Skip to content
2000
Volume 33, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted a global health crisis, necessitating diverse therapeutic strategies. This review explores the integration of Traditional Chinese Medicine (TCM) with conventional medicine in managing COVID-19, highlighting the potential synergistic effects of combining these approaches. TCM formulations such as Lian Hua Qing Wen capsules and Shu Feng Jie Du capsules have shown promise in alleviating symptoms and enhancing recovery rates in COVID-19 patients through their antiviral, anti-inflammatory, and immunomodulatory properties. Key components such as glycyrrhizin, quercetin, and resveratrol, along with fungal, animal, and mineral preparations, contribute to the therapeutic efficacy of TCM. Some individual polyphenolics, found in TCM formulations, significantly contribute to anti-SARS- CoV-2 effect: their EC values range from 4.5 µmol/L (baicalein) to 83.4 µmol/L (quercetin), depending on the types of cells used and the treatment period. The review emphasizes the importance of rigorous scientific research to validate the effectiveness and safety of TCM treatments and the need for standardized protocols to ensure their consistent use. The quality and safety of Chinese herbal products still pose significant challenges that should be considered during their production and use. The integration of TCM with conventional medical practices offers a holistic approach to patient care, addressing the multifaceted pathophysiology of COVID-19 and enhancing overall treatment outcomes. Continued international collaborations and interdisciplinary research are essential to bridge the gap between traditional and modern medicine, fostering a more inclusive healthcare system.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673378502250707131529
2025-07-28
2026-02-22
Loading full text...

Full text loading...

References

  1. ZuZ.Y. JiangM.D. XuP.P. ChenW. NiQ.Q. LuG.M. ZhangL.J. Coronavirus disease 2019 (COVID-19): A perspective from China.Radiology20202962E15E2532083985
    [Google Scholar]
  2. ZhuN. ZhangD. WangW. LiX. YangB. SongJ. ZhaoX. HuangB. ShiW. LuR. NiuP. ZhanF. MaX. WangD. XuW. WuG. GaoG.F. TanW. A novel coronavirus from patients with pneumonia in China, 2019.N. Engl. J. Med.2020382872773331978945
    [Google Scholar]
  3. WuF. ZhaoS. YuB. ChenY.M. WangW. SongZ.G. HuY. TaoZ.W. TianJ.H. PeiY.Y. YuanM.L. ZhangY.L. DaiF.H. LiuY. WangQ.M. ZhengJ.J. XuL. HolmesE.C. ZhangY.Z. A new coronavirus associated with human respiratory disease in China.Nature2020579779826526932015508
    [Google Scholar]
  4. ZhouP. YangX-L. WangX-G. HuB. ZhangL. ZhangW. SiH-R. ZhuY. LiB. HuangC-L. ChenH-D. ChenJ. LuoY. GuoH. JiangR-D. LiuM-Q. ChenY. ShenX-R. WangX. ZhengX-S. ZhaoK. ChenQ-J. DengF. LiuL-L. YanB. ZhanF-X. WangY-Y. XiaoG. ShiZ-L. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin.bioRxiv20222020.2001
    [Google Scholar]
  5. LiQ. GuanX. WuP. WangX. ZhouL. TongY. RenR. LeungK.S.M. LauE.H.Y. WongJ.Y. XingX. XiangN. WuY. LiC. ChenQ. LiD. LiuT. ZhaoJ. LiuM. TuW. ChenC. JinL. YangR. WangQ. ZhouS. WangR. LiuH. LuoY. LiuY. ShaoG. LiH. TaoZ. YangY. DengZ. LiuB. MaZ. ZhangY. ShiG. LamT.T.Y. WuJ.T. GaoG.F. CowlingB.J. YangB. LeungG.M. FengZ. Early transmission dynamics in wuhan, China, of novel coronavirus–infected pneumonia.N. Engl. J. Med.2020382131199120710.1056/NEJMoa200131631995857
    [Google Scholar]
  6. TianS. HuN. LouJ. ChenK. KangX. XiangZ. ChenH. WangD. LiuN. LiuD. ChenG. ZhangY. LiD. LiJ. LianH. NiuS. ZhangL. ZhangJ. Characteristics of COVID-19 infection in Beijing.J. Infect.202080440140610.1016/j.jinf.2020.02.01832112886
    [Google Scholar]
  7. Coronavirus disease (COVID-19) epidemiological updates and monthly operational updates.2020Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
  8. KabiA.K. PalM. GujjarappaR. MalakarC.C. RoyM. Overview of hydroxychloroquine and remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2).J. Heterocycl. Chem.202360216518210.1002/jhet.4541
    [Google Scholar]
  9. PandolfiS. ChirumboloS. RicevutiG. ValdenassiL. BjørklundG. LysiukR. DoşaM.D. LenchykL. FazioS. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal.Basic Clin. Pharmacol. Toxicol.2022130222523910.1111/bcpt.1369034811895
    [Google Scholar]
  10. GasmiA. NoorS. MenzelA. KhanykN. SemenovaY. LysiukR. BeleyN. BolibrukhL. Gasmi BenahmedA. StorchyloO. BjørklundG. Potential drugs in COVID-19 management.Curr. Med. Chem.202431223245326410.2174/092986733166623071715410137461346
    [Google Scholar]
  11. LiuS. ZhuJ.J. LiJ.C. The interpretation of human body in traditional Chinese medicine and its influence on the characteristics of TCM theory.Anat. Rec. (Hoboken)2021304112559256510.1002/ar.2464334117702
    [Google Scholar]
  12. SunD. LiS. LiuY. ZhangY. MeiR. YangM. Differences in the origin of philosophy between Chinese medicine and western medicine: Exploration of the holistic advantages of Chinese medicine.Chin. J. Integr. Med.201319970671110.1007/s11655‑013‑1435‑523975136
    [Google Scholar]
  13. TangJ.L. LiuB.Y. MaK.W. Traditional Chinese medicine.Lancet200837296541938194010.1016/S0140‑6736(08)61354‑918930523
    [Google Scholar]
  14. DouZ. XiaY. ZhangJ. LiY. ZhangY. ZhaoL. HuangZ. SunH. WuL. HanD. LiuY. Syndrome differentiation and treatment regularity in traditional Chinese medicine for type 2 diabetes: A text mining analysis.Front. Endocrinol. (Lausanne)20211272803210.3389/fendo.2021.72803235002950
    [Google Scholar]
  15. DaiY.P. DuanY. LuY.T. NiX.T. ZhangY.K. LiJ. LiS.X. Nourishing Yin traditional Chinese medicine: potential role in the prevention and treatment of type 2 diabetes.Am. J. Transl. Res.202416123425410.62347/CVNI498838322552
    [Google Scholar]
  16. JiangH. LiM. DuK. MaC. ChengY. WangS. NieX. FuC. HeY. Traditional Chinese Medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction.Chin. Med.202116112910.1186/s13020‑021‑00539‑734857023
    [Google Scholar]
  17. ZhangX. QiuH. LiC. CaiP. QiF. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer.Biosci. Trends202115528329810.5582/bst.2021.0131834421064
    [Google Scholar]
  18. WangY. XieL. LiuF. DingD. WeiW. HanF. Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells.J. Ethnopharmacol.2024319Pt 211729937816474
    [Google Scholar]
  19. ChanH.H.L. NgT. Traditional Chinese Medicine (TCM) and allergic diseases.Curr. Allergy Asthma Rep.202020116732875353
    [Google Scholar]
  20. BaroniA. RuoccoE. RussoT. PiccoloV. GengL. ZhouH. ChenH.D. GaoX.H. The use of traditional Chinese medicine in some dermatologic diseases: Part I--Acne, psoriasis, and atopic dermatitis.Skinmed2015131323825842471
    [Google Scholar]
  21. TimisT.L. FlorianI.A. MitreaD.R. OrasanR. Mind- body interventions as alternative and complementary therapies for psoriasis: a systematic review of the English literature.Medicina (Kaunas)202157541033922733
    [Google Scholar]
  22. LiS. WuZ. LeW. Traditional Chinese medicine for dementia.Alzheimers Dement.20211761066107110.1002/alz.1225833682261
    [Google Scholar]
  23. DingM.R. QuY.J. HuB. AnH.M. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine.Biomed. Pharmacother.202215211320835660246
    [Google Scholar]
  24. SpatzE.S. WangY. BeckmanA.L. WuX. LuY. DuX. LiJ. XuX. DavidsonP.M. MasoudiF.A. SpertusJ.A. KrumholzH.M. JiangL. Traditional chinese medicine for acute myocardial infarction in Western medicine hospitals in China.Circ. Cardiovasc. Qual. Outcomes2018113e00419010.1161/CIRCOUTCOMES.117.00419029848478
    [Google Scholar]
  25. JiangY. ZhaoQ. LiL. HuangS. YiS. HuZ. Effect of Traditional Chinese medicine on the cardiovascular diseases.Front. Pharmacol.20221380630035387325
    [Google Scholar]
  26. JinF. RuanX. QinS. XuX. YangY. GuM. LiY. ChengJ. DuJ. YinX. MueckA.O. Traditional Chinese medicine Dingkun pill to increase fertility in women with a thin endometrium-a prospective randomized study.Front. Endocrinol. (Lausanne)202314116817537842304
    [Google Scholar]
  27. DaiY.J. WanS.Y. GongS.S. LiuJ.C. LiF. KouJ.P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19.Chin. J. Nat. Med.2020181288188933357718
    [Google Scholar]
  28. ChenK. ChenH. Traditional Chinese medicine for combating COVID-19.Front. Med.202014552953210.1007/s11684‑020‑0802‑932705405
    [Google Scholar]
  29. WangW.Y. XieY. ZhouH. LiuL. Contribution of traditional Chinese medicine to the treatment of COVID-19.Phytomedicine20218515327910.1016/j.phymed.2020.15327932675044
    [Google Scholar]
  30. HuangK. ZhangP. ZhangZ. YounJ.Y. WangC. ZhangH. CaiH. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms.Pharmacol. Ther.202122510784333811957
    [Google Scholar]
  31. HuangM. LiuY. XiongK. YangF. JinX. WangZ. ZhangJ. ZhangB. The role and advantage of traditional Chinese medicine in the prevention and treatment of COVID-19.J. Integr. Med.202321540741210.1016/j.joim.2023.08.00337625946
    [Google Scholar]
  32. NgC.Y.J. BunH.H. ZhaoY. ZhongL.L.D. TCM “medicine and food homology” in the management of post-COVID disorders.Front. Immunol.202314123430710.3389/fimmu.2023.123430737720220
    [Google Scholar]
  33. ZhaoL. TianC. YangY. GuanH. WeiY. ZhangY. KangX. ZhouL. LiQ. MaJ. WanL. ZhengY. TongX. Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19.Front. Med.20231761014102910.1007/s11684‑023‑1040‑838157191
    [Google Scholar]
  34. XianY. ZhangJ. BianZ. ZhouH. ZhangZ. LinZ. XuH. Bioactive natural compounds against human coronaviruses: a review and perspective.Acta Pharm. Sin. B20201071163117410.1016/j.apsb.2020.06.00232834947
    [Google Scholar]
  35. ChenZ. NakamuraT. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS.Phytother. Res.200418759259410.1002/ptr.148515305324
    [Google Scholar]
  36. LauT.F. LeungP.C. WongE.L.Y. FongC. ChengK.F. ZhangS.C. LamC.W.K. WongV. ChoyK.M. KoW.M. Using herbal medicine as a means of prevention experience during the SARS crisis.Am. J. Chin. Med.200533334535610.1142/S0192415X0500296516047553
    [Google Scholar]
  37. PoonP.M.K. WongC.K. FungK.P. FongC.Y.S. WongE.L.Y. LauJ.T.F. LeungP.C. TsuiS.K.W. WanD.C.C. WayeM.M.Y. AuS.W.N. LauC.B.S. LamC.W.K. Immunomodulatory effects of a traditional Chinese medicine with potential antiviral activity: a self-control study.Am. J. Chin. Med.2006341132110.1142/S0192415X0600359X16437735
    [Google Scholar]
  38. ZhengS. YangL. ZhouP. LiH. LiuF. ZhaoR. Recommendations and guidance for providing pharmaceutical care services during COVID-19 pandemic: A China perspective.Res. Social Adm. Pharm.20211711819182410.1016/j.sapharm.2020.03.01232249102
    [Google Scholar]
  39. WangY. ZhangD. DuG. DuR. ZhaoJ. JinY. FuS. GaoL. ChengZ. LuQ. HuY. LuoG. WangK. LuY. LiH. WangS. RuanS. YangC. MeiC. WangY. DingD. WuF. TangX. YeX. YeY. LiuB. YangJ. YinW. WangA. FanG. ZhouF. LiuZ. GuX. XuJ. ShangL. ZhangY. CaoL. GuoT. WanY. QinH. JiangY. JakiT. HaydenF.G. HorbyP.W. CaoB. WangC. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑932423584
    [Google Scholar]
  40. LaiC.C. ShihT.P. KoW.C. TangH.J. HsuehP.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int. J. Antimicrob. Agents202055310592410.1016/j.ijantimicag.2020.10592432081636
    [Google Scholar]
  41. JayaweeraM. PereraH. GunawardanaB. ManatungeJ. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy.Environ. Res.202018810981910.1016/j.envres.2020.10981932569870
    [Google Scholar]
  42. DhungelB. RahmanM.S. RahmanM.M. BhandariA.K.C. LeP.M. BivaN.A. GilmourS. Reliability of Early Estimates of the Basic Reproduction Number of COVID-19: A Systematic Review and Meta-Analysis.Int. J. Environ. Res. Public Health202219181161310.3390/ijerph19181161336141893
    [Google Scholar]
  43. GanasegeranK. JamilM.F.A. Ch’ngA.S.H. LooiI. PeariasamyK.M. Influence of Population Density for COVID-19 Spread in Malaysia: An Ecological Study.Int. J. Environ. Res. Public Health20211818986610.3390/ijerph1818986634574790
    [Google Scholar]
  44. RaoS.S. ParthasarathyK. SounderrajanV. NeelagandanK. AnbazhaganP. ChandramouliV. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review.3 Biotech2023131510.1007/s13205‑022‑03416‑8
    [Google Scholar]
  45. DaoT.L. HoangV.T. ColsonP. LagierJ.C. MillionM. RaoultD. LevasseurA. GautretP. SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence.J. Clin. Med.20211012263510.3390/jcm1012263534203844
    [Google Scholar]
  46. AhrenfeldtL.J. NielsenC.R. MöllerS. ChristensenK. Lindahl-JacobsenR. Burden and prevalence of risk factors for severe COVID-19 disease in the ageing European population - A SHARE-based analysis.Z Gesundh WissMoscow, RussiaRes Sq20203092081209010.1007/s10389‑021‑01537‑7
    [Google Scholar]
  47. BaiC. ZhongQ. GaoG.F. Overview of SARS-CoV-2 genome-encoded proteins.Sci. China Life Sci.202265228029410.1007/s11427‑021‑1964‑434387838
    [Google Scholar]
  48. BosonB. LegrosV. ZhouB. SiretE. MathieuC. CossetF.L. LavilletteD. DenollyS. The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles.J. Biol. Chem.202129610011110.1074/jbc.RA120.01617533229438
    [Google Scholar]
  49. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132034611326
    [Google Scholar]
  50. LeK. KannappanS. KimT. LeeJ.H. LeeH.R. KimK.K. Structural understanding of SARS-CoV-2 virus entry to host cells.Front. Mol. Biosci.202310128868610.3389/fmolb.2023.128868638033388
    [Google Scholar]
  51. ShyrZ.A. GorshkovK. ChenC.Z. ZhengW. Drug discovery strategies for SARS-CoV-2.J. Pharmacol. Exp. Ther.2020375112713832723801
    [Google Scholar]
  52. SpeiserD.E. BachmannM.F. COVID-19: Mechanisms of vaccination and immunity.Vaccines (Basel)20208340410.3390/vaccines803040432707833
    [Google Scholar]
  53. GuptaP. GuptaV. SinghC.M. SinghalL. Emergence of COVID-19 variants: An update.Cureus2023157e4129537539393
    [Google Scholar]
  54. VermaA. ManojkumarA. DhasmanaA. TripathiM.K. JaggiM. ChauhanS.C. ChauhanD.S. YallapuM.M. Recurring SARS-CoV-2 variants: An update on post-pandemic, co-infections and immune response.Nanotheranostics20248224726910.7150/ntno.9191038444741
    [Google Scholar]
  55. Sanz-MuñozI. Tamames-GómezS. Castrodeza-SanzJ. Eiros-BouzaJ.M. de Lejarazu-LeonardoR.O. Social distancing, lockdown and the wide use of mask; a magic solution or a double-edged sword for respiratory viruses epidemiology?Vaccines (Basel)20219659510.3390/vaccines906059534205119
    [Google Scholar]
  56. NicolaM. AlsafiZ. SohrabiC. KerwanA. Al-JabirA. IosifidisC. AghaM. AghaR. The socio-economic implications of the coronavirus pandemic (COVID-19): A review.Int. J. Surg.20207818519310.1016/j.ijsu.2020.04.01832305533
    [Google Scholar]
  57. Shaker ArdakaniE. Gilani LarimiN. Oveysi NejadM. Madani HosseiniM. ZargoushM. A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources.Omega202311410275010.1016/j.omega.2022.10275036090537
    [Google Scholar]
  58. BurnsJ. MovsisyanA. StratilJ.M. BiallasR.L. CoenenM. Emmert-FeesK.M. GeffertK. HoffmannS. HorstickO. LaxyM. KlingerC. KratzerS. LitwinT. NorrisS. PfadenhauerL.M. von PhilipsbornP. SellK. StadelmaierJ. VerboomB. VossS. WabnitzK. RehfuessE. International travel-related control measures to contain the COVID-19 pandemic: a rapid review.Cochrane Database Syst. Rev.202133CD01371733763851
    [Google Scholar]
  59. ColvilleS. LockeyS. GillespieN. Jane KellyS. Compliance with COVID-19 preventative health measures in the United Kingdom: a latent profile analysis.Health Promot. Int.2024392daae00710.1093/heapro/daae00738430508
    [Google Scholar]
  60. AmanpourS. The rapid development and early success of COVID-19 vaccines have raised hopes for accelerating the cancer treatment mechanism.Arch. Razi Inst.20217611633818952
    [Google Scholar]
  61. FilipR. Gheorghita PuscaseluR. Anchidin-NorocelL. DimianM. SavageW.K. Global challenges to public health care systems during the COVID-19 pandemic: A review of pandemic measures and problems.J. Pers. Med.2022128129510.3390/jpm1208129536013244
    [Google Scholar]
  62. JindalM. ChaiyachatiK.H. FungV. MansonS.M. MortensenK. Eliminating health care inequities through strengthening access to care.Health Serv. Res.202358Suppl 330031010.1111/1475‑6773.14202
    [Google Scholar]
  63. RasulG. NepalA.K. HussainA. MaharjanA. JoshiS. LamaA. GurungP. AhmadF. MishraA. SharmaE. Socio-economic implications of COVID-19 pandemic in South Asia: Emerging risks and growing challenges.Front. Sociol.2021662969333869579
    [Google Scholar]
  64. SunM. YanS. CaoT. ZhangJ. The impact of COVID-19 pandemic on the world’s major economies: based on a multi-country and multi-sector CGE model.Front. Public Health202412133867738566793
    [Google Scholar]
  65. NimavatN. HasanM.M. CharmodeS. MandalaG. ParmarG.R. BhanguR. KhanI. SinghS. AgrawalA. ShahA. SachdevaV. COVID-19 pandemic effects on the distribution of healthcare services in India: A systematic review.World J. Virol.202211418619736159611
    [Google Scholar]
  66. BasuS. AshokG. DebroyR. RamaiahS. LivingstoneP. AnbarasuA. Impact of the COVID-19 pandemic on routine vaccine landscape: A global perspective.Hum. Vaccin. Immunother.2023191219965610.1080/21645515.2023.219965637078597
    [Google Scholar]
  67. BaralS.D. MishraS. DioufD. PhanuphakN. DowdyD. The public health response to COVID-19: balancing precaution and unintended consequences.Ann. Epidemiol.202046121310.1016/j.annepidem.2020.05.00132532367
    [Google Scholar]
  68. Clemente-SuárezV.J. Martínez-GonzálezM.B. Benitez-AgudeloJ.C. Navarro-JiménezE. Beltran-VelascoA.I. RuisotoP. Diaz ArroyoE. Laborde-CárdenasC.C. Tornero-AguileraJ.F. The impact of the COVID-19 pandemic on mental disorders. A critical review.Int. J. Environ. Res. Public Health202118191004110.3390/ijerph18191004134639341
    [Google Scholar]
  69. JamesL.E. Welton-MitchellC. NoelJ.R. JamesA.S. Integrating mental health and disaster preparedness in intervention: a randomized controlled trial with earthquake and flood-affected communities in Haiti.Psychol. Med.202050234235210.1017/S003329171900016330782236
    [Google Scholar]
  70. NicolaM. O’NeillN. SohrabiC. KhanM. AghaM. AghaR. Evidence based management guideline for the COVID-19 pandemic - Review article.Int. J. Surg.20207720621610.1016/j.ijsu.2020.04.00132289472
    [Google Scholar]
  71. ZouQ. ChenY. QinH. TangR. HanT. GuoZ. ZhaoJ. XuD. The role and mechanism of TCM in the prevention and treatment of infectious diseases.Front. Microbiol.202314128636410.3389/fmicb.2023.128636438033575
    [Google Scholar]
  72. YangZ. LiuY. WangL. LinS. DaiX. YanH. GeZ. RenQ. WangH. ZhuF. WangS. Traditional Chinese medicine against COVID-19: Role of the gut microbiota.Biomed. Pharmacother.202214911278710.1016/j.biopha.2022.11278735279010
    [Google Scholar]
  73. LiM. YangX. LiK. XieY. Traditional Chinese medicine for novel coronavirus pneumonia treatment: main force or supplement?Trad. Med. Res.20205262-6410.53388/TMR20200204158
    [Google Scholar]
  74. PaltraS. ConradT.O.F. In.Adv. Respir. Med.2024921667610.3390/arm9201000938247553
    [Google Scholar]
  75. GodwinP.O. PolsonettiB. CaronM.F. OppeltT.F. Remdesivir for the treatment of COVID-19: A narrative review.Infect. Dis. Ther.202413111910.1007/s40121‑023‑00900‑338193988
    [Google Scholar]
  76. HershE.V. MooreP.A. RossG.L. Over-the-counter analgesics and antipyretics: A critical assessment.Clin. Ther.200022550054810.1016/S0149‑2918(00)80043‑010868553
    [Google Scholar]
  77. YangY. IslamM.S. WangJ. LiY. ChenX. Traditional chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective.Int. J. Biol. Sci.202016101708171710.7150/ijbs.4553832226288
    [Google Scholar]
  78. LiangC. HuiN. LiuY. QiaoG. LiJ. TianL. JuX. JiaM. LiuH. CaoW. YuP. LiH. RenX. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic.Phytomed. Plus20211210002710.1016/j.phyplu.2021.10002735399819
    [Google Scholar]
  79. Sadeghi DousariA. Karimian AmroabadiM. Soofi NeyestaniZ. Taati MoghadamM. SatarzadehN. The use of Ephedra herbs in the treatment of COVID-19.Avicenna J. Phytomed.202313323123937654998
    [Google Scholar]
  80. YangL. LiY. MiaoJ. WangL. FuH. LiQ. WenW. ZhangZ. SongR. LiuX. WangH. CuiH. Network pharmacology studies on the effect of Chai-Ling decoction in coronavirus disease 2019.Traditional Medicine Research202053145-15910.53388/TMR20200324170
    [Google Scholar]
  81. BjørklundG. LysiukR. SemenovaY. LenchykL. DubN. DoşaM.D. HanganT. Herbal substances with antiviral effects: Features and prospects for the treatment of viral diseases with emphasis on pro-inflammatory cytokines.Curr. Med. Chem.202431439340910.2174/092986733066623012512175836698239
    [Google Scholar]
  82. ChengL. LiF. MaR. HuX. Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-κB.Int. Immunopharmacol.201528149449910.1016/j.intimp.2015.07.01126209933
    [Google Scholar]
  83. CuiH. LiY.T. GuoL.Y. LiuX.G. WangL.S. JiaJ.W. LiaoJ. MiaoJ. ZhangZ.Y. WangL. WangH.W. WenW.B. Traditional Chinese medicine for treatment of coronavirus disease 2019: a review.Trad. Med. Res.20205265-7310.53388/TMR20200222165
    [Google Scholar]
  84. BrosnahanS.B. JonkmanA.H. KuglerM.C. MungerJ.S. KaufmanD.A. COVID-19 and Respiratory System Disorders.Arterioscler. Thromb. Vasc. Biol.202040112586259710.1161/ATVBAHA.120.31451532960072
    [Google Scholar]
  85. FanS.J. LiaoJ.K. WeiL. WangB.Y. KaiL. TanD.X. Treatment efficacy of Lianhua Qingwen capsules for eraly-stage COVID-19.Am. J. Transl. Res.20221421332133835273735
    [Google Scholar]
  86. ZhangL. MaY. ShiN. TongL. LiuS. JiX. ChenR. FanY. LiangN. GeY. GaoH. ChenG. WangW. ZhangH. WangY. WangY. Effect of Qingfei Paidu decoction combined with Western medicine treatments for COVID-19: A systematic review and meta-analysis.Phytomedicine202210215416610.1016/j.phymed.2022.15416635636170
    [Google Scholar]
  87. WangX. GengZ. BaoY. ZhongJ. MaJ. CuiX. ShiY. Shufeng Jiedu capsule alleviates influenza A (H1N1) virus induced acute lung injury by regulating the lung inflammatory microenvironment.Heliyon20241012e3323710.1016/j.heliyon.2024.e3323739021925
    [Google Scholar]
  88. GibsonP.G. QinL. PuahS.H. COVID -19 acute respiratory distress syndrome ( ARDS ): clinical features and differences from typical pre- COVID -19 ARDS.Med. J. Aust.202021325456.e110.5694/mja2.5067432572965
    [Google Scholar]
  89. XuX.W. WuX.X. JiangX.G. XuK.J. YingL.J. MaC.L. LiS.B. WangH.Y. ZhangS. GaoH.N. ShengJ.F. CaiH.L. QiuY.Q. LiL.J. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series.BMJ2020368m60610.1136/bmj.m60632075786
    [Google Scholar]
  90. ZhangQ. CaoF. WangY. XuX. SunY. LiJ. QiX. SunS. JiG. SongB. The efficacy and safety of Jinhua Qinggan granule (JHQG) in the treatment of coronavirus disease 2019 (COVID-19).Medicine (Baltimore)20209924e2053110.1097/MD.000000000002053132541475
    [Google Scholar]
  91. SongY. YaoC. YaoY. HanH. ZhaoX. YuK. LiuL. XuY. LiuZ. ZhouQ. WangY. MaZ. ZhengY. WuD. TangZ. ZhangM. PanS. ChaiY. SongY. ZhangJ. PanL. LiuY. YuH. YuX. ZhangH. WangX. DuZ. WanX. TangY. TianY. ZhuY. WangH. YanX. LiuZ. ZhangB. ZhongN. ShangH. BaiC. XueBiJing injection versus placebo for critically Ill patients with severe community-acquired pneumonia: A randomized controlled trial.Crit. Care Med.2019479e735e74310.1097/CCM.000000000000384231162191
    [Google Scholar]
  92. AnX. XuX. XiaoM. MinX. LyuY. TianJ. KeJ. LangS. ZhangQ. FanA. LiuB. ZhangY. HuY. ZhouY. ShaoJ. LiX. LianF. TongX. Efficacy of jinhua qinggan granules combined with Western medicine in the treatment of confirmed and suspected COVID-19: A randomized controlled trial.Front. Med. (Lausanne)2021872805510.3389/fmed.2021.72805534712679
    [Google Scholar]
  93. BishtD. RashidM. AryaR.K.K. KumarD. ChaudharyS.K. RanaV.S. SethiyaN.K. Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight.Phytomed. Plus20222110020610.1016/j.phyplu.2021.10020635403088
    [Google Scholar]
  94. DarM. SwamyL. GavinD. TheodoreA. Mechanical-ventilation supply and options for the COVID-19 pandemic. Leveraging all available resources for a limited resource in a crisis.Ann. Am. Thorac. Soc.202118340841610.1513/AnnalsATS.202004‑317CME33202144
    [Google Scholar]
  95. ZhangW. MaL. XieW. LiX. ZhangJ. SunJ. Advances in the application of traditional Chinese medicine during the COVID-19 recovery period: A review.Medicine (Baltimore)202410314e3768310.1097/MD.000000000003768338579075
    [Google Scholar]
  96. ZhangD. ZhangX. PengB. DengS. WangY. YangL. ZhangK. LingC. WuK. Network pharmacology suggests biochemical rationale for treating COVID-19 symptoms with a Traditional Chinese Medicine.Commun. Biol.20203146610.1038/s42003‑020‑01190‑y32811894
    [Google Scholar]
  97. BaiY. YaoL. WeiT. TianF. JinD.Y. ChenL. WangM. Presumed asymptomatic carrier transmission of COVID-19.JAMA2020323141406140710.1001/jama.2020.256532083643
    [Google Scholar]
  98. ChanK.W. WongV.T. TangS.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese–Western medicine for the management of 2019 novel coronavirus disease.Am. J. Chin. Med.202048373776210.1142/S0192415X2050037832164424
    [Google Scholar]
  99. YangZ.H. WangB. MaQ. WangL. LinY.X. YanH.F. FanZ.X. ChenH.J. GeZ. ZhuF. WangH.J. ZhangB.N. SunH.D. FengL.M. Potential mechanisms of action of chinese patent medicines for COVID-19: A review.Front. Pharmacol.20211266840710.3389/fphar.2021.668407
    [Google Scholar]
  100. WuJ. CaiK. ChenZ. HouW. WangQ. ChenH. XieZ. LiaoQ. Identification and screening of potential anti-pneumonia active ingredients and targets of Qing-Kai-Ling oral liquid via UHPLC-Q-Exactive Orbitrap mass spectrometry based on data post-processing.J. Chromatogr. A2024173646539110.1016/j.chroma.2024.46539139332271
    [Google Scholar]
  101. XuedongA.N. LinaM. PingX. WenS.U. BeibeiW. LeiyaK. ZequanZ. MengQ.I. SongH.U. JingC. XiujuanL.I. JinweiL. JuanZ. JieQ. DanL. GuangweiL. YouqinY. GuipingY. DandanD. WeiZ. JunxiuT. DeJ. XiaolinT. LiW. Effects of Shengmai Yin on pulmonary and cardiac function in coronavirus disease 2019 convalescent patients with cardiopulmonary symptoms: a randomized, double blind, multicenter control trial.J. Tradit. Chin. Med.202343114014536640005
    [Google Scholar]
  102. YuJ.S. HoC.H. HsuY.C. WangJ.J. HsiehC.L. Traditional Chinese medicine treatments for upper respiratory tract infections/common colds in Taiwan.Eur. J. Integr. Med.20146553854410.1016/j.eujim.2014.06.00332288884
    [Google Scholar]
  103. HuangS.T. LaiH.C. LinY.C. HuangW.T. HungH.H. OuS.C. LinH.J. HungM.C. Principles and treatment strategies for the use of Chinese herbal medicine in patients at different stages of coronavirus infection.Am. J. Cancer Res.20201072010203132774998
    [Google Scholar]
  104. LiC. LinG. ZuoZ. Pharmacological effects and pharmacokinetics properties of Radix Scutellariae and its bioactive flavones.Biopharm. Drug Dispos.201132842744510.1002/bdd.77121928297
    [Google Scholar]
  105. ChiyoN. SekiH. KanamotoT. UedaH. KojomaM. MuranakaT. Glycyrrhizin production in licorice hairy roots based on metabolic redirection of triterpenoid biosynthetic pathway by genome editing.Plant Cell Physiol.202465218519810.1093/pcp/pcad16138153756
    [Google Scholar]
  106. HuanC. XuY. ZhangW. GuoT. PanH. GaoS. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice.Front. Pharmacol.20211268067410.3389/fphar.2021.68067434295250
    [Google Scholar]
  107. DasA. KhanS. RoyS. DasS. Phytochemicals for mitigating the COVID-19 crisis: evidence from pre-clinical and clinical studies.Explor. Drug Sci.2023133637610.37349/eds.2023.00024
    [Google Scholar]
  108. van de SandL. BormannM. AltM. SchipperL. HeilinglohC.S. SteinmannE. TodtD. DittmerU. ElsnerC. WitzkeO. KrawczykA. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease.Viruses202113460910.3390/v1304060933918301
    [Google Scholar]
  109. LuoP. LiuD. LiJ. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19.Int. J. Antimicrob. Agents202055610599510.1016/j.ijantimicag.2020.10599532335281
    [Google Scholar]
  110. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules2406112330901869
    [Google Scholar]
  111. LinY. YangX. LuM. ZhengW. ZhangJ. ZhuangH. HuaZ.C. Herbal compound triptolide synergistically enhanced antitumor activity of vasostatin120–180.Anticancer Drugs201324994595710.1097/CAD.0b013e328365186223958791
    [Google Scholar]
  112. van BrummelenR. van BrummelenA.C. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 – A formulator’s perspective.Biomed. Pharmacother.202214811276710.1016/j.biopha.2022.11276735240527
    [Google Scholar]
  113. RossiG.A. SaccoO. CapizziA. MastromarinoP. Can resveratrol-inhaled formulations be considered potential adjunct treatments for COVID-19?Front. Immunol.20211267095510.3389/fimmu.2021.67095534093569
    [Google Scholar]
  114. ZhangQ. HuangH. QiuM. WuZ. XinZ. CaiX. ShangQ. LinJ. ZhangD. HanL. Traditional uses, pharmacological effects, and molecular mechanisms of licorice in potential therapy of COVID-19.Front. Pharmacol.20211271975810.3389/fphar.2021.71975834899289
    [Google Scholar]
  115. ChungV.C.H. MaP.H.X. LauC.H. WongS.Y.S. YeohE.K. GriffithsS.M. Views on traditional Chinese medicine amongst Chinese population: A systematic review of qualitative and quantitative studies.Health Expect.201417562263610.1111/j.1369‑7625.2012.00794.x22647085
    [Google Scholar]
  116. LuL. LuT. TianC. ZhangX. AI: Bridging ancient wisdom and modern innovation in traditional chinese medicine.JMIR Med. Inform.202412e5849110.2196/5849138941141
    [Google Scholar]
  117. MatosL.C. MachadoJ.P. MonteiroF.J. GretenH.J. Understanding traditional chinese medicine therapeutics: An overview of the basics and clinical applications.Healthcare (Basel)20219325710.3390/healthcare903025733804485
    [Google Scholar]
  118. LuA.P. JiaH.W. XiaoC. LuQ.P. Theory of traditional chinese medicine and therapeutic method of diseases.World J. Gastroenterol.200410131854185610.3748/wjg.v10.i13.185415222022
    [Google Scholar]
  119. WangH. LiuX. WuY. YangC. ChenX. WangW. Efficacy and safety of integrated traditional Chinese and Western medicine for the treatment of infant bronchiolitis: A systematic review, meta-analysis and GRADE evaluation.Medicine (Baltimore)202210130e2953110.1097/MD.000000000002953135905219
    [Google Scholar]
  120. LiuY. CavicchiA. Croci AngeliniE. The cost-benefit analysis of the feasibility of introducing TCM practices into several European national healthcare systems.2015Available from: -
  121. FungF.Y. LinnY.C. Developing traditional chinese medicine in the era of evidence-based medicine: current evidences and challenges.Evid. Based Complement. Alternat. Med.201520151910.1155/2015/42503725949261
    [Google Scholar]
  122. QiF. TangW. Traditional Chinese medicine for treatment of novel infectious diseases: Current status and dilemma.Biosci. Trends202115420120434193750
    [Google Scholar]
  123. YaoC. YangY. TongX. The role of traditional Chinese medicine in the prevention and treatment of coronavirus disease 2019.Med Rev20212211511810.1515/mr‑2022‑0003
    [Google Scholar]
  124. LingS. XuJ.W. Model organisms and traditional chinese medicine syndrome models.Evid. Based Complement. Alternat. Med.2013201376198724381636
    [Google Scholar]
  125. KeS.X. The principles of health, illness and treatment - The key concepts from “The Yellow Emperor’s Classic of Internal Medicine”.J. Ayurveda Integr. Med.202314110063736460575
    [Google Scholar]
  126. DuboisJ.C. Epidemic diseases and Chinese medicine: Example of SARS and COVID-19: Part two.Chinese Medicine and Culture20203312113210.4103/CMAC.CMAC_32_2037641673
    [Google Scholar]
  127. ChengK.F. LeungP.C. What happened in China during the 1918 influenza pandemic?Int. J. Infect. Dis.200711436036417379558
    [Google Scholar]
  128. PhelpsM. PernerM.L. PitzerV.E. AndreasenV. JensenP.K.M. SimonsenL. Cholera epidemics of the past offer new insights into an old enemy.J. Infect. Dis.2018217464164929165706
    [Google Scholar]
  129. TaoZ. YangY. ShiW. XueM. YangW. SongZ. YaoC. YinJ. ShiD. ZhangY. CaiY. TongC. YuanY. Complementary and alternative medicine is expected to make greater contribution in controlling the prevalence of influenza.Biosci. Trends20137525325624241177
    [Google Scholar]
  130. KageyamaY. AidaK. KawauchiK. MorimotoM. EbisuiT. AkiyamaT. NakamuraT. Jinhua Qinggan granule, a Chinese herbal medicine against COVID-19, induces rapid changes in the neutrophil/lymphocyte ratio and plasma levels of IL-6 and IFN-γ: An open-label, single-arm pilot study.World Acad. Sci. J.202141210.3892/wasj.2021.137
    [Google Scholar]
  131. ZhaoZ. LiY. ZhouL. ZhouX. XieB. ZhangW. SunJ. Prevention and treatment of COVID-19 using traditional chinese medicine: A review.Phytomedicine20218515330810.1016/j.phymed.2020.15330832843234
    [Google Scholar]
  132. ZhuangW. FanZ. ChuY. WangH. YangY. WuL. SunN. SunG. ShenY. LinX. GuoG. XiS. Chinese patent medicines in the treatment of coronavirus disease 2019 (COVID-19) in China.Front Pharmacol202011106610.3389/fphar.2020.01066
    [Google Scholar]
  133. LiuJ. DongF. RobinsonN. State-of-the-art evidence of traditional Chinese medicine for treating coronavirus disease 2019.J. Tradit. Chin. Med. Sci.2022912610.1016/j.jtcms.2022.01.005
    [Google Scholar]
  134. LyuM. FanG. XiaoG. WangT. XuD. GaoJ. GeS. LiQ. MaY. ZhangH. WangJ. CuiY. ZhangJ. ZhuY. ZhangB. Traditional Chinese medicine in COVID-19.Acta Pharm. Sin. B202111113337336310.1016/j.apsb.2021.09.00834567957
    [Google Scholar]
  135. The U.S. government does not review or approve the safety and science of all studies listed on this website.2019Available from: https://clinicaltrials.gov/
  136. DhamaK. KhanS. TiwariR. SircarS. BhatS. MalikY. SinghK. ChaicumpaW. Bonilla-AldanaD. Rodriguez-MoralesA. Coronavirus Disease 2019- COVID-19.Clin. Microbiol. Rev.2020334e000282010.1128/CMR.00028‑20
    [Google Scholar]
  137. LiY. QinY. ChenN. GeL. WangQ. AboudouT. HanJ. HouL. CaoL. LiR. LiM. MiN. XieP. WuS. HuL. LiX. SongZ. JiJ. ZhangZ. YangK. Use of traditional Chinese medicine for the treatment and prevention of COVID-19 and rehabilitation of COVID-19 patients: An evidence mapping study.Front. Pharmacol.202314106987910.3389/fphar.2023.106987936744266
    [Google Scholar]
  138. XiongX. LvG. JiangB. LuK. Editorial: From randomized clinical trials to real-world data and big data sciences: Generating evidence-based medicine for value in western and herbal medicines.Front. Public Health202311112939910.3389/fpubh.2023.112939936860391
    [Google Scholar]
  139. WangJ. GuoY. LiG.L. Current status of standardization of traditional chinese medicine in China.Evid. Based Complement. Alternat. Med.20162016912310327110268
    [Google Scholar]
  140. LiangZ. HuH. LiJ. YaoD. WangY. UngC.O.L. Advancing the regulation of traditional and complementary medicine products: A comparison of five regulatory systems on traditional medicines with a long history of use.Evid. Based Complement. Alternat. Med.20212021583394534745290
    [Google Scholar]
  141. DingX. FanL.L. ZhangS.X. MaX.X. MengP.F. LiL.P. HuangM.Y. GuoJ.L. ZhongP.Z. XuL.R. Traditional chinese medicine in treatment of COVID-19 and viral disease: Efficacies and clinical evidence.Int. J. Gen. Med.2022158353836336465269
    [Google Scholar]
  142. LeeE.L. RichardsN. HarrisonJ. BarnesJ. Prevalence of use of traditional, complementary and alternative medicine by the general population: A systematic review of national studies published from 2010 to 2019.Drug Saf.202245771373535788539
    [Google Scholar]
  143. LinS.K. LaiJ.N. Enhancing traditional chinese medicine healthcare system in taiwan post-COVID-19 pandemic: A strategic focus on specialization.J. Formos. Med. Assoc.2024123Suppl. 3S207S21410.1016/j.jfma.2024.09.01239307619
    [Google Scholar]
  144. HoendersR. GhelmanR. PortellaC. SimmonsS. LockeA. CramerH. Gallego-PerezD. JongM. A review of the WHO strategy on traditional, complementary, and integrative medicine from the perspective of academic consortia for integrative medicine and health.Front. Med. (Lausanne)202411139569810.3389/fmed.2024.139569838933107
    [Google Scholar]
  145. HuangN. HuangW. WuJ. LongS. LuoY. HuangJ. Possible opportunities and challenges for traditional Chinese medicine research in 2035.Front. Pharmacol.202415142630038974044
    [Google Scholar]
  146. ChenH. DuQ. Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection.Preprints2020
    [Google Scholar]
  147. Gharpure, M.O.; Rangnekar, H.D.; Gulgule, R.R. Herbal composition for covid 19 treatment. WO Patent WO2022123605A1, 2021. https://patents.google.com/?q=(TCM+herbal+formulations+COVID-19)&oq=TCM+herbal+formulations+COVID-19
  148. CoghlanM.L. MakerG. CrightonE. HaileJ. MurrayD.C. WhiteN.E. ByardR.W. BellgardM.I. MullaneyI. TrengoveR. AllcockR.J.N. NashC. HobanC. JarrettK. EdwardsR. MusgraveI.F. BunceM. CombinedD.N.A. Combined DNA, toxicological and heavy metal analyses provides an auditing toolkit to improve pharmacovigilance of traditional Chinese medicine (TCM).Sci. Rep.2015511747510.1038/srep1747526658160
    [Google Scholar]
  149. GaoK. SongY.P. SongA. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology.BioData Min.20201311910.1186/s13040‑020‑00229‑433292385
    [Google Scholar]
  150. LiX. QiuQ. LiM. LinH. CaoS. WangQ. ChenZ. JiangW. ZhangW. HuangY. LuoH. LuoL. Chemical composition and pharmacological mechanism of ephedra-glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19).Aging (Albany NY)20211344811483010.18632/aging.20262233581688
    [Google Scholar]
  151. ZhengQ. MuX. PanS. LuanR. ZhaoP. Ephedrae herba: A comprehensive review of its traditional uses, phytochemistry, pharmacology, and toxicology.J. Ethnopharmacol.202330711615310.1016/j.jep.2023.11615336641108
    [Google Scholar]
  152. TangS. RenJ. KongL. YanG. LiuC. HanY. SunH. WangX.J. Ephedrae Herba: A review of its phytochemistry, pharmacology, clinical application, and alkaloid toxicity.Molecules202328266310.3390/molecules2802066336677722
    [Google Scholar]
  153. PengW. XinR. LuoY. GeL. RenL. LiuY. WangG. ZhengJ. EVALUATION OF THE ACUTE AND SUBCHRONIC TOXICITY OF Aster tataricus L. F.Afr. J. Tradit. Complement. Altern. Med.2016136385310.21010/ajtcam.v13i6.828480359
    [Google Scholar]
  154. FanX.L. QinZ.P. WenJ.H. WangZ.Z. XiaoW. An updated and comprehensive review of the morphology, ethnomedicinal uses, phytochemistry, and pharmacological activity of Aster tataricus L. f.Heliyon20241015e3526710.1016/j.heliyon.2024.e3526739166058
    [Google Scholar]
  155. LinY. ZhaoW.R. ShiW.T. ZhangJ. ZhangK.Y. DingQ. ChenX.L. TangJ.Y. ZhouZ.Y. Pharmacological activity, pharmacokinetics, and toxicity of timosaponin AIII, a natural product isolated from Anemarrhena asphodeloides Bunge: A review.Front. Pharmacol.20201176410.3389/fphar.2020.0076432581782
    [Google Scholar]
  156. ZhangX.F. GaoN.N. LiuY.H. DuH. YangL. LiF. A study on the composition and toxicity changes of essential oil of Evodia rutaecarpa (Juss.) Benth. before and after processing.Pharm. J. Chin. PLA201127229232
    [Google Scholar]
  157. CaiQ. WeiJ. ZhaoW. ShiS. ZhangY. WeiR. ZhangY. LiW. WangQ. Toxicity of Evodiae fructus on rat liver mitochondria: the role of oxidative stress and mitochondrial permeability transition.Molecules20141912211682118210.3390/molecules19122116825521117
    [Google Scholar]
  158. LiangJ. ChenY. RenG. DongW. ShiM. XiongL. LiJ. DongJ. LiF. YuanJ. Screening hepatotoxic components in Euodia rutaecarpa by UHPLC-QTOF/MS based on the spectrum-toxicity relationship.Molecules2017228126410.3390/molecules2208126428749432
    [Google Scholar]
  159. ShanQ. TianG. HanX. HuiH. YamamotoM. HaoM. WangJ. WangK. SangX. QinL. ChenG. CaoG. Toxicity of Tetradium ruticarpum: subacute toxicity assessment and metabolomic identification of relevant biomarkers.Front. Pharmacol.20221380385510.3389/fphar.2022.80385535295336
    [Google Scholar]
  160. ShanQ. TianG. WangJ. HuiH. ShouQ. FuH. HaoM. WangK. WuX. CaoG. ChenG. QinL. Change in the active component of processed Tetradium ruticarpum extracts leads to improvement in efficacy and toxicity attenuation.J. Ethnopharmacol.202126411329210.1016/j.jep.2020.11329232841697
    [Google Scholar]
  161. BolarinwaI.F. OrfilaC. MorganM.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK.Food Chem.201415213313910.1016/j.foodchem.2013.11.00224444917
    [Google Scholar]
  162. MarziazM.L. FrazierK. GuidryP.B. RuizR.A. PetrikovicsI. HainesD.C. Comparison of brain mitochondrial cytochrome c oxidase activity with cyanide LD 50 yields insight into the efficacy of prophylactics.J. Appl. Toxicol.2013331505510.1002/jat.170921751223
    [Google Scholar]
  163. KumariN. Radha KumarM. PuriS. ZhangB. RaisN. PundirA. ChandranD. RamanP. DhumalS. DeyA. SenapathyM. KumarS. PokharelB.R. DeshmukhV. DamaleR.D. ThiyagarajanA. BalamurganV. SathishG. SinghS. LorenzoJ.M. Peach (Prunus persica (L.) Batsch) seeds and kernels as potential plant-based functional food ingredients: A review of bioactive compounds and health-promoting activities.Food Biosci.20235410291410.1016/j.fbio.2023.102914
    [Google Scholar]
  164. HeX.Y. WuL.J. WangW.X. XieP.J. ChenY.H. WangF. Amygdalin - A pharmacological and toxicological review.J. Ethnopharmacol.202025411271710.1016/j.jep.2020.11271732114166
    [Google Scholar]
  165. LiY. ChuF. LiP. JohnsonN. LiT. WangY. AnR. WuD. ChenJ. SuZ. GuX. DingX. Potential effect of Maxing Shigan decoction against coronavirus disease 2019 (COVID-19) revealed by network pharmacology and experimental verification.J. Ethnopharmacol.202127111385410.1016/j.jep.2021.11385433513419
    [Google Scholar]
  166. JongT.T. LeeM.R. HsiaoS.S. HsaiJ.L. WuT.S. ChiangS.T. CaiS.Q. Analysis of aristolochic acid in nine sources of Xixin, a traditional Chinese medicine, by liquid chromatography/atmospheric pressure chemical ionization/tandem mass spectrometry.J. Pharm. Biomed. Anal.200333483183710.1016/S0731‑7085(03)00310‑814623612
    [Google Scholar]
  167. JelakovićB. DikaŽ. ArltV.M. StiborovaM. PavlovićN.M. NikolićJ. ColetJ.M. VanherweghemJ.L. NortierJ.L. Balkan endemic nephropathy and the causative role of aristolochic acid.Semin. Nephrol.201939328429610.1016/j.semnephrol.2019.02.00731054628
    [Google Scholar]
  168. RebhanK. ErtlI.E. ShariatS.F. GrollmanA.P. RosenquistT. Aristolochic acid and its effect on different cancers in uro-oncology.Curr. Opin. Urol.202030568969510.1097/MOU.000000000000080632701724
    [Google Scholar]
  169. WangC.F. ChengX.D. GuJ.F. YuanJ.R. ZhaoB.J. ZhangL. ChenJ. FengL. JiaX.B. Research development of the chemical material basis of Alisma orientalis and its toxicity.Zhongguo Zhongyao Zazhi201540584084626087543
    [Google Scholar]
  170. BaillyC. Pharmacological properties and molecular targets of alisol triterpenoids from Alismatis rhizoma.Biomedicines2022108194510.3390/biomedicines1008194536009492
    [Google Scholar]
  171. YuY. MaC. BiK. YangG. XieP. WangJ. ChenX.H. A metabonomic analysis of urine from rats treated with rhizoma alismatis using ultra-performance liquid chromatography/mass spectrometry.Rapid Commun. Mass Spectrom.201125182633264010.1002/rcm.516323657958
    [Google Scholar]
  172. WangC.F. MaL. FengL. YinM.R. GuJ.F. JiaX.B. Evaluation of nephrotoxicity induced by total terpenoids from Alismatis Rhizoma on HK-2 cells in vitro and its induction of apoptosis.Zhongguo Zhongyao Zazhi201641349049728868869
    [Google Scholar]
  173. PengW. LiN. JiangE. ZhangC. HuangY. TanL. ChenR. WuC. HuangQ. A review of traditional and current processing methods used to decrease the toxicity of the rhizome of Pinellia ternata in traditional Chinese medicine.J. Ethnopharmacol.202229911569610.1016/j.jep.2022.11569636087845
    [Google Scholar]
  174. WangK.T. LeeM.C. ChuangW.C. Survey of Aconitum Alkaloids to Establish an Aconitum carmichaeli (Fu-Zi) Processing Procedure and Quality Index.Chemistry (Basel)202571810.3390/chemistry7010008
    [Google Scholar]
  175. KobayashiM. TakahashiH. HerndonD.N. PollardR.B. SuzukiF. Therapeutic effects of IL-12 combined with benzoylmesaconine, a non-toxic aconitine-hydrolysate, against herpes simplex virus type 1 infection in mice following thermal injury.Burns2003291374210.1016/S0305‑4179(02)00248‑612543043
    [Google Scholar]
  176. GuanH. XuY. MaC. ZhaoD. Pharmacology, toxicology, and rational application of cinnabar, realgar, and their formulations.Evid. Based Complement. Alternat. Med.2022202211510.1155/2022/636915036204126
    [Google Scholar]
  177. SchoofR.A. NielsenJ.B. Evaluation of methods for assessing the oral bioavailability of inorganic mercury in soil.Risk Anal.199717554555510.1111/j.1539‑6924.1997.tb00896.x9404045
    [Google Scholar]
  178. ZaguryG.J. BedeauxC. WelfringerB. Influence of mercury speciation and fractionation on bioaccessibility in soils.Arch. Environ. Contam. Toxicol.200956337137910.1007/s00244‑008‑9205‑718704252
    [Google Scholar]
  179. ShiJ.Z. KangF. WuQ. LuY.F. LiuJ. KangY.J. Nephrotoxicity of mercuric chloride, methylmercury and cinnabar-containing Zhu-Sha-An-Shen-Wan in rats.Toxicol. Lett.2011200319420010.1016/j.toxlet.2010.11.01521126564
    [Google Scholar]
  180. BjørklundG. AntonyakH. PolishchukA. SemenovaY. LesivM. LysiukR. PeanaM. Effect of methylmercury on fetal neurobehavioral development: an overview of the possible mechanisms of toxicity and the neuroprotective effect of phytochemicals.Arch. Toxicol.202296123175319910.1007/s00204‑022‑03366‑336063174
    [Google Scholar]
  181. Pharmacopedia of China.Beijing, ChinaPeople’s Press202018
    [Google Scholar]
  182. HuA.L. SongS. LiY. XuS.F. ZhangF. LiC. LiuJ. Mercury sulfide-containing Hua-Feng-Dan and 70W (Rannasangpei) protect against LPS plus MPTP-induced neurotoxicity and disturbance of gut microbiota in mice.J. Ethnopharmacol.202025411267410.1016/j.jep.2020.11267432105745
    [Google Scholar]
  183. LinP.Y. TangY.S. WangN.S. Effects of Cinnabar and Realgar in Angong Niuhuang powder on heat shock protein, nitric oxide synthase and inflammatory cytokines in contusion cerebral edema.Zhong Yao Cai200629545846116981459
    [Google Scholar]
  184. LiS. HuangH. LiZ. LiZ. HeZ. LiangH. Chromium removal capability and photosynthetic characteristics of Cyperus alternifolius and Coix lacryma-jobi L. in vertical flow constructed wetland treated with hexavalent chromium bearing domestic sewage.Water Sci. Technol.20177682203221210.2166/wst.2017.39629068350
    [Google Scholar]
  185. LiL. LiQ. TangY. LiS.L. ChengX. LiZ. WangX. LiZ. Effects of different nutritional conditions on accumulation and distribution of Cr in Coix lacryma-jobi L. in Cr6+-contaminated constructed wetland.Ecotoxicol. Environ. Saf.202122511276310.1016/j.ecoenv.2021.11276334544025
    [Google Scholar]
  186. SnitynskyĭV.V. SolohubL.I. AntoniakH.L. KopachukD.M. HerasymivM.H. Biological role of chromium in humans and animals.Ukr. Biokhim. Zh.19997125910609294
    [Google Scholar]
  187. ZhanJ. RenY. HuangY. JuX. LiuH. ChristieP. WuL. New insights into the key role of node I in thallium accumulation in seed of coix (Coix lacryma-jobi L.).Sci. Total Environ.202490816838910.1016/j.scitotenv.2023.16838937952669
    [Google Scholar]
  188. ZhaoQ. LiuH. WuL. ChristieP. WangX. RasoolG. PengG. Metal(loid) uptake and physiological response of Coix lacryma-jobi L. to soil potentially toxic elements in a polluted metal-mining area.Sci. Rep.20241411883310.1038/s41598‑024‑69652‑539138343
    [Google Scholar]
  189. KongD.D. LiX.Y. YanH.X. LuoJ.Y. YangM.H. Establishment of health risk assessment model for assessing medicinal and edible plants contaminated by heavy metals--take Astragali Radix, Codonopsis Radix and Laminariae Thallus as examples.Zhongguo Zhongyao Zazhi201944235042505032237335
    [Google Scholar]
  190. GaoJ. ZhangD. UwiringiyimanaE. ProshadR. UgurluA. Evaluation of trace element contamination and health risks of medicinal herbs collected from unpolluted and polluted areas in Sichuan Province, China.Biol. Trace Elem. Res.2021199114342435210.1007/s12011‑020‑02539‑433389620
    [Google Scholar]
  191. GongY. RenW. ZhangZ. Migration patterns and potential risk assessment of trace elements in the soil-plant system in the production area of the Chinese medicinal herb Scrophularia ningpoensis Hemsl.Toxics202412535510.3390/toxics1205035538787134
    [Google Scholar]
  192. Snityns’kyĭV.V. AntoniakH.L. Biochemical role of selenium.Ukr. Biokhim. Zh.19946653167747342
    [Google Scholar]
  193. LiS. BianF. YueL. JinH. HongZ. ShuG. Selenium-dependent antitumor immunomodulating activity of polysaccharides from roots of A. membranaceus. Int. J. Biol. Macromol.201469647210.1016/j.ijbiomac.2014.05.02024857867
    [Google Scholar]
  194. Antonyak, H.; Iskra, R.; Panas, N.; Lysiuk, R. Selenium. In: Trace elements and minerals in health and longevity. Malavolta M., Mocchegiani E. (Eds.).Springer20186398
    [Google Scholar]
  195. BjørklundG. ShanaidaM. LysiukR. AntonyakH. KlishchI. ShanaidaV. PeanaM. Selenium: An antioxidant with a critical role in anti-aging.Molecules20222719661310.3390/molecules2719661336235150
    [Google Scholar]
  196. WuJ.N. An illustrated chinese materia medica.Oxford University PressOxford University Press2005
    [Google Scholar]
  197. ZhouJ. XieG. YanX. Encyclopedia of traditional chinese medicines molecular structures, pharmacological activities, natural sources and applications.BerlinSpringer Nature20111455
    [Google Scholar]
  198. CommissionC.P. China medical science press.Medical Science2020
    [Google Scholar]
  199. UniProtKB taxonomy data.2020Available from: www.uniprot.org
  200. XuL. LiX. WangW. Chinese materia medica: combinations and applications.Elsevier Health SciencesDonica2002
    [Google Scholar]
  201. MYCOBANK Database.2018Available from: http://www.mycobank.org
  202. CheemaH.A. SohailA. FatimaA. ShahidA. ShahzilM. Ur RehmanM.E. AwanR.U. ChinnamS. NashwanA.J. Quercetin for the treatment of COVID-19 patients: A systematic review and meta-analysis.Rev. Med. Virol.2023332e242736779438
    [Google Scholar]
  203. LiuJ. ZhangL. Anti-inflammatory activity of Forsythia suspensa extract on human airway epithelial cells inflammation model.Nat. Product Res. Dev.20152712481253
    [Google Scholar]
  204. DengL. PangP. ZhengK. NieJ. XuH. WuS. ChenJ. ChenX. Forsythoside A controls influenza A virus infection and improves the prognosis by inhibiting virus replication in mice.Molecules201621552410.3390/molecules2105052427128889
    [Google Scholar]
  205. YangH.X. LiuQ.P. ZhouY.X. ChenY.Y. AnP. XingY.Z. ZhangL. JiaM. ZhangH. Forsythiasides: A review of the pharmacological effects.Front. Cardiovasc. Med.2022997149110.3389/fcvm.2022.97149135958429
    [Google Scholar]
  206. WeiW. DuH. ShaoC. ZhouH. LuY. YuL. WanH. HeY. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A.Front. Pharmacol.20191096110.3389/fphar.2019.0096131551774
    [Google Scholar]
  207. GadM.Z. AzabS.S. KhattabA.R. FaragM.A. Over a century since ephedrine discovery: an updated revisit to its pharmacological aspects, functionality and toxicity in comparison to its herbal extracts.Food Funct.202112209563958210.1039/D1FO02093E34533553
    [Google Scholar]
  208. WangH.L. ChenF.Q. WuL.J. Ephedrine ameliorates chronic obstructive pulmonary disease (COPD) through restraining endoplasmic reticulum (ER) stress in vitro and in vivo. Int. Immunopharmacol.202210310784210.1016/j.intimp.2021.10784234953449
    [Google Scholar]
  209. SuH. YaoS. ZhaoW. LiM. LiuJ. ShangW. XieH. KeC. HuH. GaoM. YuK. LiuH. ShenJ. TangW. ZhangL. XiaoG. NiL. WangD. ZuoJ. JiangH. BaiF. WuY. YeY. XuY. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients.Acta Pharmacol. Sin.20204191167117710.1038/s41401‑020‑0483‑632737471
    [Google Scholar]
  210. LiK. LiangY. ChengA. WangQ. LiY. WeiH. ZhouC. WanX. Antiviral properties of baicalin: a concise review.Rev. Bras. Farmacogn.202131440841910.1007/s43450‑021‑00182‑134642508
    [Google Scholar]
  211. WenY. WangY. ZhaoC. ZhaoB. WangJ. The pharmacological efficacy of baicalin in inflammatory diseases.Int. J. Mol. Sci.20232411931710.3390/ijms2411931737298268
    [Google Scholar]
  212. LiuX. XieW. ZhouH. ZhangH. JinY. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin.J. Integr. Med.202422662163610.1016/j.joim.2024.09.00339368944
    [Google Scholar]
  213. LatifR. WangC.Y. Andrographolide as a potent and promising antiviral agent.Chin. J. Nat. Med.2020181076076910.1016/S1875‑5364(20)60016‑433039055
    [Google Scholar]
  214. RajagopalK. VarakumarP. BaliwadaA. ByranG. Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach.Future J. Pharm. Sci.20206110410.1186/s43094‑020‑00126‑x33215042
    [Google Scholar]
  215. AdigunaS.P. PanggabeanJ.A. AtikanaA. UntariF. IzzatiF. BayuA. RosyidahA. RahmawatiS.I. PutraM.Y. Antiviral activities of andrographolide and its derivatives: mechanism of action and delivery system.Pharmaceuticals (Basel)20211411110210.3390/ph1411110234832884
    [Google Scholar]
  216. YiY.S. Potential benefits of ginseng against COVID-19 by targeting inflammasomes.J. Ginseng Res.202246672273010.1016/j.jgr.2022.03.00835399195
    [Google Scholar]
  217. YiY.S. Roles of ginsenosides in inflammasome activation.J. Ginseng Res.201943217217810.1016/j.jgr.2017.11.00530962733
    [Google Scholar]
  218. JenningsM.R. ParksR.J. Curcumin as an antiviral agent.Viruses20201211124210.3390/v1211124233142686
    [Google Scholar]
  219. ZahedipourF. HosseiniS.A. SathyapalanT. MajeedM. JamialahmadiT. Al-RasadiK. BanachM. SahebkarA. Potential effects of curcumin in the treatment of COVID -19 infection.Phytother. Res.202034112911292010.1002/ptr.673832430996
    [Google Scholar]
  220. WangB. LiM. GaoH. SunX. GaoB. ZhangY. YuL. Chemical composition of tetraploid Gynostemma pentaphyllum gypenosides and their suppression on inflammatory response by NF-κB/MAPKs/AP-1 signaling pathways.Food Sci. Nutr.2020821197120710.1002/fsn3.140732148825
    [Google Scholar]
  221. HuangW.C. WuS.J. YehK.W. LiouC.J. Gypenoside A from Gynostemma pentaphyllum attenuates airway inflammation and Th2 cell activities in a murine asthma model.Int. J. Mol. Sci.20222314769910.3390/ijms2314769935887041
    [Google Scholar]
  222. PingK. YangR. ChenH. XieS. XiangY. LiM. LuY. DongJ. Gypenoside XLIX activates the Sirt1/Nrf2 signaling pathway to inhibit NLRP3 inflammasome activation to alleviate septic acute lung injury.Inflammation2024481426010.1007/s10753‑024‑02041‑238717633
    [Google Scholar]
  223. HussainA. Recent trends on production sources, biosynthesis pathways and antiviral efficacies of artemisinin: A candidate phytomedicine against SARS-CoV-2.Curr. Pharm. Biotechnol.202324151859188036974406
    [Google Scholar]
  224. LiuH. LiZ. ZhangY. JiaL. CaiM. WangR. GuoC. Antiviral effects of artemisinin and its derivatives.Chin. Med. J. (Engl.)2023136242993299538018178
    [Google Scholar]
  225. ZhangJ. WuC. GaoL. DuG. QinX. Astragaloside IV derived from Astragalus membranaceus: A research review on the pharmacological effects.Adv. Pharmacol.2020878911210.1016/bs.apha.2019.08.00232089240
    [Google Scholar]
  226. LiangY. ChenB. LiangD. QuanX. GuR. MengZ. GanH. WuZ. SunY. LiuS. DouG. Pharmacological effects of astragaloside IV: A review.Molecules20232816611810.3390/molecules2816611837630371
    [Google Scholar]
  227. HuangX. ZhouY. LiY. WangT. ChenY. ZhouY. ZhouX. LiuQ. Astragaloside IV inhibits inflammation caused by influenza virus via reactive oxygen species/NOD-like receptor thermal protein domain associated protein 3/Caspase-1 signaling pathway.Immun. Inflamm. Dis.2024126e130910.1002/iid3.130938860765
    [Google Scholar]
  228. ChenL.G. YangL.L. WangC.C. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol.200846268869310.1016/j.fct.2007.09.09618029076
    [Google Scholar]
  229. Gutierrez-OrozcoF. FaillaM. Biological activities and bioavailability of mangosteen xanthones: a critical review of the current evidence.Nutrients2013583163318310.3390/nu508316323945675
    [Google Scholar]
  230. Ovalle-MagallanesB. Eugenio-PérezD. Pedraza-ChaverriJ. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update.Food Chem. Toxicol.2017109Pt 110212228842267
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673378502250707131529
Loading
/content/journals/cmc/10.2174/0109298673378502250707131529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test