Skip to content
2000
image of Addressing Unmet Needs in Clostridium difficile Infection: Advances in Diagnosis, Treatment, and Prevention

Abstract

Introduction

infection (CDI) is a serious global health concern characterized by toxin-induced colonic damage, ranging from diarrhea to life-threatening conditions. Despite improved diagnostics and treatments, recurrence rates of up to 30% underscore persistent gaps in effective disease management.

Methods

CDI pathogenesis is driven by the disruption of the gut microbiota, often due to broad-spectrum antibiotic use. Risk factors such as advanced age, hospitalization, IBD, and immunosuppression increase the severity and recurrence of the infection. The hypervirulent ribotype 027 strain has been associated with increased mortality and treatment resistance, necessitating targeted therapies.

Results

Emerging treatments such as FMT and monoclonal antibodies show promise for CDI management, with FDA approvals marking progress in microbiome restoration. However, hurdles remain in safety, regulation, and donor screening. Advances in diagnostic and scoring tools have aided in the detection and treatment, but differentiating between colonization and infection remains a challenge. Preventive measures and novel agents such as bacteriocins and bacteriophages offer targeted, microbiome-sparing strategies.

Discussion

Despite recent advances, CDI management remains challenging because of diagnostic uncertainty and frequent recurrences. Innovative treatments such as FMT and monoclonal antibodies are promising but face limitations in safety, access, and cost. Preventive strategies and decision tools help, yet distinguishing colonization from infection remains difficult, underscoring the need for ongoing and multidisciplinary innovation.

Conclusion

This review highlights current approaches to CDI diagnosis, treatment, and prevention, stressing the urgent need for innovative strategies to reduce recurrence. Targeted research and policy efforts are vital to improving outcomes and quality of life for those affected.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673381785251008222034
2025-10-17
2025-11-05
Loading full text...

Full text loading...

References

  1. Czepiel J. Dróżdż M. Pituch H. Kuijper E.J. Perucki W. Mielimonka A. Goldman S. Wultańska D. Garlicki A. Biesiada G. Clostridium difficile infection: Review. Eur. J. Clin. Microbiol. Infect. Dis. 2019 38 7 1211 1221 10.1007/s10096‑019‑03539‑6 30945014
    [Google Scholar]
  2. Zhou J. Zhu J. Zhang P. Tao C. Hong X. Global, regional, and national burdens of Clostridioides difficile infection over recent decades: A trend analysis informed by the Global Burden of Disease Study. Microbiol Spectr. 2025 13 6 e01290-24 10.1128/spectrum.01290‑24
    [Google Scholar]
  3. Lees EA Carrol ED Ellaby NAF Roberts P Corless CE Lenzi L FGF23 and Fetuin-A interaction in the liver and in the circulation. Int. J. Biol. Sci. 2018 14 586 598
    [Google Scholar]
  4. Shuai H. Bian Q. Luo Y. Zhou X. Song X. Ye J. Huang Q. Peng Z. Wu J. Jiang J. Jin D. Molecular characteristics of Clostridium difficile in children with acute gastroenteritis from Zhejiang. BMC Infect. Dis. 2020 20 1 343 10.1186/s12879‑020‑05030‑6 32404060
    [Google Scholar]
  5. Perumalsamy S. Lim S.C. Riley T.V. Clostridioides (Clostridium) difficile isolated from paediatric patients in Western Australia 2019–2020. Pathology 2022 54 4 460 465 10.1016/j.pathol.2021.10.009 35125203
    [Google Scholar]
  6. Khanna S. Management of Clostridioides difficile infection in patients with inflammatory bowel disease. Intest. Res. 2021 19 3 265 274 10.5217/ir.2020.00045 32806873
    [Google Scholar]
  7. Issa M. Vijayapal A. Graham M.B. Beaulieu D.B. Otterson M.F. Lundeen S. Skaros S. Weber L.R. Komorowski R.A. Knox J.F. Emmons J. Bajaj J.S. Binion D.G. Impact of Clostridium difficile on inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2007 5 3 345 351 10.1016/j.cgh.2006.12.028 17368234
    [Google Scholar]
  8. Nitzan O. Elias M. Chazan B. Raz R. Saliba W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 2013 19 43 7577 7585 10.3748/wjg.v19.i43.7577 24282348
    [Google Scholar]
  9. Murthy S.K. Steinhart A.H. Tinmouth J. Austin P.C. Daneman N. Nguyen G.C. Impact of Clostridium difficile colitis on 5-year health outcomes in patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2012 36 11-12 1032 1039 10.1111/apt.12073 23061526
    [Google Scholar]
  10. Sehgal K. Yadav D. Khanna S. The interplay of Clostridioides difficile infection and inflammatory bowel disease. Therap. Adv. Gastroenterol. 2021 1 10
    [Google Scholar]
  11. Revolinski S.L. Munoz-Price L.S. Clostridium difficile in immunocompromised hosts: A review of epidemiology, risk factors, treatment, and prevention. Clin. Infect. Dis. 2019 68 12 2144 2153 10.1093/cid/ciy845 30281082
    [Google Scholar]
  12. Gupta A. Khanna S. Community-acquired Clostridium difficile infection: An increasing public health threat. Infect. Drug Resist. 2014 7 63 72 24669194
    [Google Scholar]
  13. Zappas K. Mcclelland J. Schwartz K. Price J. Stankiewicz C. Cruz-Betancourt A. Milton H. Berwager P. Lewis K. Hess J. Jones B. Initiation of a performance review committee (PRC) with multidisciplinary healthcare team members and the impact on hospital-acquired clostridium difficile infection (CDI). Open Forum Infect. Dis. 2016 3 Suppl. 1 2098 10.1093/ofid/ofw172.1646
    [Google Scholar]
  14. Kabała M. Gofron Z. Aptekorz M. Sacha K. Harmanus C. Kuijper E. Martirosian G. Clostridioides difficile ribotype 027 (Rt027) outbreak investigation due to the emergence of rifampicin resistance using multilocus variable-number tandem repeat analysis (mlva). Infect. Drug Resist. 2021 14 3247 3254 10.2147/IDR.S324745 34429622
    [Google Scholar]
  15. Mullish B.H. Williams H.R.T. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin. Med. 2018 18 3 237 241 10.7861/clinmedicine.18‑3‑237 29858434
    [Google Scholar]
  16. McFarland L.V. Diarrhoea associated with antibiotic use. BMJ 2007 335 7610 54 55 10.1136/bmj.39255.829120.47 17626915
    [Google Scholar]
  17. Singh M. Vaishnavi C. Kochhar R. Mahmood S. Toxigenic Clostridium difficile isolates from clinically significant diarrhoea in patients from a tertiary care centre. Indian J. Med. Res. 2017 145 6 840 846 10.4103/ijmr.IJMR_192_16 29067987
    [Google Scholar]
  18. Di Bella S. Ascenzi P. Siarakas S. Petrosillo N. Di Masi A. Clostridium difficile toxins A and B: Insights into pathogenic properties and extraintestinal effects. Vol. 8. Toxins 2016 8 5 134 10.3390/toxins8050134 27153087
    [Google Scholar]
  19. Fatima R. Aziz M. The hypervirulent strain of clostridium difficile: Nap1/b1/027 - A brief overview. Cureus 2019 11 1 3977 10.7759/cureus.3977 30967977
    [Google Scholar]
  20. Drugs@FDA: FDA-approved drugs. 2023 Available from: https://www.fda.gov/drugsatfda
  21. Freeman J. Vernon J. Pilling S. Morris K. Nicholson S. Shearman S. Longshaw C. Wilcox M.H. The ClosER study: Results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin. Microbiol. Infect. 2018 24 7 724 731 10.1016/j.cmi.2017.10.008 29066403
    [Google Scholar]
  22. Goldstein E.J.C. Citron D.M. Sears P. Babakhani F. Sambol S.P. Gerding D.N. Comparative susceptibilities to fidaxomicin (OPT-80) of isolates collected at baseline, recurrence, and failure from patients in two phase III trials of fidaxomicin against Clostridium difficile infection. Antimicrob. Agents Chemother. 2011 55 11 5194 5199 10.1128/AAC.00625‑11 21844318
    [Google Scholar]
  23. Lane M. Yadav V. Multiple sclerosis. Textbook of Natural Medicine. United Kingdom Churchill Livingstone 2020 1587 1599.e3 10.1016/B978‑0‑323‑43044‑9.00199‑0
    [Google Scholar]
  24. Chavez-Arroyo A. Radlinski L.C. Bäumler A.J. Principles of gut microbiota assembly. Trends Microbiol. 2025 33 7 718 726 0966-842X 10.1016/j.tim.2025.02.014
    [Google Scholar]
  25. Lee J.Y. Bays D.J. Savage H.P. Bäumler A.J. The human gut microbiome in health and disease: Time for a new chapter? Infect. Immun. 2024 92 11 e00302-24 10.1128/iai.00302‑24 39347570
    [Google Scholar]
  26. Turnbaugh P.J. Hamady M. Yatsunenko T. Cantarel B.L. Duncan A. Ley R.E. Sogin M.L. Jones W.J. Roe B.A. Affourtit J.P. Egholm M. Henrissat B. Heath A.C. Knight R. Gordon J.I. A core gut microbiome in obese and lean twins. Nature 2009 457 7228 480 484 10.1038/nature07540 19043404
    [Google Scholar]
  27. Davis M.Y. Zhang H. Brannan L.E. Carman R.J. Boone J.H. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome 2016 4 1 53 10.1186/s40168‑016‑0198‑6 27717398
    [Google Scholar]
  28. Lozupone C.A. Stombaugh J.I. Gordon J.I. Jansson J.K. Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012 489 7415 220 230 10.1038/nature11550 22972295
    [Google Scholar]
  29. Clostridium difficile infection: Unmet needs and unsolved questions. 2021 Available from: https://www.mdpi.com/journal/jcm/special_issues/Clostridium_difficile
  30. Paediatric Clostridium Difficile Infection – Treatment Guidelines. 2019 Available from: https://www.childrens.health.qld.gov.au/__data/assets/pdf_file/0025/176911/CHQ-GDL-01058.pdf [cited 2025 Oct 22
  31. Petrosillo N. Clostridioides difficile infection: A never-ending challenge. J. Clin. Med. 2022 11 14 4115 10.3390/jcm11144115 35887876
    [Google Scholar]
  32. Kampouri E. Croxatto A. Prod’hom G. Guery B. Clostridioides difficile infection, still a long way to go. J. Clin. Med. 2021 10 3 389 10.3390/jcm10030389 33498428
    [Google Scholar]
  33. Clostridioides difficile infection in pediatric patients: Unmet needs and future challenges. 2024 Available from: https://touchinfectiousdiseases.com/bacterial-infections/conference-hub/clostridioides-difficile-infection-in-pediatric-patients-unmet-needs-and-future-challenges-anne-j-gonzales-luna-eccmid-2023/
  34. Villafuerte Gálvez J.A. Pollock N.R. Alonso C.D. Chen X. Xu H. Wang L. White N. Banz A. Miller M. Daugherty K. Gonzalez-Luna A.J. Barrett C. Sprague R. Garey K.W. Kelly C.P. Stool interleukin-1β differentiates Clostridioides difficile infection (CDI) from asymptomatic carriage and non-CDI diarrhea. Clin. Infect. Dis. 2023 76 3 e1467 e1475 10.1093/cid/ciac624 35906836
    [Google Scholar]
  35. Hernández-García R. Garza-González E. Miller M. Arteaga-Muller G. Galván-de los Santos A.M. Camacho-Ortiz A. Application of the ATLAS score for evaluating the severity of Clostridium difficile infection in teaching hospitals in Mexico. Braz. J. Infect. Dis. 2015 19 4 399 402 10.1016/j.bjid.2015.05.005 26117213
    [Google Scholar]
  36. Kim K.O. Gluck M. Fecal microbiota transplantation: An update on clinical practice. Vol. 52. Clin. Endosc. 2019 52 2 137 143 10.5946/ce.2019.009 30909689
    [Google Scholar]
  37. Gough E. Shaikh H. Manges A.R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin. Infect. Dis. 2011 53 10 994 1002 10.1093/cid/cir632 22002980
    [Google Scholar]
  38. Osman M. O’Brien K. Stoltzner Z. Ling K. Koelsch E. Dubois N. Khoiri A. Amaratunga K. Smith M. Kassam Z. Safety and efficacy of fecal microbiota transplantation for recurrent Clostridium difficile infection from an international public stool bank: Results from a 2050-patient multicenter cohort. Open Forum Infect. Dis. 2016 3 Suppl. 1 2120 10.1093/ofid/ofw172.1668
    [Google Scholar]
  39. Paramsothy S. Borody T.J. Lin E. Finlayson S. Walsh A.J. Samuel D. van den Bogaerde J. Leong R.W.L. Connor S. Ng W. Mitchell H.M. Kaakoush N. Kamm M.A. Donor recruitment for fecal microbiota transplantation. Inflamm. Bowel Dis. 2015 21 7 1600 1606 10.1097/MIB.0000000000000405 26070003
    [Google Scholar]
  40. Cammarota G. Ianiro G. Tilg H. Rajilić-Stojanović M. Kump P. Satokari R. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017 66 4 569 580 10.1136/gutjnl‑2016‑313017
    [Google Scholar]
  41. Keller J.J. Vehreschild M.J.G.T. Hvas C.L. Jørgensen S.M.D. Kupciskas J. Link A. Mulder C.J.J. Goldenberg S.D. Arasaradnam R. Sokol H. Gasbarrini A. Hoegenauer C. Terveer E.M. Kuijper E.J. Arkkila P. Stool for fecal microbiota transplantation should be classified as a transplant product and not as a drug. United European Gastroenterol. J. 2019 7 10 1408 1410 10.1177/2050640619887579 31839966
    [Google Scholar]
  42. Expert perspectives on advances in the management of clostrioides difficile: Bezlotoxumab and unmet needs. 2024 Available from: https://www.contagionlive.com/view/expert-perspectives-on-advances-in-the-management-of-clostrioides-difficile-bezlotoxumab-and-unmet-needs
  43. Eubank T.A. Dureja C. Garey K.W. Hurdle J.G. Gonzales-Luna A.J. Reduced vancomycin susceptibility in Clostridioides difficile is associated with lower rates of initial cure and sustained clinical response. Clin. Infect. Dis. 2024 79 1 15 21 10.1093/cid/ciae087 38382090
    [Google Scholar]
  44. Recurrent infection: An unmet medical need in the realm of C. 2024 Available from: https://www.contagionlive.com/view/recurrent-infection-an-unmet-medical-need-in-the-realm-of-c-difficile
  45. Spherix global insights finds US primary biliary cholangitis market poised for transformation as pipeline therapies progress in clinical development - spherix global insights. 2021 Available from: https://www.spherixglobalinsights.com/spherix-global-insights-finds-us-primary-biliary-cholangitis-market-poised-for-transformation-as-pipeline-therapies-progress-in-clinical-development/
  46. DIFICID®(fidaxomicin). 2018 Available from: www.fda.gov/medwatch
  47. VIALS VANCOCIN ® HCl Vancomycin hydrochloride for injection USP for intravenous Use. 2018 Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/060180s048lbl.pdf
  48. Unmet needs in management of C. 2024 Available from: https://www.contagionlive.com/view/unmet-needs-in-management-of-c-difficile-infection-cdi-
  49. REBYOTATM (fecal microbiota, live - jslm) suspension. 2022 Available from: https://www.fda.gov/media/163587/download
  50. VOWST (fecal microbiota spores, live-brpk. 2025 Available from: https://www.fda.gov/media/167579/download
  51. Oneto C. Khanna S. Prescription microbiome therapeutic for recurrent Clostridioides difficile infection: Fecal microbiota live-jslm. Am. J. Gastroenterol. 2024 119 1S S16 S21 10.14309/ajg.0000000000002577 38153221
    [Google Scholar]
  52. Fletcher J.R. Erwin S. Lanzas C. Theriot C.M. Shifts in the gut metabolome and Clostridium difficile transcriptome throughout colonization and infection in a mouse model. MSphere 2018 3 2 e00089-18 10.1128/mSphere.00089‑18 29600278
    [Google Scholar]
  53. Theriot C.M. Koenigsknecht M.J. Carlson P.E. Jr Hatton G.E. Nelson A.M. Li B. Huffnagle G.B. Z Li J. Young V.B. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 2014 5 3114 10.1038/ncomms4114 24445449
    [Google Scholar]
  54. Sun J. Cao Z. Smith A.D. Carlson P.E. Jr Coryell M. Chen H. Beger R.D. Evaluating cefoperazone-induced gut metabolic functional changes in MR1-deficient mice. Metabolites 2022 12 5 380 10.3390/metabo12050380 35629884
    [Google Scholar]
  55. Ghia C.J. Waghela S. Rambhad G.S. Systematic literature review on burden of Clostridioides difficile Infection in India. Clin. Pathol. 2021 14 2632010X211013816 10.1177/2632010X211013816 34104883
    [Google Scholar]
  56. Tam J. Hamza T. Ma B. Chen K. Beilhartz G.L. Ravel J. Feng H. Melnyk R.A. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat. Commun. 2018 9 1 5233 10.1038/s41467‑018‑07705‑w 30531960
    [Google Scholar]
  57. ClinicalTrials.gov Study of a candidate clostridium difficile toxoid vaccine in healthy adult subjects aged 40 to 75 years in japan; NCT01896830. 2018 Available from: https://clinicaltrials.gov/study/NCT01896830?term=NCT01896830&rank=1
  58. ClinicalTrials.gov Study of different formulations of a clostridium difficile toxoid vaccine given at three different schedules in adults; NCT01230957. 2018 Available from: https://clinicaltrials.gov/study/NCT01896830?term=NCT01896830&rank=1
  59. ClinicalTrials.gov Safety, tolerability, and immunogenicity of a clostridium difficile toxoid vaccine in healthy elderly volunteers; NCT00214461. 2012 Available from: https://clinicaltrials.gov/study/NCT00214461?term=NCT00214461&rank=1
  60. ClinicalTrials.gov Safety, tolerability, and immunogenicity study of a clostridium difficile toxoid vaccine in healthy adult volunteers; NCT00127803. 2012 Available from: https://clinicaltrials.gov/study/NCT00127803?term=NCT00127803&rank=1
  61. ClinicalTrials.gov A study to investigate a clostridium difficile vaccine in healthy adults aged 50 to 85 years, who will each receive 3 doses of vaccine; NCT02117570. 2017 Available from: https://clinicaltrials.gov/study/NCT02117570?term=NCT02117570&rank=1
  62. ClinicalTrials.gov Evaluation of a 3-dose vaccination regimen with one of three ascending dose levels of clostridium difficile vaccine with or without adjuvant in healthy adults aged 50 to 85 years; NCT01706367. 2014 Available from: https://clinicaltrials.gov/study/NCT01706367?term=NCT01706367&rank=1
  63. ClinicalTrials.gov Clostridium difficile vaccine safety, tolerability, and immunogenicity study in japanese adults; NCT02725437. 2018 Available from: https://clinicaltrials.gov/study/NCT02725437?term=NCT02725437&rank=1
  64. ClinicalTrials.gov Safety and immunogenicity study of gsk's clostridium difficile vaccine 2904545a when administered in healthy adults aged 18-45 years and 50-70 years; NCT04026009. 2024 Available from: https://clinicaltrials.gov/study/NCT04026009?term=NCT04026009&rank=1
  65. ClinicalTrials.gov Study details | dose-confirmation, immunogenicity and safety study of the clostridium difficile vaccine candidate vla84 in healthy adults aged 50 years and older. Phase II study; NCT02316470. 2018 Available from: https://clinicaltrials.gov/study/NCT02316470?term=NCT02316470&rank=1
  66. Toth D.J.A. Keegan L.T. Samore M.H. Khader K. O’Hagan J.J. Yu H. Quintana A. Swerdlow D.L. Modeling the potential impact of administering vaccines against Clostridioides difficile infection to individuals in healthcare facilities. Vaccine 2020 38 37 5927 5932 10.1016/j.vaccine.2020.06.081 32703744
    [Google Scholar]
  67. Gonzales-Luna A.J. Skinner A.M. Alonso C.D. Bouza E. Cornely O.A. de Meij T.G.J. Drew R.J. Garey K.W. Gerding D.N. Johnson S. Kahn S.A. Kato H. Kelly C.P. Kelly C.R. Kociolek L.K. Kuijper E.J. Louie T. Riley T.V. Sandora T.J. Vehreschild M.J.G.T. Wilcox M.H. Dubberke E.R. Redefining Clostridioides difficile infection antibiotic response and clinical outcomes. Lancet Infect. Dis. 2023 23 7 e259 e265 10.1016/S1473‑3099(23)00047‑6 37062301
    [Google Scholar]
  68. Rea M.C. Dobson A. O’Sullivan O. Crispie F. Fouhy F. Cotter P.D. Shanahan F. Kiely B. Hill C. Ross R.P. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl. Acad. Sci. USA 2011 108 Suppl 1 4639 4644 10.1073/pnas.1001224107 20616009
    [Google Scholar]
  69. Cho J.M. Pardi D.S. Khanna S. Update on treatment of clostridioides difficile infection. Mayo Clin. Proc. 2020 95 4 758 769 10.1016/j.mayocp.2019.08.006 32247350
    [Google Scholar]
  70. SAB biotherapeutics program targeting clostridioides difficile infection (CDI): SAB-195 - SAb biotherapeutics. 2022 Available from: https://www.sab.bio/sab-195-cdi/
  71. Faust S.N. Wilcox M.H. Banaszkiewicz A. Bouza E. Raymond J. Gerding D.N. Lack of evidence for an unmet need to treat Clostridium difficile infection in infants aged <2 years: Expert recommendations on how to address this issue. Clin. Infect. Dis. 2015 60 6 912 918 10.1093/cid/ciu936 25422389
    [Google Scholar]
  72. Kociolek L.K. Burnham C.A.D. Nicholson M.R. Zackular J.P. Clostridioides difficile infection in children: Research progress, pitfalls, and priorities. Vol. 10. J. Pediatric Infect. Dis. Soc. 2021 10 Suppl. 3 S1 S2 10.1093/jpids/piab090 34791394
    [Google Scholar]
  73. Tsigrelis C. Recurrent Clostridioides difficile infection: Recognition, management, prevention. Cleve. Clin. J. Med. 2020 87 6 347 359 10.3949/ccjm.87gr.20001 32487555
    [Google Scholar]
  74. Johnson S. Lavergne V. Skinner A.M. Gonzales-Luna A.J. Garey K.W. Kelly C.P. Wilcox M.H. Clinical practice guideline by the infectious diseases society of america (idsa) and society for healthcare epidemiology of america (SHEA): 2021 focused update guidelines on management of Clostridioides difficile infection in adults. Clin. Infect. Dis. 2021 73 5 e1029 e1044 10.1093/cid/ciab549 34164674
    [Google Scholar]
  75. eclomycin (demeclocycline hydrochloride) tablet. 2025 Available from: https://www.fda.gov/drugsatfda
/content/journals/cmc/10.2174/0109298673381785251008222034
Loading
/content/journals/cmc/10.2174/0109298673381785251008222034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test