10.1182/blood‑2009‑07‑234757 20097882
    [Google Scholar]
  69. Voyvodic P.L. Min D. Liu R. Williams E. Chitalia V. Dunn A.K. Baker A.B. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J. Biol. Chem. 2014 289 14 9547 9559 10.1074/jbc.M113.541573 24554698
    [Google Scholar]
  70. Fernandez Esmerats J. Villa-Roel N. Kumar S. Gu L. Salim M.T. Ohh M. Taylor W.R. Nerem R.M. Yoganathan A.P. Jo H. disturbed flow increases ube2c (ubiquitin e2 ligase c) via loss of mir-483-3p, inducing aortic valve calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) pathway in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2019 39 3 467 481 10.1161/ATVBAHA.118.312233 30602302
    [Google Scholar]
  71. Souilhol C. Serbanovic-Canic J. Fragiadaki M. Chico T.J. Ridger V. Roddie H. Evans P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020 17 1 52 63 10.1038/s41569‑019‑0239‑5 31366922
    [Google Scholar]
  72. Chen X. Li T.H. Zhao Y. Wang C.C. Zhu C.C. Deep-belief network for predicting potential miRNA-disease associations. Brief. Bioinform. 2021 22 3 bbaa186 10.1093/bib/bbaa186 34020550
    [Google Scholar]
  73. Ha J. Park C. Park C. Park S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform. 2020 102 103358 10.1016/j.jbi.2019.103358 31857202
    [Google Scholar]
  74. Ha J. Graph convolutional network with neural collaborative filtering for predicting mirna-disease association. Biomedicines 2025 13 1 136 10.3390/biomedicines13010136 39857720
    [Google Scholar]
  75. Mathieu P. Bossé Y. Huggins G.S. Corte A.D. Pibarot P. Michelena H.I. Limongelli G. Boulanger M.C. Evangelista A. Bédard E. Citro R. Body S.C. Nemer M. Schoen F.J. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. J. Pathol. Clin. Res. 2015 1 4 195 206 10.1002/cjp2.21 27499904
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673382922250915061033
Loading
/content/journals/cmc/10.2174/0109298673382922250915061033
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Calcific aortic stenosis ; GZMB ; bioinformatics ; CD4 ; osteoporosis ; SDC1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test