Skip to content
2000
image of Matricellular Proteins (MCPs) in Rheumatoid Arthritis

Abstract

Rheumatoid arthritis is a chronic autoimmune disorder affecting approximately 230 per 100,000 people worldwide. It typically affects joints and bones but may involve other tissues and internal organs as well. Rheumatoid arthritis is twice as common in females compared to males and causes a significant psychological burden on patients and an economic burden on society. During the development of the disease, multiple cellular processes are involved, including the activation of JAK-STAT, MAPK, PI3K-AKT, and Wnt signaling pathways, the subsequent production of cytokines, interleukins, and matrix metalloproteinases, and the stimulation of immune cells, osteoclasts, and fibroblast-like synoviocytes. Matricellular proteins typically support the stability of the extracellular matrix and oversee cellular interactions within it. They are also thought to be involved in several pathological processes, including cancer, diabetes, immune cell recruitment, and cardiovascular diseases. Recent research evidence suggests that matricellular proteins can play both pro- and anti-inflammatory roles in rheumatoid arthritis and may also affect other processes relevant to disease propagation. In conclusion, this review highlights published research that sheds light on the roles matricellular proteins may play in rheumatoid arthritis, as well as their potential as diagnostic and therapeutic targets for the disease.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673382498250919112316
2025-09-29
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673382498250919112316/BMS-CMC-2024-HT135-5868-15.html?itemId=/content/journals/cmc/10.2174/0109298673382498250919112316&mimeType=html&fmt=ahah

References

  1. Black R.J. Cross M. Haile L.M. Culbreth G.T. Steinmetz J.D. Hagins H. Kopec J.A. Brooks P.M. Woolf A.D. Ong K.L. Kopansky-Giles D.R. Dreinhoefer K.E. Betteridge N. Aali A. Abbasifard M. Abbasi-Kangevari M. Abdurehman A.M. Abedi A. Abidi H. Aboagye R.G. Abolhassani H. Abu-Gharbieh E. Abu-Zaid A. Adamu K. Addo I.Y. Adesina M.A. Adnani Q.E.S. Afzal M.S. Ahmed A. Aithala J.P. Akhlaghdoust M. Alemayehu A. Alvand S. Alvis-Zakzuk N.J. Amu H. Antony B. Arabloo J. Aravkin A.Y. Arulappan J. Ashraf T. Athari S.S. Azadnajafabad S. Badawi A. Baghcheghi N. Baig A.A. Balta A.B. Banach M. Banik P.C. Barrow A. Bashiri A. Bearne L.M. Bekele A. Bensenor I.M. Berhie A.Y. Bhagavathula A.S. Bhardwaj P. Bhat A.N. Bhojaraja V.S. Bitaraf S. Bodicha B.B.A. Botelho J.S. Briggs A.M. Buchbinder R. Castañeda-Orjuela C.A. Charalampous P. Chattu V.K. Coberly K. Cruz-Martins N. Dadras O. Dai X. de Luca K. Dessalegn F.N. Dessie G. Dhimal M. Digesa L.E. Diress M. Doku P.N. Edinur H.A. Ekholuenetale M. Elhadi M. El-Sherbiny Y.M. Etaee F. Ezzeddini R. Faghani S. Filip I. Fischer F. Fukumoto T. Ganesan B. Gebremichael M.A. Gerema U. Getachew M.E. Ghashghaee A. Gill T.K. Gupta B. Gupta S. Gupta V.B. Gupta V.K. Halwani R. Hannan M.A. Haque S. Harlianto N.I. Harorani M. Hasaballah A.I. Hassen M.B. Hay S.I. Hayat K. Heidari G. Hezam K. Hill C.L. Hiraike Y. Horita N. Hoveidaei A.H. Hsiao A.K. Hsieh E. Hussain S. Iavicoli I. Ilic I.M. Islam S.M.S. Ismail N.E. Iwagami M. Jakovljevic M. Jani C.T. Jeganathan J. Joseph N. Kadashetti V. Kandel H. Kanko T.K. Karaye I.M. Khajuria H. Khan M.J. Khan M.A.B. Khanali J. Khatatbeh M.M. Khubchandani J. Kim Y.J. Kisa A. Kolahi A-A. Kompani F. Koohestani H.R. Koyanagi A. Krishan K. Kuddus M. Kumar N. Kuttikkattu A. Larijani B. Lim S.S. Lo J. Machado V.S. Mahajan P.B. Majeed A. Malakan Rad E. Malik A.A. Mansournia M.A. Mathews E. Mendes J.J. Mentis A-F.A. Mesregah M.K. Mestrovic T. Mirghaderi S.P. Mirrakhimov E.M. Misganaw A. Mohamadkhani A. Mohammed S. Mokdad A.H. Moniruzzaman M. Montasir A.A. Mulu G.B. Murillo-Zamora E. Murray C.J.L. Mustafa G. Naghavi M. Nair T.S. Naqvi A.A. Natto Z.S. Nayak B.P. Neupane S. Nguyen C.T. Niazi R.K. Nzoputam O.J. Oh I-H. Okati-Aliabad H. Okonji O.C. Olufadewa I.I. Owolabi M.O. Pacheco-Barrios K. Padubidri J.R. Patel J. Pathan A.R. Pawar S. Pedersini P. Perianayagam A. Petcu I-R. Qattea I. Radfar A. Rafiei A. Rahman M.H.U. Rahmanian V. Rashedi V. Rashidi M-M. Ratan Z.A. Rawaf S. Razeghinia M.S. Redwan E.M.M. Renzaho A.M.N. Rezaei N. Rezaei N. Riad A. Saad A.M.A. Saddik B. Saeed U. Safary A. Sahebazzamani M. Sahebkar A. Sahoo H. Salek Farrokhi A. Saqib M.A.N. Seylani A. Shahabi S. Shaikh M.A. Shashamo B.B. Shetty A. Shetty J.K. Shigematsu M. Shivarov V. Shobeiri P. Sibhat M.M. Sinaei E. Singh A. Singh J.A. Singh P. Singh S. Siraj M.S. Skryabina A.A. Slater H. Smith A.E. Solomon Y. Soltani-Zangbar M.S. Tabish M. Tan K-K. Tat N.Y. Tehrani-Banihashemi A. Tharwat S. Tovani-Palone M.R. Tusa B.S. Valadan Tahbaz S. Valdez P.R. Valizadeh R. Vaziri S. Vollset S.E. Wu A-M. Yada D.Y. Yehualashet S.S. Yonemoto N. You Y. Yunusa I. Zangiabadian M. Zare I. Zarrintan A. Zhang Z-J. Zhong C. Zoladl M. Vos T. March L.M. Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023 5 10 e594 e610 10.1016/S2665‑9913(23)00211‑4 37795020
    [Google Scholar]
  2. Dey M. Nagy G. Nikiphorou E. Comorbidities and extra-articular manifestations in difficult-to-treat rheumatoid arthritis: Different sides of the same coin? Rheumatology 2023 62 5 1773 1779 10.1093/rheumatology/keac584 36205537
    [Google Scholar]
  3. Cai Y. Zhang J. Liang J. Xiao M. Zhang G. Jing Z. Lv L. Nan K. Dang X. The burden of rheumatoid arthritis: Findings from the 2019 global burden of diseases study and forecasts for 2030 by bayesian age-period-cohort analysis. J. Clin. Med. 2023 12 4 1291 10.3390/jcm12041291 36835827
    [Google Scholar]
  4. Venetsanopoulou A.I. Alamanos Y. Voulgari P.V. Drosos A.A. Epidemiology and risk factors for rheumatoid arthritis development. Mediterr. J. Rheumatol. 2023 34 4 404 413 10.31138/mjr.301223.eaf 38282942
    [Google Scholar]
  5. Suwa Y. Nagafuchi Y. Yamada S. Fujio K. The role of dendritic cells and their immunometabolism in rheumatoid arthritis. Front. Immunol. 2023 14 1161148 10.3389/fimmu.2023.1161148 37251399
    [Google Scholar]
  6. Kondo N. Kuroda T. Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int. J. Mol. Sci. 2021 22 20 10922 10.3390/ijms222010922 34681582
    [Google Scholar]
  7. Ding Q. Hu W. Wang R. Yang Q. Zhu M. Li M. Cai J. Rose P. Mao J. Zhu Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023 8 1 68 10.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  8. Shams S. Martinez J.M. Dawson J.R.D. Flores J. Gabriel M. Garcia G. Guevara A. Murray K. Pacifici N. Vargas M.V. Voelker T. Hell J.W. Ashouri J.F. The therapeutic landscape of rheumatoid arthritis: Current state and future directions. Front. Pharmacol. 2021 12 680043 10.3389/fphar.2021.680043 34122106
    [Google Scholar]
  9. Patel J.P. Konanur Srinivasa N.K. Gande A. Anusha M. Dar H. Baji D.B. The role of biologics in rheumatoid arthritis: A narrative review. Cureus 2023 15 1 e33293 10.7759/cureus.33293 36606106
    [Google Scholar]
  10. Wu D. Luo Y. Li T. Zhao X. Lv T. Fang G. Ou P. Li H. Luo X. Huang A. Pang Y. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front. Immunol. 2022 13 1051082 10.3389/fimmu.2022.1051082 36618407
    [Google Scholar]
  11. Murayama M.A. Shimizu J. Miyabe C. Yudo K. Miyabe Y. Chemokines and chemokine receptors as promising targets in rheumatoid arthritis. Front. Immunol. 2023 14 1100869 10.3389/fimmu.2023.1100869 36860872
    [Google Scholar]
  12. Szekanecz Z. Buch M.H. Charles-Schoeman C. Galloway J. Karpouzas G.A. Kristensen L.E. Ytterberg S.R. Hamar A. Fleischmann R. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: Update for the practising clinician. Nat. Rev. Rheumatol. 2024 20 2 101 115 10.1038/s41584‑023‑01062‑9 38216757
    [Google Scholar]
  13. Tang C.H. Research of pathogenesis and novel therapeutics in arthritis 3.0. Int. J. Mol. Sci. 2023 24 12 10166 10.3390/ijms241210166 37373313
    [Google Scholar]
  14. Fearon U. Hanlon M.M. Floudas A. Veale D.J. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat. Rev. Rheumatol. 2022 18 7 398 414 10.1038/s41584‑022‑00771‑x 35440762
    [Google Scholar]
  15. Bornstein P. Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J. Cell Biol. 1995 130 3 503 506 10.1083/jcb.130.3.503 7542656
    [Google Scholar]
  16. Bornstein P. Matricellular proteins: An overview. J. Cell Commun. Signal. 2009 3 3-4 163 165 10.1007/s12079‑009‑0069‑z 19779848
    [Google Scholar]
  17. Bradshaw A.D. The extracellular matrix. Encyclopedia of Cell Biology. 2nd ed Academic Press Oxford 2023 211 221 10.1016/B978‑0‑12‑821618‑7.00088‑2
    [Google Scholar]
  18. Murphy-Ullrich J.E. Sage E.H. Revisiting the matricellular concept. Matrix Biol. 2014 37 1 14 10.1016/j.matbio.2014.07.005 25064829
    [Google Scholar]
  19. Perbal B. CCN proteins: Multifunctional signalling regulators. Lancet 2004 363 9402 62 64 10.1016/S0140‑6736(03)15172‑0 14723997
    [Google Scholar]
  20. Jun J.I. Lau L.F. Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat. Rev. Drug Discov. 2011 10 12 945 963 10.1038/nrd3599 22129992
    [Google Scholar]
  21. Komatsu M. Nakamura Y. Maruyama M. Abe K. Watanapokasin R. Kato H. Expression profles of human CCN genes in patients with osteoarthritis or rheumatoid arthritis. J. Orthop. Sci. 2015 20 4 708 716 10.1007/s00776‑015‑0727‑3 25986313
    [Google Scholar]
  22. Xu T. He Y. Wang M. Yao H. Ni M. Zhang L. Meng X. Huang C. Ge Y. Li J. Therapeutic potential of cysteine-rich protein 61 in rheumatoid arthritis. Gene 2016 592 1 179 185 10.1016/j.gene.2016.07.053 27457285
    [Google Scholar]
  23. MacDonald I.J. Huang C.C. Liu S.C. Lin Y.Y. Tang C.H. Targeting CCN proteins in rheumatoid arthritis and osteoarthritis. Int. J. Mol. Sci. 2021 22 9 4340 10.3390/ijms22094340 33919365
    [Google Scholar]
  24. Jiang R. Tang J. Zhang X. He Y. Yu Z. Chen S. Xia J. Lin J. Ou Q. CCN1 promotes inflammation by inducing IL-6 production via α6β1/PI3K/Akt/NF-κB Pathway in autoimmune hepatitis. Front. Immunol. 2022 13 810671 10.3389/fimmu.2022.810671 35547732
    [Google Scholar]
  25. Lau L.F. CCN1/CYR61: The very model of a modern matricellular protein. Cell. Mol. Life Sci. 2011 68 19 3149 3163 10.1007/s00018‑011‑0778‑3 21805345
    [Google Scholar]
  26. Esaily H.A. Serag D.M. Rizk M.S. Badr I.T. Sonbol A.A. Fotoh D.S. Relationship between cellular communication network factor 1 (CCN1) and carotid atherosclerosis in patients with rheumatoid arthritis. Med. J. Malaysia 2021 76 3 311 317 34031328
    [Google Scholar]
  27. Zhang Q. Wu J. Cao Q. Xiao L. Wang L. He D. Ouyang G. Lin J. Shen B. Shi Y. Zhang Y. Li D. Li N. A critical role of Cyr61 in interleukin-17–dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009 60 12 3602 3612 10.1002/art.24999 19950293
    [Google Scholar]
  28. Chen C.Y. Su C.M. Huang Y.L. Tsai C.H. Fuh L.J. Tang C.H. CCN1 induces oncostatin M production in osteoblasts via integrin-dependent signal pathways. PLoS One 2014 9 9 e106632 10.1371/journal.pone.0106632 25187949
    [Google Scholar]
  29. Lin J. Zhou Z. Huo R. Xiao L. Ouyang G. Wang L. Sun Y. Shen B. Li D. Li N. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J. Immunol. 2012 188 11 5776 5784 10.4049/jimmunol.1103201 22547695
    [Google Scholar]
  30. Zhu X. Xiao L. Huo R. Zhang J. Lin J. Xie J. Sun S. He Y. Sun Y. Zhou Z. Shen B. Li N. Cyr61 is involved in neutrophil infiltration in joints by inducing IL-8 production by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 2013 15 6 R187 10.1186/ar4377 24517278
    [Google Scholar]
  31. Chen C.Y. Su C.M. Hsu C.J. Huang C.C. Wang S.W. Liu S.C. Chen W.C. Fuh L.J. Tang C.H. CCN1 promotes VEGF production in osteoblasts and induces endothelial progenitor cell angiogenesis by inhibiting miR-126 expression in rheumatoid arthritis. J. Bone Miner. Res. 2017 32 1 34 45 10.1002/jbmr.2926 27465842
    [Google Scholar]
  32. Chen C.Y. Fuh L.J. Huang C.C. Hsu C.J. Su C.M. Liu S.C. Lin Y.M. Tang C.H. Enhancement of CCL2 expression and monocyte migration by CCN1 in osteoblasts through inhibiting miR-518a-5p: Implication of rheumatoid arthritis therapy. Sci. Rep. 2017 7 1 421 10.1038/s41598‑017‑00513‑0 28341837
    [Google Scholar]
  33. Jie L.G. Huang R.Y. Sun W.F. Wei S. Chu Y.L. Huang Q.C. Du H.Y. Role of cysteine-rich angiogenic inducer 61 in fibroblast-like synovial cell proliferation and invasion in rheumatoid arthritis. Mol. Med. Rep. 2015 11 2 917 923 10.3892/mmr.2014.2770 25351421
    [Google Scholar]
  34. Jie L.G. Huang R.Y. Sun W.F. Wei S. Chu Y.L. Huang Q.C. Du H.Y. [Corrigendum] role of cysteine-rich angiogenic inducer 61 in fibroblast-like synovial cell proliferation and invasion in rheumatoid arthritis. Mol. Med. Rep. 2022 27 1 14 10.3892/mmr.2022.12901 36453210
    [Google Scholar]
  35. Zhu X. Song Y. Huo R. Zhang J. Sun S. He Y. Gao H. Zhang M. Sun X. Zhai T. Li H. Sun Y. Zhou Z. Shen B. Xiao L. Li N. Cyr61 participates in the pathogenesis of rheumatoid arthritis by promoting proIL-1β production by fibroblast-like synoviocytes through an AKT-dependent NF-κB signaling pathway. Clin. Immunol. 2015 157 2 187 197 10.1016/j.clim.2015.02.010 25728492
    [Google Scholar]
  36. Shi-Wen X. Leask A. Abraham D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 2008 19 2 133 144 10.1016/j.cytogfr.2008.01.002 18358427
    [Google Scholar]
  37. Nozawa K. Fujishiro M. Kawasaki M. Kaneko H. Iwabuchi K. Yanagida M. Suzuki F. Miyazawa K. Takasaki Y. Ogawa H. Takamori K. Sekigawa I. Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res. Ther. 2009 11 6 R174 10.1186/ar2863 19922639
    [Google Scholar]
  38. Ding S. Duan H. Fang F. Shen H. Xiao W. CTGF promotes articular damage by increased proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Scand. J. Rheumatol. 2016 45 4 282 287 10.3109/03009742.2015.1092581 27044368
    [Google Scholar]
  39. Liu S.C. Hsu C.J. Fong Y.C. Chuang S.M. Tang C.H. CTGF induces monocyte chemoattractant protein-1 expression to enhance monocyte migration in human synovial fibroblasts. Biochim. Biophys. Acta Mol. Cell Res. 2013 1833 5 1114 1124 10.1016/j.bbamcr.2012.12.014 23274856
    [Google Scholar]
  40. Wang J.G. Xu W.D. Zhai W.T. Li Y. Hu J.W. Hu B. Li M. Zhang L. Guo W. Zhang J.P. Wang L.H. Jiao B.H. Disorders in angiogenesis and redox pathways are main factors contributing to the progression of rheumatoid arthritis: A comparative proteomics study. Arthritis Rheum. 2012 64 4 993 1004 10.1002/art.33425 22006448
    [Google Scholar]
  41. Wang J. Ruan J. Li C. Wang J. Li Y. Zhai W. Zhang W. Ye H. Shen N. Lei K. Chen X. Yang X. Connective tissue growth factor, a regulator related with 10-hydroxy-2-decenoic acid down-regulate MMPs in rheumatoid arthritis. Rheumatol. Int. 2012 32 9 2791 2799 10.1007/s00296‑011‑1960‑5 21850473
    [Google Scholar]
  42. Qin Y. Wu G. Jin J. Wang H. Zhang J. Liu L. Zhao H. Wang J. Yang X. A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnol. 2023 23 1 6 10.1186/s12896‑023‑00776‑8 36869335
    [Google Scholar]
  43. Lin C.G. Leu S.J. Chen N. Tebeau C.M. Lin S.X. Yeung C.Y. Lau L.F. CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J. Biol. Chem. 2003 278 26 24200 24208 10.1074/jbc.M302028200 12695522
    [Google Scholar]
  44. Son S. Kim H. Lim H. Lee J. Lee K. Shin I. CCN3/NOV promotes metastasis and tumor progression via GPNMB-induced EGFR activation in triple-negative breast cancer. Cell Death Dis. 2023 14 2 81 10.1038/s41419‑023‑05608‑3 36737605
    [Google Scholar]
  45. Yin H. Liu N. Zhou X. Chen J. Duan L. The advance of CCN3 in fibrosis. J. Cell Commun. Signal. 2023 17 4 1219 1227 10.1007/s12079‑023‑00778‑3 37378812
    [Google Scholar]
  46. Wei Y. Peng L. Li Y. Zhang N. Shang K. Duan L. Zhong J. Chen J. Higher serum CCN3 is associated with disease activity and inflammatory markers in rheumatoid arthritis. J. Immunol. Res. 2020 2020 1 7 10.1155/2020/3891425 32455138
    [Google Scholar]
  47. Singh K. Oladipupo S.S. An overview of CCN4 (WISP1) role in human diseases. J. Transl. Med. 2024 22 1 601 10.1186/s12967‑024‑05364‑8 38937782
    [Google Scholar]
  48. Kuo S.J. Hsua P.W. Chien S.Y. Huang C.C. Hu S.L. Tsai C.H. Su C.M. Tang C.H. Associations between WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of rheumatoid arthritis among Chinese Han subjects. Medicine 2019 98 44 e17604 10.1097/MD.0000000000017604 31689765
    [Google Scholar]
  49. Hou C.H. Tang C.H. Hsu C.J. Hou S.M. Liu J.F. CCN4 induces IL-6 production through αvβ5 receptor, PI3K, Akt, and NF-κB singling pathway in human synovial fibroblasts. Arthritis Res. Ther. 2013 15 1 R19 10.1186/ar4151 23343403
    [Google Scholar]
  50. Blom A.B. Brockbank S.M. van Lent P.L. van Beuningen H.M. Geurts J. Takahashi N. van der Kraan P.M. van de Loo F.A. Schreurs B.W. Clements K. Newham P. van den Berg W.B. Involvement of the Wnt signaling pathway in experimental and human osteoarthritis: Prominent role of Wnt-induced signaling protein 1. Arthritis Rheum. 2009 60 2 501 512 10.1002/art.24247 19180479
    [Google Scholar]
  51. Cai D. Hong S. Yang J. San P. The effects of microRNA-515-5p on the toll-like receptor 4 (TLR4)/JNK signaling pathway and WNT1-inducible-signaling pathway protein 1 (WISP-1) expression in rheumatoid arthritis fibroblast-like synovial (RAFLS) cells following treatment with receptor activator of nuclear factor-kappa-B ligand (RANKL). Med. Sci. Monit. 2020 26 e920611 10.12659/MSM.920611 32361708
    [Google Scholar]
  52. Grünberg J.R. Elvin J. Paul A. Hedjazifar S. Hammarstedt A. Smith U. CCN5/WISP2 and metabolic diseases. J. Cell Commun. Signal. 2018 12 1 309 318 10.1007/s12079‑017‑0437‑z 29247377
    [Google Scholar]
  53. Tanaka I. Morikawa M. Okuse T. Shirakawa M. Imai K. Expression and regulation of WISP2 in rheumatoid arthritic synovium. Biochem. Biophys. Res. Commun. 2005 334 4 973 978 10.1016/j.bbrc.2005.06.196 16038875
    [Google Scholar]
  54. Ruiz-Fernández C. González-Rodríguez M. Abella V. Francisco V. Cordero-Barreal A. Ait Eldjoudi D. Farrag Y. Pino J. Conde-Aranda J. González-Gay M.Á. Mera A. Mobasheri A. García-Caballero L. Gándara- Cortés M. Lago F. Scotece M. Gualillo O. WISP-2 modulates the induction of inflammatory mediators and cartilage catabolism in chondrocytes. Lab. Invest. 2022 102 9 989 999 10.1038/s41374‑022‑00793‑9 35484291
    [Google Scholar]
  55. Leask A. CCN6: A modulator of breast cancer progression. J. Cell Commun. Signal. 2016 10 2 163 164 10.1007/s12079‑016‑0321‑2 27086280
    [Google Scholar]
  56. Yu B. Chen Y. Chen E. Zuo F. Yuan Y. Zhao X. Xiao C. LncRNA RNA XIST binding to GATA1 contributes to rheumatoid arthritis through its effects on proliferation of synovial fibroblasts and angiogenesis via regulation of CCN6. Mol. Immunol. 2023 153 200 211 10.1016/j.molimm.2022.12.004 36542956
    [Google Scholar]
  57. Cheon H. Boyle D.L. Firestein G.S. Wnt1 inducible signaling pathway protein-3 regulation and microsatellite structure in arthritis. J. Rheumatol. 2004 31 11 2106 2114 15517620
    [Google Scholar]
  58. Liu A.Y. Zheng H. Ouyang G. Periostin, a multifunctional matricellular protein in inflammatory and tumor microenvironments. Matrix Biol. 2014 37 150 156 10.1016/j.matbio.2014.04.007 24813586
    [Google Scholar]
  59. González-González L. Alonso J. Periostin: A matricellular protein with multiple functions in cancer development and progression. Front. Oncol. 2018 8 225 10.3389/fonc.2018.00225 29946533
    [Google Scholar]
  60. Izuhara K. Conway S.J. Moore B.B. Matsumoto H. Holweg C.T.J. Matthews J.G. Arron J.R. Roles of periostin in respiratory disorders. Am. J. Respir. Crit. Care Med. 2016 193 9 949 956 10.1164/rccm.201510‑2032PP 26756066
    [Google Scholar]
  61. Sonnenberg-Riethmacher E. Miehe M. Riethmacher D. Periostin in allergy and inflammation. Front. Immunol. 2021 12 722170 10.3389/fimmu.2021.722170 34512647
    [Google Scholar]
  62. Koh S.J. Choi Y. Kim B.G. Lee K.L. Kim D.W. Kim J.H. Kim J.W. Kim J.S. Matricellular protein periostin mediates intestinal inflammation through the activation of nuclear factor κB signaling. PLoS One 2016 11 2 e0149652 10.1371/journal.pone.0149652 26890265
    [Google Scholar]
  63. Ma H. Wang J. Zhao X. Wu T. Huang Z. Chen D. Liu Y. Ouyang G. Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep. 2020 30 3 793 806.e6 10.1016/j.celrep.2019.12.075 31968254
    [Google Scholar]
  64. Wang Z. An J. Zhu D. Chen H. Lin A. Kang J. Liu W. Kang X. Periostin: An emerging activator of multiple signaling pathways. J. Cell Commun. Signal. 2022 16 4 515 530 10.1007/s12079‑022‑00674‑2 35412260
    [Google Scholar]
  65. Izuhara K. Nunomura S. Nanri Y. Ogawa M. Ono J. Mitamura Y. Yoshihara T. Periostin in inflammation and allergy. Cell. Mol. Life Sci. 2017 74 23 4293 4303 10.1007/s00018‑017‑2648‑0 28887633
    [Google Scholar]
  66. Masuoka M. Shiraishi H. Ohta S. Suzuki S. Arima K. Aoki S. Toda S. Inagaki N. Kurihara Y. Hayashida S. Takeuchi S. Koike K. Ono J. Noshiro H. Furue M. Conway S.J. Narisawa Y. Izuhara K. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J. Clin. Invest. 2012 122 7 2590 2600 10.1172/JCI58978 22684102
    [Google Scholar]
  67. Nunomura S. Uta D. Kitajima I. Nanri Y. Matsuda K. Ejiri N. Kitajima M. Ikemitsu H. Koga M. Yamamoto S. Honda Y. Takedomi H. Andoh T. Conway S.J. Izuhara K. Periostin activates distinct modules of inflammation and itching downstream of the type 2 inflammation pathway. Cell Rep. 2023 42 1 111933 10.1016/j.celrep.2022.111933 36610396
    [Google Scholar]
  68. Chijimatsu R. Kunugiza Y. Taniyama Y. Nakamura N. Tomita T. Yoshikawa H. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet. Disord. 2015 16 1 215 10.1186/s12891‑015‑0682‑3 26289167
    [Google Scholar]
  69. Attur M. Yang Q. Shimada K. Tachida Y. Nagase H. Mignatti P. Statman L. Palmer G. Kirsch T. Beier F. Abramson S.B. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13. FASEB J. 2015 29 10 4107 4121 10.1096/fj.15‑272427 26092928
    [Google Scholar]
  70. Baril P. Gangeswaran R. Mahon P.C. Caulee K. Kocher H.M. Harada T. Zhu M. Kalthoff H. Crnogorac-Jurcevic T. Lemoine N.R. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: Role of the β4 integrin and the PI3k pathway. Oncogene 2007 26 14 2082 2094 10.1038/sj.onc.1210009 17043657
    [Google Scholar]
  71. Nishiyama T. Kii I. Kashima T.G. Kikuchi Y. Ohazama A. Shimazaki M. Fukayama M. Kudo A. Delayed re-epithelialization in periostin-deficient mice during cutaneous wound healing. PLoS One 2011 6 4 e18410 10.1371/journal.pone.0018410 21490918
    [Google Scholar]
  72. Padial-Molina M. Volk S.L. Rios H.F. Periostin increases migration and proliferation of human periodontal ligament fibroblasts challenged by tumor necrosis factor -α and Porphyromonas gingivalis lipopolysaccharides. J. Periodontal Res. 2014 49 3 405 414 10.1111/jre.12120 23919658
    [Google Scholar]
  73. Ba X. Huang Y. Shen P. Huang Y. Wang H. Han L. Lin W.J. Yan H.J. Xu L.J. Qin K. Chen Z. Tu S.H. WTD attenuating rheumatoid arthritis via suppressing angiogenesis and modulating the PI3K/AKT/mTOR/HIF-1α pathway. Front. Pharmacol. 2021 12 696802 10.3389/fphar.2021.696802 34646130
    [Google Scholar]
  74. Du H. Zhang X. Zeng Y. Huang X. Chen H. Wang S. Wu J. Li Q. Zhu W. Li H. Liu T. Yu Q. Wu Y. Jie L. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-α induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front. Immunol. 2019 10 1620 10.3389/fimmu.2019.01620 31396207
    [Google Scholar]
  75. Han T. Mignatti P. Abramson S.B. Attur M. Periostin interaction with discoidin domain receptor-1 (DDR1) promotes cartilage degeneration. PLoS One 2020 15 4 e0231501 10.1371/journal.pone.0231501 32330138
    [Google Scholar]
  76. Caire R. Audoux E. Courbon G. Michaud E. Petit C. Dalix E. Chafchafi M. Thomas M. Vanden-Bossche A. Navarro L. Linossier M.T. Peyroche S. Guignandon A. Vico L. Paul S. Marotte H. YAP/TAZ: Key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response. Front. Immunol. 2021 12 791907 10.3389/fimmu.2021.791907 34956224
    [Google Scholar]
  77. Shahrara S. Castro-Rueda H.P. Haines G.K. Koch A.E. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res. Ther. 2007 9 5 R112 10.1186/ar2318 17963503
    [Google Scholar]
  78. Chen H.C. Guan J.L. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA 1994 91 21 10148 10152 10.1073/pnas.91.21.10148 7937853
    [Google Scholar]
  79. Kerschan-Schindl K. Rheumatoid arthritis in remission: Decreased myostatin and increased serum levels of periostin. Wien Klin Wochenschr 2019 131 1-2 1 7 10.1007/s00508‑018‑1386‑0 30171335
    [Google Scholar]
  80. Cheon Y. Periostin deficiency exacerbates joint inflammation and bone destruction in mouse models of rheumatoid arthritis. Arthritis Rheumatol 2017 69
    [Google Scholar]
  81. Suh YS Periostin deficiency aggravates inflammation and joint destruction in an animal model of rheumatoid arthritis. Annual European Congress of Rheumatology – Rheumatoid arthritis – etiology, pathogenesis and animal models Paris, 11–14 June, 2014,
    [Google Scholar]
  82. Bentley J.K. Chen Q. Hong J.Y. Popova A.P. Lei J. Moore B.B. Hershenson M.B. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J. Allergy Clin. Immunol. 2014 134 6 1433 1442 10.1016/j.jaci.2014.05.029 24996263
    [Google Scholar]
  83. Mukanova S. Borissenko A. Kim A. Bolatbek A. Abdrakhmanova A. Vangelista L. Sonnenberg-Riethmacher E. Riethmacher D. Role of periostin in inflammatory bowel disease development and synergistic effects mediated by the CCL5–CCR5 axis. Front. Immunol. 2022 13 956691 10.3389/fimmu.2022.956691 36341422
    [Google Scholar]
  84. Shiraishi H. Periostin contributes to the pathogenesis of atopic dermatitis by inducing TSLP production from keratinocytes. Allergol Int 2012 61 4 563 572 10.2332/allergolint.10‑OA‑0297 22918211
    [Google Scholar]
  85. Nakamura S. Kamihagi K. Satakeda H. Katayama M. Pan H. Okamoto H. Noshiro M. Takahashi K. Yoshihara Y. Shimmei M. Okada Y. Kato Y. Enhancement of sparc (osteonectin) synthesis in arthritic cartilage: Increased levels in synovial fluids from patients with rheumatoid arthritis and regulation by growth factors and cytokines in chondrocyte cultures. Arthritis Rheum. 1996 39 4 539 551 10.1002/art.1780390402 8630101
    [Google Scholar]
  86. Garg U. Jain N. Kaul S. Nagaich U. Role of albumin as a targeted drug carrier in the management of rheumatoid arthritis: A comprehensive review. Mol. Pharm. 2023 20 11 5345 5358 10.1021/acs.molpharmaceut.3c00581 37870420
    [Google Scholar]
  87. Liu L. Hu F. Wang H. Wu X. Eltahan A.S. Stanford S. Bottini N. Xiao H. Bottini M. Guo W. Liang X.J. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano 2019 13 5 5036 5048 10.1021/acsnano.9b01710 30978282
    [Google Scholar]
  88. Tremble P.M. Lane T.F. Sage E.H. Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J. Cell Biol. 1993 121 6 1433 1444 10.1083/jcb.121.6.1433 8509459
    [Google Scholar]
  89. Sangaletti S. Tripodo C. Cappetti B. Casalini P. Chiodoni C. Piconese S. Santangelo A. Parenza M. Arioli I. Miotti S. Colombo M.P. SPARC oppositely regulates inflammation and fibrosis in bleomycin-induced lung damage. Am. J. Pathol. 2011 179 6 3000 3010 10.1016/j.ajpath.2011.08.027 22001347
    [Google Scholar]
  90. Yang X. Hu Z. Wu Q. Liu X. Liu Q. Zhang Y. Yang Q. Association of polymorphisms in SPARC and NLRP2 genes with rheumatoid arthritis in a Chinese Han population. Mod. Rheumatol. 2015 25 1 67 71 10.3109/14397595.2014.903595 24754275
    [Google Scholar]
  91. Korsunsky I. Wei K. Pohin M. Kim E.Y. Barone F. Major T. Taylor E. Ravindran R. Kemble S. Watts G.F.M. Jonsson A.H. Jeong Y. Athar H. Windell D. Kang J.B. Friedrich M. Turner J. Nayar S. Fisher B.A. Raza K. Marshall J.L. Croft A.P. Tamura T. Sholl L.M. Vivero M. Rosas I.O. Bowman S.J. Coles M. Frei A.P. Lassen K. Filer A. Powrie F. Buckley C.D. Brenner M.B. Raychaudhuri S. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med (N. Y.) 2022 3 7 481 518.e14 10.1016/j.medj.2022.05.002 35649411
    [Google Scholar]
  92. Ohshima S. Yamaguchi N. Nishioka K. Mima T. Ishii T. Umeshita-Sasai M. Kobayashi H. Shimizu M. Katada Y. Wakitani S. Murata N. Nomura S. Matsuno H. Katayama R. Kon S. Inobe M. Uede T. Kawase I. Saeki Y. Enhanced local production of osteopontin in rheumatoid joints. J. Rheumatol. 2002 29 10 2061 2067 12375312
    [Google Scholar]
  93. Bandopadhyay M. Bulbule A. Butti R. Chakraborty G. Ghorpade P. Ghosh P. Gorain M. Kale S. Kumar D. Kumar S. Totakura K.V.S. Roy G. Sharma P. Shetti D. Soundararajan G. Thorat D. Tomar D. Nalukurthi R. Raja R. Mishra R. Yadav A.S. Kundu G.C. Osteopontin as a therapeutic target for cancer. Expert Opin. Ther. Targets 2014 18 8 883 895 10.1517/14728222.2014.925447 24899149
    [Google Scholar]
  94. Kahles F. Findeisen H.M. Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 2014 3 4 384 393 10.1016/j.molmet.2014.03.004 24944898
    [Google Scholar]
  95. Lund S.A. Giachelli C.M. Scatena M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal. 2009 3 3-4 311 322 10.1007/s12079‑009‑0068‑0 19798593
    [Google Scholar]
  96. Chakraborty G. Jain S. Behera R. Ahmed M. Sharma P. Kumar V. Kundu G. The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis. Curr. Mol. Med. 2006 6 8 819 830 10.2174/156652406779010803 17168734
    [Google Scholar]
  97. Naldini A. Leali D. Pucci A. Morena E. Carraro F. Nico B. Ribatti D. Presta M. Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin-activated human monocytes. J. Immunol. 2006 177 7 4267 4270 10.4049/jimmunol.177.7.4267 16982859
    [Google Scholar]
  98. Ji H.I. Lee S.H. Song R. Yang H.I. Lee Y.A. Hong S.J. Kim S. Park Y.B. Lee S.K. Yoo M.C. Kim K.S. Serum level of osteopontin as an inflammatory marker does not indicate disease activity or responsiveness to therapeutic treatments in patients with rheumatoid arthritis. Clin. Rheumatol. 2014 33 3 397 402 10.1007/s10067‑013‑2375‑3 23995733
    [Google Scholar]
  99. Xie J.F. Wang J. Bai H.H. He J.J. Jia R.H. Wang X. Zhang W.Q. Zhao X.C. Zhang X.C. Liu G.Y. Li X.F. A decreased absolute number of T reg cells in patients with active rheumatoid arthritis is associated with elevated serum osteopontin levels with disease progression. Adv. Ther. 2022 39 7 3280 3291 10.1007/s12325‑022‑02171‑9 35604524
    [Google Scholar]
  100. Petrow P.K. Hummel K.M. Schedel J. Franz J.K. Klein C.L. Müller-Ladner U. Kriegsmann J. Chang P.L. Prince C.W. Gay R.E. Gay S. Expression of osteopontin messenger RNA and protein in rheumatoid arthritis: Effects of osteopontin on the release of collagenase 1 from articular chondrocytes and synovial fibroblasts. Arthritis Rheum. 2000 43 7 1597 1605 10.1002/1529‑0131(200007)43:7<1597::AID‑ANR25>3.0.CO;2‑0 10902765
    [Google Scholar]
  101. Yumoto K. Ishijima M. Rittling S.R. Tsuji K. Tsuchiya Y. Kon S. Nifuji A. Uede T. Denhardt D.T. Noda M. Osteopontin deficiency protects joints against destruction in anti-type II collagen antibody-induced arthritis in mice. Proc. Natl. Acad. Sci. USA 2002 99 7 4556 4561 10.1073/pnas.052523599 11930008
    [Google Scholar]
  102. Umemoto A. Kuwada T. Murata K. Shiokawa M. Ota S. Murotani Y. Itamoto A. Nishitani K. Yoshitomi H. Fujii T. Onishi A. Onizawa H. Murakami K. Tanaka M. Ito H. Seno H. Morinobu A. Matsuda S. Identification of anti-citrullinated osteopontin antibodies and increased inflammatory response by enhancement of osteopontin binding to fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 2023 25 1 25 10.1186/s13075‑023‑03007‑9 36804906
    [Google Scholar]
  103. Qian J. Xu L. Sun X. Wang Y. Xuan W. Zhang Q. Zhao P. Wu Q. Liu R. Che N. Wang F. Tan W. Zhang M. Adiponectin aggravates bone erosion by promoting osteopontin production in synovial tissue of rheumatoid arthritis. Arthritis Res. Ther. 2018 20 1 26 10.1186/s13075‑018‑1526‑y 29422077
    [Google Scholar]
  104. Du J. Zheng L. Chen S. Wang N. Pu X. Yu D. Yan H. Chen J. Wang D. Shen B. Li J. Pan S. NFIL3 and its immunoregulatory role in rheumatoid arthritis patients. Front. Immunol. 2022 13 950144 10.3389/fimmu.2022.950144 36439145
    [Google Scholar]
  105. Zhang H. Qiao W. Liu R. Shi Z. Sun J. Dong S. Development and validation of a novel biomarker panel for Crohn’s disease and rheumatoid arthritis diagnosis and treatment. Aging 2024 16 6 5224 5248 10.18632/aging.205644 38462694
    [Google Scholar]
  106. Carlson C.B. Lawler J. Mosher D.F. Structures of thrombospondins. Cell. Mol. Life Sci. 2008 65 5 672 686 10.1007/s00018‑007‑7484‑1 18193164
    [Google Scholar]
  107. Stenina-Adognravi O. Invoking the power of thrombospondins: Regulation of thrombospondins expression. Matrix Biol. 2014 37 69 82 10.1016/j.matbio.2014.02.001 24582666
    [Google Scholar]
  108. Lawler P.R. Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb. Perspect. Med. 2012 2 5 a006627 10.1101/cshperspect.a006627 22553494
    [Google Scholar]
  109. Martin-Manso G. Navarathna D.H.M.L.P. Galli S. Soto-Pantoja D.R. Kuznetsova S.A. Tsokos M. Roberts D.D. Endogenous thrombospondin-1 regulates leukocyte recruitment and activation and accelerates death from systemic candidiasis. PLoS One 2012 7 11 e48775 10.1371/journal.pone.0048775 23144964
    [Google Scholar]
  110. Miller T.W. Kaur S. Ivins-O’Keefe K. Roberts D.D. Thrombospondin-1 is a CD47-dependent endogenous inhibitor of hydrogen sulfide signaling in T cell activation. Matrix Biol. 2013 32 6 316 324 10.1016/j.matbio.2013.02.009 23499828
    [Google Scholar]
  111. Sweetwyne M.T. Murphy-Ullrich J.E. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol. 2012 31 3 178 186 10.1016/j.matbio.2012.01.006 22266026
    [Google Scholar]
  112. Gotis-Graham I. Hogg P.J. McNeil H.P. Significant correlation between thrombospondin 1 and serine proteinase expression in rheumatoid synovium. Arthritis Rheum. 1997 40 10 1780 1787 10.1002/art.1780401009 9336411
    [Google Scholar]
  113. Rico M.C. Manns J.M. Driban J.B. Uknis A.B. Kunapuli S.P. Dela Cadena R.A. Thrombospondin-1 and transforming growth factor beta are pro-inflammatory molecules in rheumatoid arthritis. Transl. Res. 2008 152 2 95 98 10.1016/j.trsl.2008.06.002 18674744
    [Google Scholar]
  114. Ohyama K. Kawakami A. Tamai M. Baba M. Kishikawa N. Kuroda N. Serum immune complex containing thrombospondin-1: A novel biomarker for early rheumatoid arthritis. Ann. Rheum. Dis. 2012 71 11 1916 1917 10.1136/annrheumdis‑2012‑201305 22679304
    [Google Scholar]
  115. Vallejo A.N. Mügge L.O. Klimiuk P.A. Weyand C.M. Goronzy J.J. Central role of thrombospondin-1 in the activation and clonal expansion of inflammatory T cells. J. Immunol. 2000 164 6 2947 2954 10.4049/jimmunol.164.6.2947 10706681
    [Google Scholar]
  116. Vallejo A.N. Yang H. Klimiuk P.A. Weyand C.M. Goronzy J.J. Synoviocyte-mediated expansion of inflammatory T cells in rheumatoid synovitis is dependent on CD47-thrombospondin 1 interaction. J. Immunol. 2003 171 4 1732 1740 10.4049/jimmunol.171.4.1732 12902472
    [Google Scholar]
  117. Rico M.C. Castaneda J.L. Manns J.M. Uknis A.B. Sainz I.M. Safadi F.F. Popoff S.N. DeLa Cadena R.A. Amelioration of inflammation, angiogenesis and CTGF expression in an arthritis model by a TSP1-derived peptide treatment. J. Cell. Physiol. 2007 211 2 504 512 10.1002/jcp.20958 17219411
    [Google Scholar]
  118. Suzuki T. Iwamoto N. Yamasaki S. Nishino A. Nakashima Y. Horai Y. Kawashiri S. Ichinose K. Arima K. Tamai M. Nakamura H. Origuchi T. Miyamoto C. Osaki M. Ohyama K. Kuroda N. Kawakami A. Upregulation of thrombospondin 1 expression in synovial tissues and plasma of rheumatoid arthritis: Role of transforming growth factor-β1 toward fibroblast-like synovial cells. J. Rheumatol. 2015 42 6 943 947 10.3899/jrheum.141292 25934826
    [Google Scholar]
  119. Zhang J. Li C. Zheng Y. Lin Z. Zhang Y. Zhang Z. Inhibition of angiogenesis by arsenic trioxide via TSP-1-TGF-β1-CTGF–VEGF functional module in rheumatoid arthritis. Oncotarget 2017 8 43 73529 73546 10.18632/oncotarget.19867 29088724
    [Google Scholar]
  120. Koch A.E. Szekanecz Z. Friedman J. Haines G.K. Langman C.B. Bouck N.P. Effects of thrombospondin-1 on disease course and angiogenesis in rat adjuvant-induced arthritis. Clin. Immunol. Immunopathol. 1998 86 2 199 208 10.1006/clin.1997.4480 9473383
    [Google Scholar]
  121. Jou I.M. Shiau A.L. Chen S.Y. Wang C.R. Shieh D.B. Tsai C.S. Wu C.L. Thrombospondin 1 as an effective gene therapeutic strategy in collagen-induced arthritis. Arthritis Rheum. 2005 52 1 339 344 10.1002/art.20746 15641039
    [Google Scholar]
  122. Shin K. Cha Y. Ban Y.H. Seo D.W. Choi E.K. Park D. Kang S.K. Ra J.C. Kim Y.B. Anti-osteoarthritis effect of a combination treatment with human adipose tissue-derived mesenchymal stem cells and thrombospondin 2 in rabbits. World J. Stem Cells 2019 11 12 1115 1129 10.4252/wjsc.v11.i12.1115 31875872
    [Google Scholar]
  123. Lange-Asschenfeldt B. Weninger W. Velasco P. Kyriakides T.R. von Andrian U.H. Bornstein P. Detmar M. Increased and prolonged inflammation and angiogenesis in delayed-type hypersensitivity reactions elicited in the skin of thrombospondin-2–deficient mice. Blood 2002 99 2 538 545 10.1182/blood.V99.2.538 11781236
    [Google Scholar]
  124. Park Y.W. Kang Y.M. Butterfield J. Detmar M. Goronzy J.J. Weyand C.M. Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am. J. Pathol. 2004 165 6 2087 2098 10.1016/S0002‑9440(10)63259‑2 15579451
    [Google Scholar]
  125. Hankenson K.D. Hormuzdi S.G. Meganck J.A. Bornstein P. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Mol. Cell. Biol. 2005 25 13 5599 5606 10.1128/MCB.25.13.5599‑5606.2005 15964815
    [Google Scholar]
  126. Schips T.G. Vanhoutte D. Vo A. Correll R.N. Brody M.J. Khalil H. Karch J. Tjondrokoesoemo A. Sargent M.A. Maillet M. Ross R.S. Molkentin J.D. Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nat. Commun. 2019 10 1 76 10.1038/s41467‑018‑08026‑8 30622267
    [Google Scholar]
  127. Stenina-Adognravi O. Plow E.F. Thrombospondin-4 in tissue remodeling. Matrix Biol. 2019 75-76 300 313 10.1016/j.matbio.2017.11.006 29138119
    [Google Scholar]
  128. Maly K. Andres Sastre E. Farrell E. Meurer A. Zaucke F. COMP and TSP-4: Functional roles in articular cartilage and relevance in osteoarthritis. Int. J. Mol. Sci. 2021 22 5 2242 10.3390/ijms22052242 33668140
    [Google Scholar]
  129. Lohmander L.S. Saxne T. Heinegård D.K. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann. Rheum. Dis. 1994 53 1 8 13 10.1136/ard.53.1.8 8311563
    [Google Scholar]
  130. Hedbom E. Antonsson P. Hjerpe A. Aeschlimann D. Paulsson M. Rosa-Pimentel E. Sommarin Y. Wendel M. Oldberg A. Heinegård D. Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J. Biol. Chem. 1992 267 9 6132 6136 10.1016/S0021‑9258(18)42671‑3 1556121
    [Google Scholar]
  131. Di Cesare P.E. Chen F.S. Moergelin M. Carlson C.S. Leslie M.P. Perris R. Fang C. Matrix–matrix interaction of cartilage oligomeric matrix protein and fibronectin. Matrix Biol. 2002 21 5 461 470 10.1016/S0945‑053X(02)00015‑X 12225811
    [Google Scholar]
  132. Thur J. Rosenberg K. Nitsche D.P. Pihlajamaa T. Ala-Kokko L. Heinegård D. Paulsson M. Maurer P. Mutations in cartilage oligomeric matrix protein causing pseudoachondroplasia and multiple epiphyseal dysplasia affect binding of calcium and collagen I, II, and IX. J. Biol. Chem. 2001 276 9 6083 6092 10.1074/jbc.M009512200 11084047
    [Google Scholar]
  133. Saghafi M. Khodashahi M. Saadati N. Azarian A. Rezaieyazdi Z. Salehi M. Sahebari M. Relationship between cartilage oligomeric matrix protein (COMP) and rheumatoid arthritis severity. Electron. Physician 2017 9 12 5940 5947 10.19082/5940 29560145
    [Google Scholar]
  134. Rydell E. Jacobsson L.T.H. Saxne T. Turesson C. Cardiovascular disease risk in early rheumatoid arthritis: The impact of cartilage oligomeric matrix protein (COMP) and disease activity. BMC Rheumatol. 2023 7 1 43 10.1186/s41927‑023‑00367‑2 38037148
    [Google Scholar]
  135. Ge C. Tong D. Lönnblom E. Liang B. Cai W. Fahlquist-Hagert C. Li T. Kastbom A. Gjertsson I. Dobritzsch D. Holmdahl R. Antibodies to cartilage oligomeric matrix protein are pathogenic in mice and may be clinically relevant in rheumatoid arthritis. Arthritis Rheumatol. 2022 74 6 961 971 10.1002/art.42072 35080151
    [Google Scholar]
  136. Zhao Y. Urbonaviciute V. Xu B. Cai W. Sener Z. Ge C. Holmdahl R. Cartilage oligomeric matrix protein induced arthritis—A new model for rheumatoid arthritis in the C57BL/6 mouse. Front. Immunol. 2021 12 631249 10.3389/fimmu.2021.631249 33708221
    [Google Scholar]
  137. Timpl R. Sasaki T. Kostka G. Chu M.L. Fibulins: A versatile family of extracellular matrix proteins. Nat. Rev. Mol. Cell Biol. 2003 4 6 479 489 10.1038/nrm1130 12778127
    [Google Scholar]
  138. Chapman S.L. Sicot F.X. Davis E.C. Huang J. Sasaki T. Chu M.L. Yanagisawa H. Fibulin-2 and fibulin-5 cooperatively function to form the internal elastic lamina and protect from vascular injury. Arterioscler. Thromb. Vasc. Biol. 2010 30 1 68 74 10.1161/ATVBAHA.109.196725 19893004
    [Google Scholar]
  139. Papke C.L. Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol. 2014 37 142 149 10.1016/j.matbio.2014.02.004 24613575
    [Google Scholar]
  140. Yanagisawa H. Davis E.C. Unraveling the mechanism of elastic fiber assembly: The roles of short fibulins. Int. J. Biochem. Cell Biol. 2010 42 7 1084 1093 10.1016/j.biocel.2010.03.009 20236620
    [Google Scholar]
  141. Kopec-Medrek M. Kucharz E.J. Fibulin-3 and other cartilage metabolism biomarkers in relationship to calprotectin (MRP8/14) and disease activity in rheumatoid arthritis patients treated with anti-TNF therapy. Adv. Clin. Exp. Med. 2018 27 3 383 389 10.17219/acem/68362 29533545
    [Google Scholar]
  142. Xiang Y. Sekine T. Nakamura H. Imajoh-Ohmi S. Fukuda H. Yudoh K. Masuko-Hongo K. Nishioka K. Kato T. Fibulin-4 is a target of autoimmunity predominantly in patients with osteoarthritis. J. Immunol. 2006 176 5 3196 3204 10.4049/jimmunol.176.5.3196 16493080
    [Google Scholar]
  143. Shangguan L. Ning G. Luo Z. Zhou Y. Fibulin-4 reduces extracellular matrix production and suppresses chondrocyte differentiation via DKK1- mediated canonical Wnt/β-catenin signaling. Int. J. Biol. Macromol. 2017 99 293 299 10.1016/j.ijbiomac.2017.02.087 28238906
    [Google Scholar]
  144. Bhattacharjee M. Balakrishnan L. Renuse S. Advani J. Goel R. Sathe G. Keshava Prasad T.S. Nair B. Jois R. Shankar S. Pandey A. Synovial fluid proteome in rheumatoid arthritis. Clin. Proteomics 2016 13 1 12 10.1186/s12014‑016‑9113‑1 27274716
    [Google Scholar]
  145. Chiquet-Ehrismann R. Tenascins. Int. J. Biochem. Cell Biol. 2004 36 6 986 990 10.1016/j.biocel.2003.12.002 15094113
    [Google Scholar]
  146. Giblin S.P. Midwood K.S. Tenascin-C: Form versus function. Cell Adhes. Migr. 2015 9 1-2 48 82 10.4161/19336918.2014.987587 25482829
    [Google Scholar]
  147. Imanaka-Yoshida K. Aoki H. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system. Front. Physiol. 2014 5 283 10.3389/fphys.2014.00283 25120494
    [Google Scholar]
  148. Hasegawa M. Yoshida T. Sudo A. Role of tenascin-C in articular cartilage. Mod. Rheumatol. 2018 28 2 215 220 10.1080/14397595.2017.1349560 28722504
    [Google Scholar]
  149. Nakoshi Y. Hasegawa M. Akeda K. Iino T. Sudo A. Yoshida T. Uchida A. Distribution and role of tenascin-C in human osteoarthritic cartilage. J. Orthop. Sci. 2010 15 5 666 673 10.1007/s00776‑010‑1513‑x 20953929
    [Google Scholar]
  150. Okamura N. Hasegawa M. Nakoshi Y. Iino T. Sudo A. Imanaka-Yoshida K. Yoshida T. Uchida A. Deficiency of tenascin-C delays articular cartilage repair in mice. Osteoarthritis Cartilage 2010 18 6 839 848 10.1016/j.joca.2009.08.013 19747998
    [Google Scholar]
  151. Han J.J. Wang X.Q. Zhang X.A. Functional interactions between lncRNAs/circRNAs and miRNAs: Insights into rheumatoid arthritis. Front. Immunol. 2022 13 810317 10.3389/fimmu.2022.810317 35197980
    [Google Scholar]
  152. Sadeghi M. Tavakol Afshari J. Fadaee A. Dashti M. Kheradmand F. Dehnavi S. Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025 11 2 e41983 10.1016/j.heliyon.2025.e41983 39897907
    [Google Scholar]
  153. Rodrigo-Muñoz J.M. Cañas J.A. Sastre B. Gil- Martínez M. García Latorre R. Sastre J. del Pozo V. Role of miR-185-5p as modulator of periostin synthesis and smooth muscle contraction in asthma. J. Cell. Physiol. 2022 237 2 1498 1508 10.1002/jcp.30620 34698372
    [Google Scholar]
  154. Ekman M. Bhattachariya A. Dahan D. Uvelius B. Albinsson S. Swärd K. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS One 2013 8 12 e82308 10.1371/journal.pone.0082308 24340017
    [Google Scholar]
  155. Schnell J.T. Briviesca R.L. Kim T. Charbonnier L.M. Henderson L.A. van Wijk F. Nigrovic P.A. The ‘Treg paradox’ in inflammatory arthritis. Nat. Rev. Rheumatol. 2025 21 1 9 21 10.1038/s41584‑024‑01190‑w 39653758
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673382498250919112316
Loading
/content/journals/cmc/10.2174/0109298673382498250919112316
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test