Skip to content
2000
image of RTK AXL and its Isoforms: Regulation and Implications in Cancer

Abstract

As a member of the TAM family of receptor kinases, the AXL protein plays an essential role in biological processes that maintain tissue homeostasis. Deregulated AXL signalling in tumour cells is linked to cancer progression, poor prognosis, metastasis, and reduced sensitivity to anti-cancer therapies. The underlying mechanisms are the activation of downstream signalling routes that promote cell survival, invasion and epithelial-mesenchymal transition. Two major AXL isoforms are expressed in human and rodent cells due to alternative splicing. Despite extensive research on AXL in cancer, little is known regarding the functional differences between these isoforms and whether they contribute to cancer differently. This review paper first outlines the structural and functional aspects of TAM biology with a particular focus on AXL. Next, we discuss the different levels of AXL regulation in tumour cells, including proteolytic cleavage, which leads to the formation of both extracellular and nuclear forms of AXL. Finally, we review articles investigating the variations in the function of AXL isoforms and report their associations with cancer. Notably, the formation of isoform 1 is likely to determine the presence of soluble AXL, elevated levels of which have been correlated with cancer progression in several tumour types. The review identifies areas deserving further investigation, such as how changes in isoform expression impact levels of soluble AXL in cancer. Additionally, isoform-specific downstream signalling effects and their impact on metastasis and drug resistance warrant more in-depth investigation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673382005250828124053
2025-10-16
2026-02-21
Loading full text...

Full text loading...

References

  1. Ferlay J.E. Global cancer observatory: Cancer today. 2020 Available from: https://gco.iarc.fr/today
  2. Auyez A. Sayan A.E. Kriajevska M. Tulchinsky E. AXL receptor in cancer metastasis and drug resistance: When normal functions go askew. Cancers 2021 13 19 4864 10.3390/cancers13194864 34638349
    [Google Scholar]
  3. DeRyckere D. Huelse J.M. Earp H.S. Graham D.K. TAM family kinases as therapeutic targets at the interface of cancer and immunity. Nat. Rev. Clin. Oncol. 2023 20 11 755 779 10.1038/s41571‑023‑00813‑7 37667010
    [Google Scholar]
  4. Miao Y.R. Rankin E.B. Giaccia A.J. Therapeutic targeting of the functionally elusive TAM receptor family. Nat. Rev. Drug. Discov. 2024 23 3 201 217 10.1038/s41573‑023‑00846‑8 38092952
    [Google Scholar]
  5. Antony J. Huang R.Y.J. AXL-driven EMT state as a targetable conduit in cancer. Cancer Res. 2017 77 14 3725 3732 10.1158/0008‑5472.CAN‑17‑0392 28667075
    [Google Scholar]
  6. Linger R.M.A. Keating A.K. Earp H.S. Graham D.K. TAM receptor tyrosine kinases: Biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv. Cancer. Res. 2008 100 35 83 10.1016/S0065‑230X(08)00002‑X
    [Google Scholar]
  7. Leerberg D.M. Hopton R.E. Draper B.W. Fibroblast growth factor receptors function redundantly during zebrafish embryonic development. Genetics 2019 212 4 1301 1319 10.1534/genetics.119.302345 31175226
    [Google Scholar]
  8. Looman C. Sun T. Yu Y. Zieba A. Ahgren A. Feinstein R. Forsberg H. Hellberg C. Heldin C. H. Zhang X. Q. Forsberg-Nilsson K. Khoo N. Fundele R. Heuchel R. An activating mutation in the PDGF receptor-beta causes abnormal morphology in the mouse placenta. Int. J. Dev. Biol. 2007 51 5 361 370 10.1387/ijdb.072301cl
    [Google Scholar]
  9. Orr-Urtreger A. Bedford M.T. Do M.S. Eisenbach L. Lonai P. Developmental expression of the α receptor for platelet-derived growth factor, which is deleted in the embryonic lethal Patch mutation. Development 1992 115 1 289 303 10.1242/dev.115.1.289 1322271
    [Google Scholar]
  10. Lemke G. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 2013 5 11 a009076 10.1101/cshperspect.a009076 24186067
    [Google Scholar]
  11. Lu Q. Gore M. Zhang Q. Camenisch T. Boast S. Casagranda F. Lai C. Skinner M.K. Klein R. Matsushima G.K. Earp H.S. Goff S.P. Lemke G. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999 398 6729 723 728 10.1038/19554 10227296
    [Google Scholar]
  12. Lu Q. Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 2001 293 5528 306 311 10.1126/science.1061663 11452127
    [Google Scholar]
  13. Li Q. Lu Q. Lu H. Tian S. Lu Q. Systemic autoimmunity in TAM triple knockout mice causes inflammatory brain damage and cell death. PLoS One 2013 8 6 e64812 10.1371/journal.pone.0064812 23840307
    [Google Scholar]
  14. Davra V. Kimani S. Calianese D. Birge R. Ligand activation of TAM family receptors-implications for tumor biology and therapeutic response. Cancers 2016 8 12 107 10.3390/cancers8120107 27916840
    [Google Scholar]
  15. Hoppmann N. Graetz C. Paterka M. Poisa-Beiro L. Larochelle C. Hasan M. Lill C.M. Zipp F. Siffrin V. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain 2015 138 4 902 917 10.1093/brain/awu408 25665584
    [Google Scholar]
  16. Gadiyar V. Patel G. Davra V. Immunological role of TAM receptors in the cancer microenvironment. Int. Rev. Cell Mol. Biol. 2020 357 57 79 10.1016/bs.ircmb.2020.09.011 33234245
    [Google Scholar]
  17. Janssen J.W. Schulz A.S. Steenvoorden A.C. Schmidberger M. Strehl S. Ambros P.F. Bartram C.R. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 1991 6 11 2113 2120 1834974
    [Google Scholar]
  18. O’bryan J.P. Frye R.A. Cogswell P.C. Neubauer A. Kitch B. Prokop C. Espinosa R. III Le Beau M.M. Earp H.S. Liu E.T. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell. Biol. 1991 11 10 5016 5031 10.1128/mcb.11.10.5016‑5031.1991 1656220
    [Google Scholar]
  19. Flint E. Triantafyllou E. Bernsmeier C. TAM receptors in the pathophysiology of liver disease. Livers 2022 2 1 15 29 10.3390/livers2010002
    [Google Scholar]
  20. Dagamajalu S. Rex D.A.B. Palollathil A. Shetty R. Bhat G. Cheung L.W.T. Prasad T.S.K. A pathway map of AXL receptor-mediated signaling network. J. Cell Commun. Signal. 2021 15 1 143 148 10.1007/s12079‑020‑00580‑5 32829427
    [Google Scholar]
  21. Poświata A. Kozik K. Miączyńska M. Zdżalik-Bielecka D. Endocytic trafficking of GAS6–AXL complexes is associated with sustained AKT activation. Cell. Mol. Life Sci. 2022 79 6 316 10.1007/s00018‑022‑04312‑3 35622156
    [Google Scholar]
  22. DiScipio R.G. Davie E.W. Characterization of protein S, a. gamma.-carboxyglutamic acid containing protein from bovine and human plasma. Biochemistry 1979 18 5 899 904 10.1021/bi00572a026 420821
    [Google Scholar]
  23. Stafford D.W. The vitamin K cycle. J. Thromb. Haemost. 2005 3 8 1873 1878 10.1111/j.1538‑7836.2005.01419.x 16102054
    [Google Scholar]
  24. Tsou W.I. Nguyen K.Q.N. Calarese D.A. Garforth S.J. Antes A.L. Smirnov S.V. Almo S.C. Birge R.B. Kotenko S.V. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 2014 289 37 25750 25763 10.1074/jbc.M114.569020 25074926
    [Google Scholar]
  25. Lemmon M.A. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010 141 7 1117 1134 10.1016/j.cell.2010.06.011 20602996
    [Google Scholar]
  26. Lemke G. Phosphatidylserine is the signal for TAM receptors and their ligands. Trends Biochem. Sci. 2017 42 9 738 748 10.1016/j.tibs.2017.06.004 28734578
    [Google Scholar]
  27. Lemke G. Burstyn-Cohen T. TAM receptors and the clearance of apoptotic cells. Ann. N. Y. Acad. Sci. 2010 1209 1 23 29 10.1111/j.1749‑6632.2010.05744.x 20958312
    [Google Scholar]
  28. Ghosh Roy S. TAM receptors: A phosphatidylserine receptor family and its implications in viral infections. Int. Rev. Cell. Mol. Biol. 2020 357 81 122 10.1016/bs.ircmb.2020.09.003 33234246
    [Google Scholar]
  29. Holstein E. Binder M. Mikulits W. Dynamics of Axl receptor shedding in hepatocellular carcinoma and its implication for theranostics. Int. J. Mol. Sci. 2018 19 12 4111 10.3390/ijms19124111 30567378
    [Google Scholar]
  30. Myers K.V. Amend S.R. Pienta K.J. Targeting Tyro3, Axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol. Cancer 2019 18 1 94 10.1186/s12943‑019‑1022‑2 31088471
    [Google Scholar]
  31. Lemke G. Rothlin C.V. Immunobiology of the TAM receptors. Nat. Rev. Immunol. 2008 8 5 327 336 10.1038/nri2303 18421305
    [Google Scholar]
  32. Tanaka M. Siemann D.W. Therapeutic targeting of the Gas6/Axl signaling pathway in cancer. Int. J. Mol. Sci. 2021 22 18 9953 10.3390/ijms22189953 34576116
    [Google Scholar]
  33. Varnum B.C. Young C. Elliott G. Garcia A. Bartley T.D. Fridell Y.W. Hunt R.W. Trail G. Clogston C. Toso R.J. Yanagihara D. Bennett L. Sylber M. Merewether L.A. Tseng A. Escobar E. Liu E.T. Yamane H.K. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 1995 373 6515 623 626 10.1038/373623a0 7854420
    [Google Scholar]
  34. Fernández-Fernández L. Bellido-Martín L. García de Frutos P. Growth arrest-specific gene 6 (GAS6). Thromb. Haemost. 2008 100 10 604 610 10.1160/TH08‑04‑0253 18841281
    [Google Scholar]
  35. Li M. Ye J. Zhao G. Hong G. Hu X. Cao K. Wu Y. Lu Z. Gas6 attenuates lipopolysaccharide-induced TNF-α expression and apoptosis in H9C2 cells through NF-κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Int. J. Mol. Med. 2019 44 3 982 994 10.3892/ijmm.2019.4275 31524235
    [Google Scholar]
  36. Zhang Y. Li N. Chen Q. Yan K. Liu Z. Zhang X. Liu P. Chen Y. Han D. Breakdown of immune homeostasis in the testis of mice lacking Tyro3, Axl and Mer receptor tyrosine kinases. Immunol. Cell Biol. 2013 91 6 416 426 10.1038/icb.2013.22 23689306
    [Google Scholar]
  37. Rothlin C.V. Ghosh S. Zuniga E.I. Oldstone M.B.A. Lemke G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 2007 131 6 1124 1136 10.1016/j.cell.2007.10.034 18083102
    [Google Scholar]
  38. Sharif M. N. Šošić D. Rothlin C. V. Kelly E. Lemke G. Olson E. N. Ivashkiv L. B. Twist mediates suppression of inflammation by type I IFNs and Axl. J. Exp. Med. 2024 203 8 1891 901 10.1084/jem.20051725
    [Google Scholar]
  39. Burstyn-Cohen T. Maimon A. TAM receptors, phosphatidylserine, inflammation, and Cancer. Cell. Commun. Signal. 2019 17 1 156 10.1186/s12964‑019‑0461‑0 31775787
    [Google Scholar]
  40. Cohen P.L. Shao W.H. Gas6/TAM receptors in systemic lupus erythematosus. Dis. Markers 2019 2019 1 9 10.1155/2019/7838195 31360267
    [Google Scholar]
  41. Rizzi M. Tonello S. D’Onghia D. Sainaghi P.P. Gas6/TAM axis involvement in modulating inflammation and fibrosis in COVID-19 patients. Int. J. Mol. Sci. 2023 24 2 951 10.3390/ijms24020951 36674471
    [Google Scholar]
  42. Bellan M. Pirisi M. Sainaghi P. The Gas6/TAM system and multiple sclerosis. Int. J. Mol. Sci. 2016 17 11 1807 10.3390/ijms17111807 27801848
    [Google Scholar]
  43. Lai C. Lemke G. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 2024 6 5 691 704 10.1016/0896‑6273(91)90167‑X
    [Google Scholar]
  44. Sainaghi P.P. Collimedaglia L. Alciato F. Molinari R. Sola D. Ranza E. Naldi P. Monaco F. Leone M. Pirisi M. Avanzi G.C. Growth arrest specific gene 6 protein concentration in cerebrospinal fluid correlates with relapse severity in multiple sclerosis. Mediators Inflamm. 2013 2013 1 7 10.1155/2013/406483 23781120
    [Google Scholar]
  45. Tutusaus A. Marí M. Ortiz-Pérez J.T. Nicolaes G.A.F. Morales A. García de Frutos P. Role of vitamin K-dependent factors protein S and GAS6 and TAM receptors in SARS-CoV-2 infection and COVID-19-associated immunothrombosis. Cells 2020 9 10 2186 10.3390/cells9102186 32998369
    [Google Scholar]
  46. Wang S. Qiu Z. Hou Y. Deng X. Xu W. Zheng T. Wu P. Xie S. Bian W. Zhang C. Sun Z. Liu K. Shan C. Lin A. Jiang S. Xie Y. Zhou Q. Lu L. Huang J. Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021 31 2 126 140 10.1038/s41422‑020‑00460‑y 33420426
    [Google Scholar]
  47. Stenhoff J. Dahlbäck B. Hafizi S. Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochem. Biophys. Res. Commun. 2004 319 3 871 878 10.1016/j.bbrc.2004.05.070 15184064
    [Google Scholar]
  48. Zhu C. Wei Y. Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019 18 1 153 10.1186/s12943‑019‑1090‑3 31684958
    [Google Scholar]
  49. Fridell Y.W.C. Jin Y. Quilliam L.A. Burchert A. McCloskey P. Spizz G. Varnum B. Der C. Liu E.T. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase. Mol. Cell. Biol. 1996 16 1 135 145 10.1128/MCB.16.1.135 8524290
    [Google Scholar]
  50. Seiler C. Stainthorp A.K. Ketchen S. Jones C.M. Marks K. Quirke P. Ladbury J.E. The Grb2 splice variant, Grb3-3, is a negative regulator of RAS activation. Commun. Biol. 2022 5 1 1029 10.1038/s42003‑022‑03985‑7 36171279
    [Google Scholar]
  51. Chen Y.L. Tsai Y.T. Chao T.T. Wu Y.N. Chen M.C. Lin Y.H. Liao C.H. Chou S.S.P. Chiang H.S. DAPK and CIP2A are involved in GAS6/AXL-mediated Schwann cell proliferation in a rat model of bilateral cavernous nerve injury. Oncotarget 2018 9 5 6402 6415 10.18632/oncotarget.23978 29464081
    [Google Scholar]
  52. Li Y. Wang X. Bi S. Zhao K. Yu C. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochem. Biophys. Res. Commun. 2015 457 3 461 466 10.1016/j.bbrc.2015.01.017 25596315
    [Google Scholar]
  53. Yanagita M. Ishii K. Ozaki H. Arai H. Nakano T. Ohashi K. Mizuno K. Kita T. Doi T. Mechanism of inhibitory effect of warfarin on mesangial cell proliferation. J. Am. Soc. Nephrol. 1999 10 12 2503 2509 10.1681/ASN.V10122503 10589688
    [Google Scholar]
  54. Zhao Y. Xu D. Zhu G. Zhu M. Tang K. Li W. Xu Y. Growth arrest–specific 6 exacerbates pressure overload–induced cardiac hypertrophy. Hypertension 2016 67 1 118 129 10.1161/HYPERTENSIONAHA.115.06254 26573712
    [Google Scholar]
  55. Axelrod H. Pienta K.J. Axl as a mediator of cellular growth and survival. Oncotarget. 2014 5 19 8818 8852 10.18632/oncotarget.2422 25344858
    [Google Scholar]
  56. Goruppi S. Ruaro E. Varnum B. Schneider C. Gas6- mediated survival in NIH3T3 cells activates stress signalling cascade and is independent of Ras. Oncogene 1999 18 29 4224 4236 10.1038/sj.onc.1202788 10435635
    [Google Scholar]
  57. Graham D.K. DeRyckere D. Davies K.D. Earp H.S. The TAM family: Phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 2014 14 12 769 785 10.1038/nrc3847 25568918
    [Google Scholar]
  58. Hasanbasic I. Cuerquis J. Varnum B. Blostein M.D. Intracellular signaling pathways involved in Gas6-Axl-mediated survival of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2004 287 3 H1207 H1213 10.1152/ajpheart.00020.2004 15130893
    [Google Scholar]
  59. Fridell Y.W.C. Villa J. Jr Attar E.C. Liu E.T. GAS6 induces Axl-mediated chemotaxis of vascular smooth muscle cells. J. Biol. Chem. 1998 273 12 7123 7126 10.1074/jbc.273.12.7123 9507025
    [Google Scholar]
  60. McCloskey P. Fridell Y.W. Attar E. Villa J. Jin Y. Varnum B. Liu E.T. GAS6 mediates adhesion of cells expressing the receptor tyrosine kinase Axl. J. Biol. Chem. 1997 272 37 23285 23291 10.1074/jbc.272.37.23285 9287338
    [Google Scholar]
  61. Wimmel A. Glitz D. Kraus A. Roeder J. Schuermann M. Axl receptor tyrosine kinase expression in human lung cancer cell lines correlates with cellular adhesion. Eur. J. Cancer. 2024 37 17 2264 2274 10.1016/S0959‑8049(01)00271‑4
    [Google Scholar]
  62. Hafizi S. Dahlbäck B. Gas6 and protein S. FEBS. J. 2006 273 23 5231 5244 10.1111/j.1742‑4658.2006.05529.x 17064312
    [Google Scholar]
  63. Allen M.P. Linseman D.A. Udo H. Xu M. Schaack J.B. Varnum B. Kandel E.R. Heidenreich K.A. Wierman M.E. Novel mechanism for gonadotropin-releasing hormone neuronal migration involving Gas6/Ark signaling to p38 mitogen-activated protein kinase. Mol. Cell. Biol. 2002 22 2 599 613 10.1128/MCB.22.2.599‑613.2002 11756555
    [Google Scholar]
  64. Abu-Thuraia A. Goyette M.A. Boulais J. Delliaux C. Apcher C. Schott C. Chidiac R. Bagci H. Thibault M.P. Davidson D. Ferron M. Veillette A. Daly R.J. Gingras A.C. Gratton J.P. Côté J.F. AXL confers cell migration and invasion by hijacking a PEAK1-regulated focal adhesion protein network. Nat. Commun. 2020 11 1 3586 10.1038/s41467‑020‑17415‑x 32681075
    [Google Scholar]
  65. Zajac O. Leclere R. Nicolas A. Meseure D. Marchiò C. Vincent-Salomon A. Roman-Roman S. Schoumacher M. Dubois T. AXL controls directed migration of mesenchymal triple-negative breast cancer cells. Cells 2020 9 1 247 10.3390/cells9010247 31963783
    [Google Scholar]
  66. Engelsen A.S.T. Lotsberg M.L. Abou Khouzam R. Thiery J.P. Lorens J.B. Chouaib S. Terry S. Dissecting the role of AXL in cancer immune escape and resistance to immune checkpoint inhibition. Front. Immunol. 2022 13 869676 10.3389/fimmu.2022.869676 35572601
    [Google Scholar]
  67. Seitz H.M. Camenisch T.D. Lemke G. Earp H.S. Matsushima G.K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 2007 178 9 5635 5642 10.4049/jimmunol.178.9.5635 17442946
    [Google Scholar]
  68. Vouri M. Croucher D.R. Kennedy S.P. An Q. Pilkington G.J. Hafizi S. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis 2016 5 10 e266 e266 10.1038/oncsis.2016.66 27775700
    [Google Scholar]
  69. Tang Y. Zang H. Wen Q. Fan S. AXL in cancer: A modulator of drug resistance and therapeutic target. J. Exp. Clin. Cancer Res. 2023 42 1 148 10.1186/s13046‑023‑02726‑w 37328828
    [Google Scholar]
  70. Goyette M.A. Duhamel S. Aubert L. Pelletier A. Savage P. Thibault M.P. Johnson R.M. Carmeliet P. Basik M. Gaboury L. Muller W.J. Park M. Roux P.P. Gratton J.P. Côté J.F. The receptor tyrosine kinase AXL is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep. 2018 23 5 1476 1490 10.1016/j.celrep.2018.04.019 29719259
    [Google Scholar]
  71. Liu E. Hjelle B. Bishop J.M. Transforming genes in chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA 1988 85 6 1952 1956 10.1073/pnas.85.6.1952 3279421
    [Google Scholar]
  72. Han J. Tian R. Yong B. Luo C. Tan P. Shen J. Peng T. Gas6/Axl mediates tumor cell apoptosis, migration and invasion and predicts the clinical outcome of osteosarcoma patients. Biochem. Biophys. Res. Commun. 2013 435 3 493 500 10.1016/j.bbrc.2013.05.019 23684620
    [Google Scholar]
  73. Shinh Y-S. Lai C.Y. Kao Y.R. Shiah S.G. Chu Y.W. Lee H.S. Wu C.W. Expression of AXL in lung adenocarcinoma and correlation with tumor progression. Neoplasia 2005 7 12 1058 1064 10.1593/neo.05640 16354588
    [Google Scholar]
  74. Rankin E.B. Fuh K.C. Taylor T.E. Krieg A.J. Musser M. Yuan J. Wei K. Kuo C.J. Longacre T.A. Giaccia A.J. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res. 2010 70 19 7570 7579 10.1158/0008‑5472.CAN‑10‑1267 20858715
    [Google Scholar]
  75. de Bruijn I. Kundra R. Mastrogiacomo B. Tran T.N. Sikina L. Mazor T. Li X. Ochoa A. Zhao G. Lai B. Abeshouse A. Baiceanu D. Ciftci E. Dogrusoz U. Dufilie A. Erkoc Z. Garcia Lara E. Fu Z. Gross B. Haynes C. Heath A. Higgins D. Jagannathan P. Kalletla K. Kumari P. Lindsay J. Lisman A. Leenknegt B. Lukasse P. Madela D. Madupuri R. van Nierop P. Plantalech O. Quach J. Resnick A.C. Rodenburg S.Y.A. Satravada B.A. Schaeffer F. Sheridan R. Singh J. Sirohi R. Sumer S.O. van Hagen S. Wang A. Wilson M. Zhang H. Zhu K. Rusk N. Brown S. Lavery J.A. Panageas K.S. Rudolph J.E. LeNoue-Newton M.L. Warner J.L. Guo X. Hunter-Zinck H. Yu T.V. Pilai S. Nichols C. Gardos S.M. Philip J. Kehl K.L. Riely G.J. Schrag D. Lee J. Fiandalo M.V. Sweeney S.M. Pugh T.J. Sander C. Cerami E. Gao J. Schultz N. Analysis and visualization of longitudinal genomic and clinical data from the AACR project GENIE biopharma collaborative in cBioPortal. Cancer Res. 2023 83 23 3861 3867 10.1158/0008‑5472.CAN‑23‑0816 37668528
    [Google Scholar]
  76. Cerami E. Gao J. Dogrusoz U. Gross B.E. Sumer S.O. Aksoy B.A. Jacobsen A. Byrne C.J. Heuer M.L. Larsson E. Antipin Y. Reva B. Goldberg A.P. Sander C. Schultz N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 2 5 401 404 10.1158/2159‑8290.CD‑12‑0095 22588877
    [Google Scholar]
  77. Gao J. Aksoy B.A. Dogrusoz U. Dresdner G. Gross B. Sumer S.O. Sun Y. Jacobsen A. Sinha R. Larsson E. Cerami E. Sander C. Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013 6 269 pl1 10.1126/scisignal.2004088 23550210
    [Google Scholar]
  78. Goyette M.A. Côté J.F. AXL receptor tyrosine kinase as a promising therapeutic target directing multiple aspects of cancer progression and metastasis. Cancers 2022 14 3 466 10.3390/cancers14030466 35158733
    [Google Scholar]
  79. Asiedu M.K. Beauchamp-Perez F.D. Ingle J.N. Behrens M.D. Radisky D.C. Knutson K.L. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 2014 33 10 1316 1324 10.1038/onc.2013.57 23474758
    [Google Scholar]
  80. Holland S.J. Pan A. Franci C. Hu Y. Chang B. Li W. Duan M. Torneros A. Yu J. Heckrodt T.J. Zhang J. Ding P. Apatira A. Chua J. Brandt R. Pine P. Goff D. Singh R. Payan D.G. Hitoshi Y. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010 70 4 1544 1554 10.1158/0008‑5472.CAN‑09‑2997 20145120
    [Google Scholar]
  81. Genest M. Comunale F. Planchon D. Govindin P. Noly D. Vacher S. Bièche I. Robert B. Malhotra H. Schoenit A. Tashireva L.A. Casas J. Gauthier-Rouvière C. Bodin S. Upregulated flotillins and sphingosine kinase 2 derail AXL vesicular traffic to promote epithelial-mesenchymal transition. J. Cell Sci. 2022 135 7 jcs259178 10.1242/jcs.259178 35394045
    [Google Scholar]
  82. Wilson C. Ye X. Pham T. Lin E. Chan S. McNamara E. Neve R.M. Belmont L. Koeppen H. Yauch R.L. Ashkenazi A. Settleman J. AXL inhibition sensitizes mesenchymal cancer cells to antimitotic drugs. Cancer Res. 2014 74 20 5878 5890 10.1158/0008‑5472.CAN‑14‑1009 25125659
    [Google Scholar]
  83. Tan T.Z. Rouanne M. Tan K.T. Huang R.Y.J. Thiery J.P. Molecular subtypes of urothelial bladder cancer: Results from a meta-cohort analysis of 2411 tumors. Eur. Urol. 2019 75 3 423 432 10.1016/j.eururo.2018.08.027 30213523
    [Google Scholar]
  84. Antony J. Thiery J.P. Huang R.Y.J. Epithelial-to-mesenchymal transition: Lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys. Biol. 2019 16 4 041004 10.1088/1478‑3975/ab157a 30939460
    [Google Scholar]
  85. Zhang G. Kong X. Wang M. Zhao H. Han S. Hu R. Huang J. Cui W. AXL is a marker for epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Oncol. Lett. 2017 15 2 1900 1906 10.3892/ol.2017.7443 29434888
    [Google Scholar]
  86. Thiery J.P. Acloque H. Huang R.Y.J. Nieto M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009 139 5 871 890 10.1016/j.cell.2009.11.007 19945376
    [Google Scholar]
  87. Vuoriluoto K. Haugen H. Kiviluoto S. Mpindi J-P. Nevo J. Gjerdrum C. Tiron C. Lorens J.B. Ivaska J. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2011 30 12 1436 1448 10.1038/onc.2010.509 21057535
    [Google Scholar]
  88. Terragno M. Vetrova A. Semenov O. Sayan A.E. Kriajevska M. Tulchinsky E. Mesenchymal–epithelial transition and AXL inhibitor TP-0903 sensitise triple-negative breast cancer cells to the antimalarial compound, artesunate. Sci. Rep. 2024 14 1 425 10.1038/s41598‑023‑50710‑3 38172210
    [Google Scholar]
  89. Brabletz S. Schuhwerk H. Brabletz T. Stemmler M.P. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021 40 18 e108647 10.15252/embj.2021108647 34459003
    [Google Scholar]
  90. Quintás-Cardama A. Cortes J.E. Kantarjian H.M. Early cytogenetic and molecular response during first-line treatment of chronic myeloid leukemia in chronic phase. Cancer 2011 117 23 5261 5270 10.1002/cncr.26196 21598241
    [Google Scholar]
  91. Cichoń M.A. Szentpetery Z. Caley M.P. Papadakis E.S. Mackenzie I.C. Brennan C.H. O’Toole E.A. The receptor tyrosine kinase Axl regulates cell–cell adhesion and stemness in cutaneous squamous cell carcinoma. Oncogene 2014 33 32 4185 4192 10.1038/onc.2013.388 24056961
    [Google Scholar]
  92. Holland S.J. Powell M.J. Franci C. Chan E.W. Friera A.M. Atchison R.E. McLaughlin J. Swift S.E. Pali E.S. Yam G. Wong S. Lasaga J. Shen M.R. Yu S. Xu W. Hitoshi Y. Bogenberger J. Nör J.E. Payan D.G. Lorens J.B. Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res. 2005 65 20 9294 9303 10.1158/0008‑5472.CAN‑05‑0993 16230391
    [Google Scholar]
  93. Melaragno M.G. Fridell Y.W.C. Berk B.C. The Gas6/Axl system: A novel regulator of vascular cell function. Trends Cardiovasc. Med. 1999 9 8 250 253 10.1016/S1050‑1738(00)00027‑X 11094334
    [Google Scholar]
  94. Brown M. Black J.R.M. Sharma R. Stebbing J. Pinato D.J. Gene of the month: Axl. J. Clin. Pathol. 2016 69 5 391 397 10.1136/jclinpath‑2016‑203629 26951083
    [Google Scholar]
  95. Li Y. Ye X. Tan C. Hongo J.A. Zha J. Liu J. Kallop D. Ludlam M.J.C. Pei L. Axl as a potential therapeutic target in cancer: Role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009 28 39 3442 3455 10.1038/onc.2009.212 19633687
    [Google Scholar]
  96. Lechertier T. Reynolds L.E. Kim H. Pedrosa A.R. Gómez-Escudero J. Muñoz-Félix J.M. Batista S. Dukinfield M. Demircioglu F. Wong P.P. Matchett K.P. Henderson N.C. D’Amico G. Parsons M. Harwood C. Meier P. Hodivala-Dilke K.M. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat. Commun. 2020 11 1 2810 10.1038/s41467‑020‑16618‑6 32499572
    [Google Scholar]
  97. Wium M. Ajayi-Smith A.F. Paccez J.D. Zerbini L.F. The role of the receptor tyrosine kinase Axl in carcinogenesis and development of therapeutic resistance: An overview of molecular mechanisms and future applications. Cancers 2021 13 7 1521 10.3390/cancers13071521 33806258
    [Google Scholar]
  98. Zhang Z. Lee J.C. Lin L. Olivas V. Au V. LaFramboise T. Abdel-Rahman M. Wang X. Levine A.D. Rho J.K. Choi Y.J. Choi C.M. Kim S.W. Jang S.J. Park Y.S. Kim W.S. Lee D.H. Lee J.S. Miller V.A. Arcila M. Ladanyi M. Moonsamy P. Sawyers C. Boggon T.J. Ma P.C. Costa C. Taron M. Rosell R. Halmos B. Bivona T.G. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 2012 44 8 852 860 10.1038/ng.2330 22751098
    [Google Scholar]
  99. Boshuizen J. Koopman L.A. Krijgsman O. Shahrabi A. van den Heuvel E.G. Ligtenberg M.A. Vredevoogd D.W. Kemper K. Kuilman T. Song J.Y. Pencheva N. Mortensen J.T. Foppen M.G. Rozeman E.A. Blank C.U. Janmaat M.L. Satijn D. Breij E.C.W. Peeper D.S. Parren P.W.H.I. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med. 2018 24 2 203 212 10.1038/nm.4472 29334371
    [Google Scholar]
  100. Paccez J.D. Vogelsang M. Parker M.I. Zerbini L.F. The receptor tyrosine kinase Axl in cancer: Biological functions and therapeutic implications. Int. J. Cancer 2014 134 5 1024 1033 10.1002/ijc.28246 23649974
    [Google Scholar]
  101. Mudduluru G. Vajkoczy P. Allgayer H. Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol. Cancer Res. 2010 8 2 159 169 10.1158/1541‑7786.MCR‑09‑0326 20145042
    [Google Scholar]
  102. Sayan A.E. Stanford R. Vickery R. Grigorenko E. Diesch J. Kulbicki K. Edwards R. Pal R. Greaves P. Jariel-Encontre I. Piechaczyk M. Kriajevska M. Mellon J.K. Dhillon A.S. Tulchinsky E. Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL. Oncogene 2012 31 12 1493 1503 10.1038/onc.2011.336 21822309
    [Google Scholar]
  103. Nalwoga H. Ahmed L. Arnes J.B. Wabinga H. Akslen L.A. Strong expression of hypoxia-inducible factor-1α (HIF-1α) is associated with axl expression and features of aggressive tumors in African Breast Cancer. PLoS One 2016 11 1 e0146823 10.1371/journal.pone.0146823 26760782
    [Google Scholar]
  104. Mimura I. Nangaku M. Kanki Y. Tsutsumi S. Inoue T. Kohro T. Yamamoto S. Fujita T. Shimamura T. Suehiro J. Taguchi A. Kobayashi M. Tanimura K. Inagaki T. Tanaka T. Hamakubo T. Sakai J. Aburatani H. Kodama T. Wada Y. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol. Cell. Biol. 2012 32 15 3018 3032 10.1128/MCB.06643‑11 22645302
    [Google Scholar]
  105. Mishra A. Wang J. Shiozawa Y. McGee S. Kim J. Jung Y. Joseph J. Berry J.E. Havens A. Pienta K.J. Taichman R.S. Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol. Cancer Res. 2012 10 6 703 712 10.1158/1541‑7786.MCR‑11‑0569 22516347
    [Google Scholar]
  106. Rankin E.B. Fuh K.C. Castellini L. Viswanathan K. Finger E.C. Diep A.N. LaGory E.L. Kariolis M.S. Chan A. Lindgren D. Axelson H. Miao Y.R. Krieg A.J. Giaccia A.J. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc. Natl. Acad. Sci. USA 2014 111 37 13373 13378 10.1073/pnas.1404848111 25187556
    [Google Scholar]
  107. Gustafsson A. Boström A.K. Ljungberg B. Axelson H. Dahlbäck B. Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One 2009 4 10 e7575 10.1371/journal.pone.0007575 19888345
    [Google Scholar]
  108. Xu M.Z. Chan S.W. Liu A.M. Wong K.F. Fan S.T. Chen J. Poon R.T. Zender L. Lowe S.W. Hong W. Luk J.M. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 2011 30 10 1229 1240 10.1038/onc.2010.504 21076472
    [Google Scholar]
  109. Lehmann W. Mossmann D. Kleemann J. Mock K. Meisinger C. Brummer T. Herr R. Brabletz S. Stemmler M.P. Brabletz T. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 2016 7 1 10498 10.1038/ncomms10498 26876920
    [Google Scholar]
  110. Mudduluru G. Allgayer H. The human receptor tyrosine kinase Axl gene – promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci. Rep. 2008 28 3 161 176 10.1042/BSR20080046 18522535
    [Google Scholar]
  111. Boks M.P. Derks E.M. Weisenberger D.J. Strengman E. Janson E. Sommer I.E. Kahn R.S. Ophoff R.A. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One 2009 4 8 e6767 10.1371/journal.pone.0006767 19774229
    [Google Scholar]
  112. Hajalirezay Yazdi S. Paryan M. Mohammadi-Yeganeh S. An integrated approach of bioinformatic prediction and in vitro analysis identified that miR-34a targets MET and AXL in triple-negative breast cancer. Cell. Mol. Biol. Lett. 2018 23 1 51 10.1186/s11658‑018‑0116‑y 30386383
    [Google Scholar]
  113. Mudduluru G. Ceppi P. Kumarswamy R. Scagliotti G.V. Papotti M. Allgayer H. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene 2011 30 25 2888 2899 10.1038/onc.2011.13 21317930
    [Google Scholar]
  114. Mackiewicz M. Huppi K. Pitt J.J. Dorsey T.H. Ambs S. Caplen N.J. Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res. Treat. 2011 130 2 663 679 10.1007/s10549‑011‑1690‑0 21814748
    [Google Scholar]
  115. Lu Y. Wan J. Yang Z. Lei X. Niu Q. Jiang L. Passtoors W.M. Zang A. Fraering P.C. Wu F. Regulated intramembrane proteolysis of the AXL receptor kinase generates an intracellular domain that localizes in the nucleus of cancer cells. FASEB J. 2017 31 4 1382 1397 10.1096/fj.201600702R 28034848
    [Google Scholar]
  116. Chen Y. Zhang Y. Chen S. Liu W. Lin Y. Zhang H. Yu F. Non-steroidal anti-inflammatory drugs (NSAIDs) sensitize melanoma cells to MEK inhibition and inhibit metastasis and relapse by inducing degradation of AXL. Pigment Cell Melanoma Res. 2022 35 2 238 251 10.1111/pcmr.13021 34748282
    [Google Scholar]
  117. Paolino M. Choidas A. Wallner S. Pranjic B. Uribesalgo I. Loeser S. Jamieson A.M. Langdon W.Y. Ikeda F. Fededa J.P. Cronin S.J. Nitsch R. Schultz-Fademrecht C. Eickhoff J. Menninger S. Unger A. Torka R. Gruber T. Hinterleitner R. Baier G. Wolf D. Ullrich A. Klebl B.M. Penninger J.M. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 2014 507 7493 508 512 10.1038/nature12998 24553136
    [Google Scholar]
  118. Sun L.W. Kao S.H. Yang S.F. Jhang S.W. Lin Y.C. Chen C.M. Hsieh Y.H. Corosolic acid attenuates the invasiveness of glioblastoma cells by promoting CHIP-mediated AXL degradation and inhibiting GAS6/AXL/JAK axis. Cells 2021 10 11 2919 10.3390/cells10112919 34831142
    [Google Scholar]
  119. Yang H. Liang S.Q. Xu D. Yang Z. Marti T.M. Gao Y. Kocher G.J. Zhao H. Schmid R.A. Peng R.W. HSP90/AXL/eIF4E-regulated unfolded protein response as an acquired vulnerability in drug-resistant KRAS-mutant lung cancer. Oncogenesis 2019 8 9 45 10.1038/s41389‑019‑0158‑7 31431614
    [Google Scholar]
  120. Falcone I. Conciatori F. Bazzichetto C. Bria E. Carbognin L. Malaguti P. Ferretti G. Cognetti F. Milella M. Ciuffreda L. AXL receptor in breast cancer: Molecular involvement and therapeutic limitations. Int. J. Mol. Sci. 2020 21 22 8419 10.3390/ijms21228419 33182542
    [Google Scholar]
  121. Kent W.J. Sugnet C.W. Furey T.S. Roskin K.M. Pringle T.H. Zahler A.M. Haussler D. The human genome browser at UCSC. Genome Res. 2002 12 6 996 1006 10.1101/gr.229102 12045153
    [Google Scholar]
  122. Park J.W. Song K.D. Kim N.Y. Choi J.Y. Hong S.A. Oh J.H. Kim S.W. Lee J.H. Park T.S. Kim J.K. Kim J.G. Cho B.W. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene. Asian-Australas. J. Anim. Sci. 2017 30 10 1471 1477 10.5713/ajas.17.0409 28854781
    [Google Scholar]
  123. Shen L. Lei S. Zhang B. Li S. Huang L. Czachor A. Breitzig M. Gao Y. Huang M. Mo X. Zheng Q. Sun H. Wang F. Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Theranostics 2020 10 13 5719 5735 10.7150/thno.42010 32483414
    [Google Scholar]
  124. Flem-Karlsen K. Nyakas M. Farstad I.N. McFadden E. Wernhoff P. Jacobsen K.D. Flørenes V.A. Mælandsmo G.M. Soluble AXL as a marker of disease progression and survival in melanoma. PLoS One 2020 15 1 e0227187 10.1371/journal.pone.0227187 31917795
    [Google Scholar]
  125. Dengler M. Staufer K. Huber H. Stauber R. Bantel H. Weiss K.H. Starlinger P. Pock H. Plachky P.K. Gotthardt D.N. Rauch P. Lackner C. Stift J. Brostjan C. Gruenberger T. Kumada T. Toyoda H. Tada T. Weiss T.S. Trauner M. Mikulits W. Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: Results from a large scale multicenter analysis. Oncotarget 2017 8 28 46234 46248 10.18632/oncotarget.17598
    [Google Scholar]
  126. Gustafsson A. Martuszewska D. Johansson M. Ekman C. Hafizi S. Ljungberg B. Dahlbäck B. Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clin. Cancer Res. 2009 15 14 4742 4749 10.1158/1078‑0432.CCR‑08‑2514 19567592
    [Google Scholar]
  127. O’Bryan J.P. Fridell Y.W. Koski R. Varnum B. Liu E.T. The transforming receptor tyrosine kinase, Axl, is post-translationally regulated by proteolytic cleavage. J. Biol. Chem. 1995 270 2 551 557 10.1074/jbc.270.2.551 7822279
    [Google Scholar]
  128. Flem Karlsen K. McFadden E. Flørenes V. A. Davidson B. Soluble AXL is ubiquitously present in malignant serous effusions. Gynecologic Oncology 2024 152 2 408 415 10.1016/j.ygyno.2018.11.012
    [Google Scholar]
  129. Martínez-Bosch N. Cristóbal H. Iglesias M. Gironella M. Barranco L. Visa L. Calafato D. Jiménez-Parrado S. Earl J. Carrato A. Manero-Rupérez N. Moreno M. Morales A. Guerra C. Navarro P. García de Frutos P. Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine 2022 75 103797 10.1016/j.ebiom.2021.103797 34973624
    [Google Scholar]
  130. Staufer K. Dengler M. Huber H. Marculescu R. Stauber R. Lackner C. Dienes H.P. Kivaranovic D. Schachner C. Zeitlinger M. Wulkersdorfer B. Rauch P. Prager G. Trauner M. Mikulits W. The non-invasive serum biomarker soluble Axl accurately detects advanced liver fibrosis and cirrhosis. Cell Death Dis. 2017 8 10 e3135 e3135 10.1038/cddis.2017.554 29072690
    [Google Scholar]
  131. Reichl P. Fang M. Starlinger P. Staufer K. Nenutil R. Muller P. Greplova K. Valik D. Dooley S. Brostjan C. Gruenberger T. Shen J. Man K. Trauner M. Yu J. Gao C.F. Mikulits W. Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int. J. Cancer 2015 137 2 385 394 10.1002/ijc.29394 25529751
    [Google Scholar]
  132. Song X. Wu A. Ding Z. Liang S. Zhang C. Soluble Axl is a novel diagnostic biomarker of hepatocellular carcinoma in Chinese patients with chronic hepatitis B virus infection. Cancer Res. Treat. 2020 52 3 789 797 10.4143/crt.2019.749 32138467
    [Google Scholar]
  133. D'Arcangelo D. Ambrosino V. Giannuzzo M. Gaetano C. Capogrossi M. C. Axl receptor activation mediates laminar shear stress anti-apoptotic effects in human endothelial cells. Cardiovasc. Res. 2024 71 4 754 763 10.1016/j.cardiores.2006.06.002
    [Google Scholar]
  134. Kariolis M.S. Miao Y.R. Jones D.S. II Kapur S. Mathews I.I. Giaccia A.J. Cochran J.R. An engineered Axl ‘decoy receptor’ effectively silences the Gas6-Axl signaling axis. Nat. Chem. Biol. 2014 10 11 977 983 10.1038/nchembio.1636 25242553
    [Google Scholar]
  135. Costa M. Bellosta P. Basilico C. Cleavage and release of a soluble form of the receptor tyrosine kinase ARK in vitro and in vivo. J. Cell. Physiol. 1996 168 3 737 744 10.1002/(SICI)1097‑4652(199609)168:3<737::AID‑JCP27>3.0.CO;2‑U 8816929
    [Google Scholar]
  136. Ekman C. Stenhoff J. Dahlbäck B. Gas6 is complexed to the soluble tyrosine kinase receptor Axl in human blood. J. Thromb. Haemost. 2010 8 4 838 844 10.1111/j.1538‑7836.2010.03752.x 20088931
    [Google Scholar]
  137. Miller M.A. Oudin M.J. Sullivan R.J. Wang S.J. Meyer A.S. Im H. Frederick D.T. Tadros J. Griffith L.G. Lee H. Weissleder R. Flaherty K.T. Gertler F.B. Lauffenburger D.A. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 2016 6 4 382 399 10.1158/2159‑8290.CD‑15‑0933 26984351
    [Google Scholar]
  138. Marquez-Palencia M. Reza Herrera L. Parida P.K. Ghosh S. Kim K. Das N.M. Gonzalez-Ericsson P.I. Sanders M.E. Mobley B.C. Diegeler S. Aguilera T.A. Peng Y. Lewis C.M. Arteaga C.L. Hanker A.B. Whitehurst A.W. Lorens J.B. Brekken R.A. Davis A.J. Malladi S. AXL/WRNIP1 mediates replication stress response and promotes therapy resistance and metachronous metastasis in HER2+ breast cancer. Cancer Res. 2024 84 5 675 687 10.1158/0008‑5472.CAN‑23‑1459 38190717
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673382005250828124053
Loading
/content/journals/cmc/10.2174/0109298673382005250828124053
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: AXL isoforms ; TAM receptors ; proteolytic cleavage ; cancer ; AXL ; alternative splicing ; cell signaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test