Skip to content
2000
image of Recent Advances in FLT3-Based Dual Inhibitors: A Promising Strategy for the Treatment of Acute Myeloid Leukemia

Abstract

Acute Myeloid Leukemia (AML) is a hematological malignancy known for its aggressive nature, resistance to therapies, and high relapse rates. Approximately one-third of AML cases involve mutations in the FLT3 gene, making it a pivotal target for treatment strategies. Early FLT3 inhibitors demonstrated efficacy initially, yet subsequent issues with drug resistance and disease recurrence underscored the multifaceted challenges of AML management. Immunotherapy and combination therapies are effective strategies to overcome resistance, but there are limitations, such as toxic side effects. In contrast, FLT3 dual-target inhibitors exhibit excellent anti-tumor effects, while being safer and more controllable. Several of these inhibitors have progressed to clinical trials, underscoring their potential in advancing therapeutic options for AML. This review explores the synergistic potential of targeting FLT3 kinase in conjunction with other anti-cancer mechanisms and provides an overview of recent advancements in FLT3 dual-target inhibitors over the past decade.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673382296250520095501
2025-06-03
2025-09-11
Loading full text...

Full text loading...

References

  1. Short N.J. Rytting M.E. Cortes J.E. Acute myeloid leukaemia. Lancet 2018 392 10147 593 606 10.1016/S0140‑6736(18)31041‑9 30078459
    [Google Scholar]
  2. Khwaja A. Bjorkholm M. Gale R.E. Levine R.L. Jordan C.T. Ehninger G. Bloomfield C.D. Estey E. Burnett A. Cornelissen J.J. Scheinberg D.A. Bouscary D. Linch D.C. Acute myeloid leukaemia. Nat. Rev. Dis. Primers 2016 2 1 16010 10.1038/nrdp.2016.10 27159408
    [Google Scholar]
  3. Kazi J.U. Rönnstrand L. FMS-like tyrosine kinase 3/FLT3: From basic science to clinical implications. Physiol. Rev. 2019 99 3 1433 1466 10.1152/physrev.00029.2018 31066629
    [Google Scholar]
  4. Yang J. Mo S. Wei X. Lv X. Fang B. Zhang Y. Zhou J. Zhou H. Fu Y. Lin Q. Liu D. Song Y. Wang Q. Zhou K. The diversity of FLT3-ITD and the prognostic impact in adult acute myeloid leukemia. Blood 2023 142 Suppl. 1 5756 5756 10.1182/blood‑2023‑178989
    [Google Scholar]
  5. Liang D-C. Shih L-Y. Hung I-J. Yang C-P. Chen S-H. Jaing T-H. Liu H-C. Wang L-Y. Chang W-H. FLT3-TKD mutation in childhood acute myeloid leukemia. Leukemia 2003 17 5 883 886 10.1038/sj.leu.2402928 12750701
    [Google Scholar]
  6. Alvarado Y. Kantarjian H.M. Ravandi F. Luthra R. Borthakur G. Manero G.G. Faderl S. Konopleva M. Estrov Z. Andreeff M. Cortes J.E. FLT3 inhibitor treatment in FLT3-mutated AML is associated with development of secondary FLT3-TKD mutations. Blood 2011 118 21 1493 1493 10.1182/blood.V118.21.1493.1493
    [Google Scholar]
  7. Macečková D. Vaňková L. Holubová M. Jindra P. Klieber R. Jandová E. Pitule P. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol. Biol. Rep. 2024 51 1 521 10.1007/s11033‑024‑09452‑2 38625438
    [Google Scholar]
  8. Wu M. Li C. Zhu X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018 11 1 133 10.1186/s13045‑018‑0675‑4 30514344
    [Google Scholar]
  9. Schmalbrock L.K. Dolnik A. Cocciardi S. Sträng E. Theis F. Jahn N. Panina E. Blätte T.J. Herzig J. Skambraks S. Rücker F.G. Gaidzik V.I. Paschka P. Fiedler W. Salih H.R. Wulf G. Schroeder T. Lübbert M. Schlenk R.F. Thol F. Heuser M. Larson R.A. Ganser A. Stunnenberg H.G. Minucci S. Stone R.M. Bloomfield C.D. Döhner H. Döhner K. Bullinger L. Clonal evolution of acute myeloid leukemia with FLT3 -ITD mutation under treatment with midostaurin. Blood 2021 137 22 3093 3104 10.1182/blood.2020007626 33598693
    [Google Scholar]
  10. Joshi S.K. Nechiporuk T. Bottomly D. Piehowski P.D. Reisz J.A. Pittsenbarger J. Kaempf A. Gosline S.J.C. Wang Y.T. Hansen J.R. Gritsenko M.A. Hutchinson C. Weitz K.K. Moon J. Cendali F. Fillmore T.L. Tsai C.F. Schepmoes A.A. Shi T. Arshad O.A. McDermott J.E. Babur O. Watanabe-Smith K. Demir E. D’Alessandro A. Liu T. Tognon C.E. Tyner J.W. McWeeney S.K. Rodland K.D. Druker B.J. Traer E. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 2021 39 7 999 1014.e8 10.1016/j.ccell.2021.06.003 34171263
    [Google Scholar]
  11. Smith C.C. Paguirigan A. Jeschke G.R. Lin K.C. Massi E. Tarver T. Chin C.S. Asthana S. Olshen A. Travers K.J. Wang S. Levis M.J. Perl A.E. Radich J.P. Shah N.P. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood 2017 130 1 48 58 10.1182/blood‑2016‑04‑711820 28490572
    [Google Scholar]
  12. Ruglioni M. Crucitta S. Luculli G.I. Tancredi G. Giudice D.M.L. Mechelli S. Galimberti S. Danesi R. Re D.M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit. Rev. Oncol. Hematol. 2024 201 104424 10.1016/j.critrevonc.2024.104424 38917943
    [Google Scholar]
  13. Eguchi M. Minami Y. Kuzume A. Chi S. Mechanisms underlying resistance to FLT3 inhibitors in acute myeloid leukemia. Biomedicines 2020 8 8 245 10.3390/biomedicines8080245 32722298
    [Google Scholar]
  14. Scholl S. Fleischmann M. Schnetzke U. Heidel F.H. Molecular mechanisms of resistance to FLT3 inhibitors in acute myeloid leukemia: Ongoing challenges and future treatments. Cells 2020 9 11 2493 10.3390/cells9112493 33212779
    [Google Scholar]
  15. Subklewe M. Bücklein V. Sallman D. Daver N. Novel immunotherapies in the treatment of AML: Is there hope? Hematology 2023 2023 1 691 701 10.1182/hematology.2023000455 38066884
    [Google Scholar]
  16. Zhang W. Gao C. Konopleva M. Chen Y. Jacamo R.O. Borthakur G. Cortes J.E. Ravandi F. Ramachandran A. Andreeff M. Reversal of acquired drug resistance in FLT3-mutated acute myeloid leukemia cells via distinct drug combination strategies. Clin. Cancer Res. 2014 20 9 2363 2374 10.1158/1078‑0432.CCR‑13‑2052 24619500
    [Google Scholar]
  17. Swaminathan M. Kantarjian H.M. Levis M. Guerra V. Borthakur G. Alvarado Y. DiNardo C.D. Kadia T. Garcia-Manero G. Ohanian M. Daver N. Konopleva M. Pemmaraju N. Ferrajoli A. Andreeff M. Jain N. Estrov Z. Jabbour E.J. Wierda W.G. Pierce S. Pinsoy M.R. Xiao L. Ravandi F. Cortes J.E. A phase I/II study of the combination of quizartinib with azacitidine or low- dose cytarabine for the treatment of patients with acute myeloid leukemia and myelodysplastic syndrome. Haematologica 2021 106 8 2121 2130 10.3324/haematol.2020.263392 33853292
    [Google Scholar]
  18. Lee J.K. Scarpa M. Chatterjee A. Ali M.M. Singh P. Kapoor S. Trotta R. Baer M.R. Pim kinase inhibitor enhances FLT3 inhibitor efficacy through GSK-3β activation and GSK-3β-mediated proteasomal degradation of c-Myc. Blood 2021 138 Suppl. 1 1163 1163 10.1182/blood‑2021‑151737
    [Google Scholar]
  19. Weisberg E. Liu Q. Nelson E. Kung A.L. Christie A.L. Bronson R. Sattler M. Sanda T. Zhao Z. Hur W. Mitsiades C. Smith R. Daley J.F. Stone R. Galinsky I. Griffin J.D. Gray N. Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: Synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors. Leukemia 2012 26 10 2233 2244 10.1038/leu.2012.96 22469781
    [Google Scholar]
  20. Smith A.M. Dun M.D. Lee E.M. Harrison C. Kahl R. Flanagan H. Panicker N. Mashkani B. Don A.S. Morris J. Toop H. Lock R.B. Powell J.A. Thomas D. Guthridge M.A. Moore A. Ashman L.K. Skelding K.A. Enjeti A. Verrills N.M. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors. Oncotarget 2016 7 30 47465 47478 10.18632/oncotarget.10167 27329844
    [Google Scholar]
  21. Agarwal A. MacKenzie R.J. Pippa R. Eide C.A. Oddo J. Tyner J.W. Sears R. Vitek M.P. Odero M.D. Christensen D.J. Druker B.J. Antagonism of SET using OP449 enhances the efficacy of tyrosine kinase inhibitors and overcomes drug resistance in myeloid leukemia. Clin. Cancer Res. 2014 20 8 2092 2103 10.1158/1078‑0432.CCR‑13‑2575 24436473
    [Google Scholar]
  22. Azhar M. Kincaid Z. Kesarwani M. Menke J. Schwieterman J. Ansari S. Reaves A. Ahmed A. Shehzad R. Khan A. Syed N. Amir N. Wunderlich M. Latif T. Seibel W. Azam M. Rational polypharmacological targeting of FLT3, JAK2, ABL, and ERK1 suppresses the adaptive resistance to FLT3 inhibitors in AML. Blood Adv. 2023 7 8 1460 1476 10.1182/bloodadvances.2022007486 36044389
    [Google Scholar]
  23. Yuan T. Qi B. Jiang Z. Dong W. Zhong L. Bai L. Tong R. Yu J. Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur. J. Med. Chem. 2019 178 468 483 10.1016/j.ejmech.2019.06.002 31207462
    [Google Scholar]
  24. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: Biology and therapeutic implications. J. Hematol. Oncol. 2011 4 1 13 10.1186/1756‑8722‑4‑13 21453545
    [Google Scholar]
  25. Chen W. Drakos E. Grammatikakis I. Schlette E.J. Li J. Leventaki V. Staikou-Drakopoulou E. Patsouris E. Panayiotidis P. Medeiros L.J. Rassidakis G.Z. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3- mutated acute myeloid leukemia cells. Mol. Cancer 2010 9 1 292 10.1186/1476‑4598‑9‑292 21067588
    [Google Scholar]
  26. Sidi S. Hagen A.T. Kennedy R. Imamura S. Kishi S. Kanki J. D’Andrea A. Look A.T. Modifier genetics in zebrafish identify CHK1 and an associated survival pathway as targets for pharmacotherapy of MDS/AML with P53 mutations. Blood 2006 108 11 1432 1432 10.1182/blood.V108.11.1432.1432
    [Google Scholar]
  27. Chang Y. Li X. Zhou Y. Yang X. Zhao W. Fang H. Hou X. Simultaneous inhibition of FLT3 and HDAC by novel 6-ethylpyrazine-2-Carboxamide derivatives provides therapeutic advantages in acute myelocytic leukemia. Eur. J. Med. Chem. 2024 279 116847 10.1016/j.ejmech.2024.116847 39265252
    [Google Scholar]
  28. Bennett J. Starczynowski D.T. IRAK1 and IRAK4 as emerging therapeutic targets in hematologic malignancies. Curr. Opin. Hematol. 2022 29 1 8 19 10.1097/MOH.0000000000000693 34743084
    [Google Scholar]
  29. Wium M. Paccez J.D. Zerbini L.F. The Dual role of TAM receptors in autoimmune diseases and cancer: An overview. Cells 2018 7 10 166 10.3390/cells7100166 30322068
    [Google Scholar]
  30. Prieto A.L. Lai C. The TAM subfamily of receptor tyrosine kinases: The early years. Int. J. Mol. Sci. 2024 25 6 3369 10.3390/ijms25063369 38542343
    [Google Scholar]
  31. Lee-Sherick A.B. Eisenman K.M. Sather S. DeRyckere D. Schlegel J. Graham D.K. Mer receptor tyrosine kinase is over-expressed in and contributes to oncogenesis in acute myeloid leukemia. Blood 2011 118 21 1390 1390 10.1182/blood.V118.21.1390.1390
    [Google Scholar]
  32. Lee-Sherick A.B. Menachof K. Eisenman K.M. McGranahan A. McGary C. Hunsucker S.A. Schlegel J. Armistead P.M. Liang X. Kireev D. Janzen W. Liu J. Stashko M. Norris-Drouin J. Earp H.S. III Wang X. Frye S. DeRyckere D. Graham D.K. Mer receptor tyrosine kinase is a potential therapeutic target in acute myeloid leukemia. Blood 2012 120 21 1317 1317 10.1182/blood.V120.21.1317.1317
    [Google Scholar]
  33. Lee-Sherick A.B. Zhang W. Menachof K.K. Hill A.A. Rinella S. Kirkpatrick G. Page L.S. Stashko M.A. Jordan C.T. Wei Q. Liu J. Zhang D. DeRyckere D. Wang X. Frye S. Earp H.S. Graham D.K. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia. Oncotarget 2015 6 9 6722 6736 10.18632/oncotarget.3156 25762638
    [Google Scholar]
  34. Zhang W. DeRyckere D. Hunter D. Liu J. Stashko M.A. Minson K.A. Cummings C.T. Lee M. Glaros T.G. Newton D.L. Sather S. Zhang D. Kireev D. Janzen W.P. Earp H.S. Graham D.K. Frye S.V. Wang X. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor. J. Med. Chem. 2014 57 16 7031 7041 10.1021/jm500749d 25068800
    [Google Scholar]
  35. Li Y. Ye X. Tan C. Hongo J.A. Zha J. Liu J. Kallop D. Ludlam M.J.C. Pei L. Axl as a potential therapeutic target in cancer: Role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009 28 39 3442 3455 10.1038/onc.2009.212 19633687
    [Google Scholar]
  36. Park I-K. Mundy-Bosse B. Whitman S.P. Zhang X. Warner S.L. Bearss D.J. Blum W. Marcucci G. Caligiuri M.A. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia 2015 29 12 2382 2389 10.1038/leu.2015.147 26172401
    [Google Scholar]
  37. Vandewalle N. Beule D.N. Becker D.A. Bruyne D.E. Menu E. Vanderkerken K. Breckpot K. Devoogdt N. Veirman D.K. AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: From current progress to novel strategies. Exp. Hematol. Oncol. 2024 13 1 99 10.1186/s40164‑024‑00566‑8 39367387
    [Google Scholar]
  38. Zhao J. Song Y. Liu D. Gilteritinib: A novel FLT3 inhibitor for acute myeloid leukemia. Biomark. Res. 2019 7 1 19 10.1186/s40364‑019‑0170‑2 31528345
    [Google Scholar]
  39. Mori M. Kaneko N. Ueno Y. Yamada M. Tanaka R. Saito R. Shimada I. Mori K. Kuromitsu S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs 2017 35 5 556 565 10.1007/s10637‑017‑0470‑z 28516360
    [Google Scholar]
  40. Dhillon S. Gilteritinib: First global approval. Drugs 2019 79 3 331 339 10.1007/s40265‑019‑1062‑3 30721452
    [Google Scholar]
  41. Geahlen R.L. Getting Syk: Spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 2014 35 8 414 422 10.1016/j.tips.2014.05.007 24975478
    [Google Scholar]
  42. Cremer A. Ellegast J.M. Pikman Y. Alexe G. Ross L. Goodale A. Piccioni F. Frank E.S. Oellerich T. Stegmaier K. Resistance mechanisms to SYK inhibition in AML. Blood 2018 132 Suppl. 1 2638 2638 10.1182/blood‑2018‑99‑114996
    [Google Scholar]
  43. Lam B. Arikawa Y. Cramlett J. Dong Q. Jong D.R. Feher V. Grimshaw C.E. Farrell P.J. Hoffman I.D. Jennings A. Jones B. Matuszkiewicz J. Miura J. Miyake H. Natala S.R. Shi L. Takahashi M. Taylor E. Wyrick C. Yano J. Zalevsky J. Nie Z. Discovery of TAK-659 an orally available investigational inhibitor of Spleen Tyrosine Kinase (SYK). Bioorg. Med. Chem. Lett. 2016 26 24 5947 5950 10.1016/j.bmcl.2016.10.087 27839918
    [Google Scholar]
  44. Hughes K. Evans K. Earley E.J. Smith C.M. Erickson S.W. Stearns T. Philip V.M. Neuhauser S.B. Chuang J.H. Jocoy E.L. Bult C.J. Teicher B.A. Smith M.A. Lock R.B. In vivo activity of the dual SYK/FLT3 inhibitor TAK-659 against pediatric acute lymphoblastic leukemia xenografts. Pediatr. Blood Cancer 2023 70 9 e30503 10.1002/pbc.30503 37339930
    [Google Scholar]
  45. Good L. Benner B. Carson W.E. Bruton’s tyrosine kinase: An emerging targeted therapy in myeloid cells within the tumor microenvironment. Cancer Immunol. Immunother. 2021 70 9 2439 2451 10.1007/s00262‑021‑02908‑5 33818636
    [Google Scholar]
  46. Singh P.S. Dammeijer F. Hendriks R.W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 2018 17 1 57 10.1186/s12943‑018‑0779‑z 29455639
    [Google Scholar]
  47. Pillinger G. Abdul-Aziz A. Zaitseva L. Lawes M. MacEwan D.J. Bowles K.M. Rushworth S.A. Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia. Sci. Rep. 2015 5 1 12949 10.1038/srep12949 26292723
    [Google Scholar]
  48. Zhang W. Yu G. Zhang H. Basyal M. Ly C. Yuan B. Ruvolo V. Piya S. Bhattacharya S. Zhang Q. Borthakur G. Battula V. Konopleva M. Rice W.G. Andreeff M. Concomitant targeting of FLT3 and BTK overcomes FLT3 inhibitor resistance in acute myeloid leukemia through the inhibition of autophagy. Haematologica 2022 108 6 1500 1514 10.3324/haematol.2022.280884 36226489
    [Google Scholar]
  49. Kim E. Zhang H. Sivina M. Vaca A. Thompson P.A. Jain N. Ferrajoli A. Estrov Z.E. Keating M.J. Wierda W.G. Rice W.G. Andreeff M. Burger J.A. CG-806, a first-in-class Pan-FLT3/Pan-BTK inhibitor, exhibits broad signaling inhibition in chronic lymphocytic leukemia cells. Blood 2019 134 Suppl. 1 3051 3051 10.1182/blood‑2019‑124473
    [Google Scholar]
  50. Ran F. Xie X. Wu Q. Wu H. Liu Y. Tao W. Sun Y. Wang R. Zhang Y. Ling Y. Development of novel hydrazidoarylaminopyrimidine-based BTK/FLT3 dual inhibitors with potent in vivo anti-hematological malignancies effects. Eur. J. Med. Chem. 2023 245 Pt 1 114913 10.1016/j.ejmech.2022.114913 36399923
    [Google Scholar]
  51. Hubbard S.R. Mechanistic insights into regulation of JAK2 tyrosine kinase. Front. Endocrinol. 2018 8 361 10.3389/fendo.2017.00361 29379470
    [Google Scholar]
  52. Ikezoe T. Kojima S. Furihata M. Yang J. Nishioka C. Takeuchi A. Isaka M. Koeffler H.P. Yokoyama A. Expression of p-JAK2 predicts clinical outcome and is a potential molecular target of acute myelogenous leukemia. Int. J. Cancer 2011 129 10 2512 2521 10.1002/ijc.25910 21207414
    [Google Scholar]
  53. Lamb Y.N. Pacritinib: First approval. Drugs 2022 82 7 831 838 10.1007/s40265‑022‑01718‑y 35567653
    [Google Scholar]
  54. Li Y. Wang P. Chen C. Ye T. Han Y. Hou Y. Liu Y. Gong P. Qin M. Zhao Y. Discovery and rational design of 2-aminopyrimidine-based derivatives targeting Janus kinase 2 (JAK2) and FMS-like tyrosine kinase 3 (FLT3). Bioorg. Chem. 2020 104 104361 10.1016/j.bioorg.2020.104361 33142418
    [Google Scholar]
  55. Xu S. Zhu Y. Meng J. Li C. Zhu Z. Wang C. Gu Y.C. Han L. Wen J. Tong M. Shi X. Hou Y. Liu Y. Zhao Y. 2-Aminopyrimidine derivatives as selective dual inhibitors of JAK2 and FLT3 for the treatment of acute myeloid leukemia. Bioorg. Chem. 2023 134 106442 10.1016/j.bioorg.2023.106442 36878064
    [Google Scholar]
  56. Craig A.W.B. FES/FER kinase signaling in hematopoietic cells and leukemias. Front. Biosci. 2012 17 1 861 875 10.2741/3961 22201778
    [Google Scholar]
  57. Voisset E. Lopez S. Chaix A. Georges C. Hanssens K. Prébet T. Dubreuil P. Sepulveda D.P. FES kinases are required for oncogenic FLT3 signaling. Leukemia 2010 24 4 721 728 10.1038/leu.2009.301 20111072
    [Google Scholar]
  58. Weir M.C. Hellwig S. Tan L. Liu Y. Gray N.S. Smithgall T.E. Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS One 2017 12 7 e0181178 10.1371/journal.pone.0181178 28727840
    [Google Scholar]
  59. Herbrich S.M. Kannan S. Nolo R.M. Hornbaker M. Chandra J. Zweidler-McKay P.A. Characterization of TRKA signaling in acute myeloid leukemia. Oncotarget 2018 9 53 30092 30105 10.18632/oncotarget.25723 30046390
    [Google Scholar]
  60. Demir I.E. Tieftrunk E. Schorn S. Friess H. Ceyhan G.O. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim. Biophys. Acta Rev. Cancer 2016 1866 1 37 50 10.1016/j.bbcan.2016.05.003 27264679
    [Google Scholar]
  61. Lebedev T.D. Vagapova E.R. Popenko V.I. Leonova O.G. Spirin P.V. Prassolov V.S. Two receptors, two isoforms, two cancers: Comprehensive analysis of kit and TrKA expression in neuroblastoma and acute myeloid leukemia. Front. Oncol. 2019 9 1046 10.3389/fonc.2019.01046 31681584
    [Google Scholar]
  62. Dokla E.M.E. Abdel-Aziz A.K. Milik S.N. McPhillie M.J. Minucci S. Abouzid K.A.M. Discovery of a benzimidazole-based dual FLT3/TrKA inhibitor targeting acute myeloid leukemia. Bioorg. Med. Chem. 2022 56 116596 10.1016/j.bmc.2021.116596 35033885
    [Google Scholar]
  63. Regua A.T. Najjar M. Lo H.W. RET signaling pathway and RET inhibitors in human cancer. Front. Oncol. 2022 12 932353 10.3389/fonc.2022.932353 35957881
    [Google Scholar]
  64. Gattei V. Degan M. Aldinucci D. Iuliis A.D. Rossi F.M. Mazzocco F.T. Rupolo M. Zagonel V. Pinto A. Differential expression of the RET gene in human acute myeloid leukemia. Ann. Hematol. 1998 77 5 207 210 10.1007/s002770050444 9858145
    [Google Scholar]
  65. Rudat S. Pfaus A. Cheng Y.Y. Holtmann J. Ellegast J.M. Bühler C. Marcantonio D.D. Martinez E. Göllner S. Wickenhauser C. Müller-Tidow C. Lutz C. Bullinger L. Milsom M.D. Sykes S.M. Fröhling S. Scholl C. RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia. Leukemia 2018 32 10 2189 2202 10.1038/s41375‑018‑0102‑4 29654265
    [Google Scholar]
  66. Choi Y.J. Park J. Choi H. Oh S.J. Park J.H. Park M. Kim J.W. Kim Y.G. Kim Y.C. Kim M.J. Kang K.W. PLM-101 is a novel and potent FLT3/RET inhibitor with less adverse effects in the treatment of acute myeloid leukemia. Biomed. Pharmacother. 2023 165 115066 10.1016/j.biopha.2023.115066 37392657
    [Google Scholar]
  67. Song M. Bode A.M. Dong Z. Lee M.H. AKT as a therapeutic target for cancer. Cancer Res. 2019 79 6 1019 1031 10.1158/0008‑5472.CAN‑18‑2738 30808672
    [Google Scholar]
  68. Shariati M. Meric-Bernstam F. Targeting AKT for cancer therapy. Expert Opin. Investig. Drugs 2019 28 11 977 988 10.1080/13543784.2019.1676726 31594388
    [Google Scholar]
  69. Nepstad I. Hatfield K.J. Grønningsæter I.S. Reikvam H. The PI3K-Akt-mTOR Signaling pathway in human acute myeloid leukemia (AML) cells. Int. J. Mol. Sci. 2020 21 8 2907 10.3390/ijms21082907 32326335
    [Google Scholar]
  70. Wang A. Wu H. Chen C. Hu C. Qi Z. Wang W. Yu K. Liu X. Zou F. Zhao Z. Wu J. Liu J. Liu F. Wang L. Stone R.M. Galinksy I.A. Griffin J.D. Zhang S. Weisberg E.L. Liu J. Liu Q. Dual inhibition of AKT/FLT3-ITD by A674563 overcomes FLT3 ligand-induced drug resistance in FLT3-ITD positive AML. Oncotarget 2016 7 20 29131 29142 10.18632/oncotarget.8675 27074558
    [Google Scholar]
  71. Vader G. Lens S.M.A. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta Rev. Cancer 2008 1786 1 60 72 10.1016/j.bbcan.2008.07.003 18662747
    [Google Scholar]
  72. D’Assoro A.B. Haddad T. Galanis E. Aurora-A Kinase as a promising therapeutic target in cancer. Front. Oncol. 2016 5 295 10.3389/fonc.2015.00295 26779440
    [Google Scholar]
  73. Hartsink-Segers S.A. Zwaan C.M. Exalto C. Luijendijk M.W.J. Calvert V.S. Petricoin E.F. Evans W.E. Reinhardt D. Haas D.V. Hedtjärn M. Hansen B.R. Koch T. Caron H.N. Pieters R. Boer D.M.L. The potential of aurora kinases a and b as therapeutic targets in pediatric acute leukemia. Blood 2012 120 21 1465 1465 10.1182/blood.V120.21.1465.1465
    [Google Scholar]
  74. Tariq M.U. Furqan M. Parveen H. Ullah R. Muddassar M. Saleem R.S.Z. Bavetsias V. Linardopoulos S. Faisal A. CCT245718, a dual FLT3/Aurora A inhibitor overcomes D835Y-mediated resistance to FLT3 inhibitors in acute myeloid leukaemia cells. Br. J. Cancer 2021 125 7 966 974 10.1038/s41416‑021‑01527‑2 34446858
    [Google Scholar]
  75. Hamilton E. Infante J.R. Targeting CDK4/6 in patients with cancer. Cancer Treat. Rev. 2016 45 129 138 10.1016/j.ctrv.2016.03.002 27017286
    [Google Scholar]
  76. Ziegler D.V. Parashar K. Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin. Cancer Biol. 2024 98 51 63 10.1016/j.semcancer.2023.12.002 38135020
    [Google Scholar]
  77. Zhang Y. Hsu C.P. Lu J.F. Kuchimanchi M. Sun Y.N. Ma J. Xu G. Zhang Y. Xu Y. Weidner M. Huard J. D’Argenio D.Z. FLT3 and CDK4/6 inhibitors: Signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia. J. Pharmacokinet. Pharmacodyn. 2014 41 6 675 691 10.1007/s10928‑014‑9393‑x 25326874
    [Google Scholar]
  78. Li C. Liu L. Liang L. Xia Z. Li Z. Wang X. McGee L.R. Newhall K. Sinclair A. Kamb A. Wickramasinghe D. Dai K. AMG 925 is a dual FLT3/CDK4 inhibitor with the potential to overcome FLT3 inhibitor resistance in acute myeloid leukemia. Mol. Cancer Ther. 2015 14 2 375 383 10.1158/1535‑7163.MCT‑14‑0388 25487917
    [Google Scholar]
  79. Li Z. Wang X. Eksterowicz J. Gribble M.W. Jr Alba G.Q. Ayres M. Carlson T.J. Chen A. Chen X. Cho R. Connors R.V. DeGraffenreid M. Deignan J.T. Duquette J. Fan P. Fisher B. Fu J. Huard J.N. Kaizerman J. Keegan K.S. Li C. Li K. Li Y. Liang L. Liu W. Lively S.E. Lo M.C. Ma J. McMinn D.L. Mihalic J.T. Modi K. Ngo R. Pattabiraman K. Piper D.E. Queva C. Ragains M.L. Suchomel J. Thibault S. Walker N. Wang X. Wang Z. Wanska M. Wehn P.M. Weidner M.F. Zhang A.J. Zhao X. Kamb A. Wickramasinghe D. Dai K. McGee L.R. Medina J.C. Discovery of AMG 925, a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3. J. Med. Chem. 2014 57 8 3430 3449 10.1021/jm500118j 24641103
    [Google Scholar]
  80. Zhang Y. Hunter T. Roles of Chk1 in cell biology and cancer therapy. Int. J. Cancer 2014 134 5 1013 1023 10.1002/ijc.28226 23613359
    [Google Scholar]
  81. Zhang Y. Yuan L. Fms-like tyrosine kinase 3-internal tandem duplications epigenetically activates checkpoint kinase 1 in acute myeloid leukemia cells. Sci. Rep. 2021 11 1 13236 10.1038/s41598‑021‑92566‑5 34168220
    [Google Scholar]
  82. Li X. Wang P. Wang C. Jin T. Xu R. Tong L. Hu X. Shen L. Li J. Zhou Y. Liu T. Discovery of 2-aminopyrimidine derivatives as potent dual FLT3/CHK1 inhibitors with significantly reduced herg inhibitory activities. J. Med. Chem. 2023 66 17 11792 11814 10.1021/acs.jmedchem.3c00245 37584545
    [Google Scholar]
  83. Jiang K. Li X. Wang C. Hu X. Wang P. Tong L. Tu Y. Chen B. Jin T. Wang T. Wang H. Han Y. Gui R. Yang J. Liu T. Li J. Zhou Y. Dual inhibition of CHK1/FLT3 enhances cytotoxicity and overcomes adaptive and acquired resistance in FLT3-ITD acute myeloid leukemia. Leukemia 2023 37 3 539 549 10.1038/s41375‑022‑01795‑8 36526736
    [Google Scholar]
  84. Ullah R. Yin Q. Snell A.H. Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin. Cancer Biol. 2022 85 123 154 10.1016/j.semcancer.2021.05.010 33992782
    [Google Scholar]
  85. Nishioka C. Ikezoe T. Yang J. Takeshita A. Taniguchi A. Komatsu N. Togitani K. Koeffler H.P. Yokoyama A. Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk. Res. 2008 32 6 865 872 10.1016/j.leukres.2007.09.017 17983653
    [Google Scholar]
  86. Goto M. Chow J. Muramoto K. Chiba K. Yamamoto S. Fujita M. Obaishi H. Tai K. Mizui Y. Tanaka I. Young D. Yang H. Wang Y.J. Shirota H. Gusovsky F. E6201 [(3S,4R,5Z,8S,9S,11E)-14-(ethylamino)-8, 9,16-trihydroxy-3,4-dimethyl-3,4,9,19-tetrahydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione], a novel kinase inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-1 and MEK kinase-1: in vitro characterization of its anti-inflammatory and antihyperproliferative activities. J. Pharmacol. Exp. Ther. 2009 331 2 485 495 10.1124/jpet.109.156554 19684251
    [Google Scholar]
  87. Zhang W. Borthakur G. Gao C. Chen Y. Mu H. Ruvolo V.R. Nomoto K. Zhao N. Konopleva M. Andreeff M. The dual MEK/FLT3 inhibitor E6201 exerts cytotoxic activity against acute myeloid leukemia cells harboring resistance-conferring FLT3 mutations. Cancer Res. 2016 76 6 1528 1537 10.1158/0008‑5472.CAN‑15‑1580 26822154
    [Google Scholar]
  88. Walhekar V. Bagul C. Kumar D. Muthal A. Achaiah G. Kulkarni R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim. Biophys. Acta Rev. Cancer 2022 1877 3 188725 10.1016/j.bbcan.2022.188725 35367531
    [Google Scholar]
  89. Fathi A.T. Swinnen I. Rajkhowa T. Small D. Marmsater F. Robinson J.E. Gross S.D. Martinson M. Allen S. Kallan N. Levis M. PIM: An integral component of FLT3 signaling and a potential therapeutic target in acute myeloid leukemia. Blood 2009 114 22 1735 1735 10.1182/blood.V114.22.1735.1735
    [Google Scholar]
  90. Czardybon W. Windak R. Gołas A. Gałęzowski M. Sabiniarz A. Dolata I. Salwińska M. Guzik P. Zawadzka M. Gabor-Worwa E. Winnik B. Żurawska M. Kolasińska E. Wincza E. Bugaj M. Danielewicz M. Majewska E. Mazan M. Dubin G. Noyszewska-Kania M. Jabłońska E. Szydłowski M. Sewastianik T. Puła B. Szumera-Ciećkiewicz A. Prochorec-Sobieszek M. Mądro E. Lech-Marańda E. Warzocha K. Tamburini J. Juszczyński P. Brzózka K. A novel, dual pan-PIM/FLT3 inhibitor SEL24 exhibits broad therapeutic potential in acute myeloid leukemia. Oncotarget 2018 9 24 16917 16931 10.18632/oncotarget.24747 29682194
    [Google Scholar]
  91. Herbert K.J. Ashton T.M. Prevo R. Pirovano G. Higgins G.S. T-LAK cell-originated protein kinase (TOPK): An emerging target for cancer-specific therapeutics. Cell Death Dis. 2018 9 11 1089 10.1038/s41419‑018‑1131‑7 30356039
    [Google Scholar]
  92. Alachkar H. Mutonga M. Malnassy G. Park J.H. Fulton N. Woods A. Meng L. Kline J. Raca G. Odenike O. Takamatsu N. Miyamoto T. Matsuo Y. Stock W. Nakamura Y. T-LAK cell-originated protein kinase presents a novel therapeutic target in FLT3 -ITD mutated acute myeloid leukemia. Oncotarget 2015 6 32 33410 33425 10.18632/oncotarget.5418 26450903
    [Google Scholar]
  93. Dayal N. Opoku-Temeng C. Hernandez D.E. Sooreshjani M.A. Carter-Cooper B.A. Lapidus R.G. Sintim H.O. Dual FLT3/TOPK inhibitor with activity against FLT3-ITD secondary mutations potently inhibits acute myeloid leukemia cell lines. Future Med. Chem. 2018 10 7 823 835 10.4155/fmc‑2017‑0298 29437468
    [Google Scholar]
  94. Smith M.A. Choudhary G.S. Pellagatti A. Choi K. Bolanos L.C. Bhagat T.D. Gordon-Mitchell S. Ahrens V.D. Pradhan K. Steeples V. Kim S. Steidl U. Walter M. Fraser I.D.C. Kulkarni A. Salomonis N. Komurov K. Boultwood J. Verma A. Starczynowski D.T. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 2019 21 5 640 650 10.1038/s41556‑019‑0314‑5 31011167
    [Google Scholar]
  95. Bennett J. Ishikawa C. Agarwal P. Yeung J. Sampson A. Uible E. Vick E. Bolanos L.C. Hueneman K. Wunderlich M. Kolt A. Choi K. Volk A. Greis K.D. Rosenbaum J. Hoyt S.B. Thomas C.J. Starczynowski D.T. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML. Blood 2023 142 11 989 1007 10.1182/blood.2022018718 37172199
    [Google Scholar]
  96. Tanaka Y. Takeda R. Fukushima T. Mikami K. Tsuchiya S. Tamura M. Adachi K. Umemoto T. Asada S. Watanabe N. Morishita S. Imai M. Nagata M. Araki M. Takizawa H. Fukuyama T. Lamagna C. Masuda E.S. Ito R. Goyama S. Komatsu N. Takaku T. Kitamura T. Eliminating chronic myeloid leukemia stem cells by IRAK1/4 inhibitors. Nat. Commun. 2022 13 1 271 10.1038/s41467‑021‑27928‑8 35022428
    [Google Scholar]
  97. Melgar K. Walker M.M. Jones L.M. Bolanos L.C. Hueneman K. Wunderlich M. Jiang J.K. Wilson K.M. Zhang X. Sutter P. Wang A. Xu X. Choi K. Tawa G. Lorimer D. Abendroth J. O’Brien E. Hoyt S.B. Berman E. Famulare C.A. Mulloy J.C. Levine R.L. Perentesis J.P. Thomas C.J. Starczynowski D.T. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci. Transl. Med. 2019 11 508 eaaw8828 10.1126/scitranslmed.aaw8828 31484791
    [Google Scholar]
  98. Jones L.M. Melgar K. Bolanos L. Hueneman K. Walker M.M. Jiang J.K. Wilson K.M. Zhang X. Shen J. Jiang F. Sutter P. Wang A. Xu X. Tawa G.J. Hoyt S.B. Wunderlich M. O’Brien E. Perentesis J.P. Starczynowski D.T. Thomas C.J. Targeting AML-associated FLT3 mutations with a type I kinase inhibitor. J. Clin. Invest. 2020 130 4 2017 2023 10.1172/JCI127907 32149729
    [Google Scholar]
  99. Valer J.A. Sánchez-de-Diego C. Pimenta-Lopes C. Rosa J.L. Ventura F. ACVR1 function in health and disease. Cells 2019 8 11 1366 10.3390/cells8111366 31683698
    [Google Scholar]
  100. Nagar G. Mittal P. Gupta S.R.R. Pahuja M. Sanger M. Mishra R. Singh A. Singh I.K. Multi-omics therapeutic perspective on ACVR1 gene: From genetic alterations to potential targeting. Brief. Funct. Genomics 2023 22 2 123 142 10.1093/bfgp/elac026 36003055
    [Google Scholar]
  101. Duminuco A. Chifotides H.T. Giallongo S. Giallongo C. Tibullo D. Palumbo G.A. ACVR1: A novel therapeutic target to treat anemia in myelofibrosis. Cancers 2023 16 1 154 10.3390/cancers16010154 38201581
    [Google Scholar]
  102. Tyagi A. Jaggupilli A. Ly S. Yuan B. El-Dana F. Hegde V.L. Anand V. Kumar B. Puppala M. Yin Z. Wong S.T.C. Mollard A. Vankayalapati H. Foulks J.M. Warner S.L. Daver N. Borthakur G. Battula V.L. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 2024 38 1 82 95 10.1038/s41375‑023‑02086‑6 38007585
    [Google Scholar]
  103. Wang P. Wang Z. Liu J. Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer 2020 19 1 5 10.1186/s12943‑019‑1127‑7 31910827
    [Google Scholar]
  104. Ho T.C.S. Chan A.H.Y. Ganesan A. Thirty years of HDAC inhibitors: 2020 insight and hindsight. J. Med. Chem. 2020 63 21 12460 12484 10.1021/acs.jmedchem.0c00830 32608981
    [Google Scholar]
  105. Wachholz V. Mustafa A.H.M. Zeyn Y. Henninger S.J. Beyer M. Dzulko M. Piée-Staffa A. Brachetti C. Haehnel P.S. Sellmer A. Mahboobi S. Kindler T. Brenner W. Nikolova T. Krämer O.H. Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Arch. Toxicol. 2022 96 1 177 193 10.1007/s00204‑021‑03174‑1 34665271
    [Google Scholar]
  106. Wang Z. Wu D. Zhao X. Liu C. Jia S. He Q. Huang F. Cheng Z. Lu T. Chen Y. Chen Y. Yang P. Lu S. Rational discovery of dual FLT3/HDAC inhibitors as a potential AML therapy. Eur. J. Med. Chem. 2023 260 115759 10.1016/j.ejmech.2023.115759 37659198
    [Google Scholar]
  107. Brouhard G.J. Rice L.M. Microtubule dynamics: An interplay of biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 2018 19 7 451 463 10.1038/s41580‑018‑0009‑y 29674711
    [Google Scholar]
  108. Dumontet C. Jordan M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010 9 10 790 803 10.1038/nrd3253 20885410
    [Google Scholar]
  109. Zhuang C. Zhang W. Sheng C. Zhang W. Xing C. Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017 117 12 7762 7810 10.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  110. Malik H.S. Bilal A. Ullah R. Iqbal M. Khan S. Ahmed I. Krohn K. Saleem R.S.Z. Hussain H. Faisal A. Natural and semisynthetic chalcones as dual FLT3 and microtubule polymerization inhibitors. J. Nat. Prod. 2020 83 10 3111 3121 10.1021/acs.jnatprod.0c00699 32975953
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673382296250520095501
Loading
/content/journals/cmc/10.2174/0109298673382296250520095501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test