Skip to content
2000
image of Connexin 43: Roles in the Pathophysiology of Cardiovascular Diseases and Attractive Target for New Drugs

Abstract

Connexin43 (Cx43), encoded by the GJA1 gene, plays a crucial role in the formation of hemichannels and the assembly of gap junctions between adjacent cells, facilitating the efficient transport of ions and small molecules. Increasingly studies have revealed the regulatory roles of Cx43 in endothelial cells. Cx43 is not only implicated in the normal function of endothelial cells such as regulating the endothelial barrier, promoting endothelial angiogenesis, regulating vascular tone, and other subtle regulations, but also contributed to endothelial dysfunction, including inflammatory responses, endothelial cell death, and increased endothelial permeability. Here we provide a summary of the current understanding of Cx43 in the pathogenesis of atherosclerosis, hypertension, stroke, and diabetes. In addition, the potential therapeutic approaches targeting Cx43 are also proposed.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673376287250822041453
2025-10-01
2025-12-25
Loading full text...

Full text loading...

References

  1. Neubauer K. Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022 387 3 391 398 10.1007/s00441‑021‑03471‑2 34014399
    [Google Scholar]
  2. Krüger-Genge A Blocki A Franke RP Jung F Vascular endothelial cell biology: An update. Int. J. Mol. Sci. 2019 20 18 4411 10.3390/ijms20184411
    [Google Scholar]
  3. Xu S. Ilyas I. Little P.J. Li H. Kamato D. Zheng X. Luo S. Li Z. Liu P. Han J. Harding I.C. Ebong E.E. Cameron S.J. Stewart A.G. Weng J. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol. Rev. 2021 73 3 924 967 10.1124/pharmrev.120.000096 34088867
    [Google Scholar]
  4. Medina-Leyte DJ. Zepeda-García O. Domínguez-Pérez M. González-Garrido A. Villarreal-Molina T. Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int. J. Mol. Sci. 2021 22 8 3850 10.3390/ijms22083850
    [Google Scholar]
  5. Hu X. De Silva T.M. Chen J. Faraci F.M. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ. Res. 2017 120 3 449 471 10.1161/CIRCRESAHA.116.308427 28154097
    [Google Scholar]
  6. Drera A Rodella L Brangi E Riccardi M Vizzardi E. Endothelial dysfunction in heart failure: What is its role? J. Clin. Med. 2024 13 9 2534 10.3390/jcm13092534
    [Google Scholar]
  7. Batta A. Hatwal J. Batta A. Verma S. Sharma Y.P. Atrial fibrillation and coronary artery disease: An integrative review focusing on therapeutic implications of this relationship. World J. Cardiol. 2023 15 5 229 243 10.4330/wjc.v15.i5.229 37274376
    [Google Scholar]
  8. Ajoolabady A. Pratico D. Ren J. Endothelial dysfunction: Mechanisms and contribution to diseases. Acta Pharmacol. Sin. 2024 45 10 2023 2031 10.1038/s41401‑024‑01295‑8 38773228
    [Google Scholar]
  9. Zhu Y. Gap junction-dependent and -independent functions of Connexin43 in biology. Biology 2022 11 2 283 10.3390/biology11020283 35205149
    [Google Scholar]
  10. Boengler K Leybaert L Ruiz-Meana M Schulz R. Connexin 43 in mitochondria: What do we really know about tts function? Front Physiol. 2022 13 928934 10.3389/fphys.2022.928934 35860665
    [Google Scholar]
  11. Kameritsch P Pogoda K. The role of Connexin 43 and pannexin 1 during acute inflammation. Front Physiol 2020 11 594097 10.3389/fphys.2020.594097 33192611
    [Google Scholar]
  12. Deng Z. Zhang Y. Zhang Q. Li X. Zeng W. Jun C. Yuan D. Function of connexin 43 and RhoA/LIMK2/Cofilin signaling pathway in transient changes of contraction and dilation of human umbilical arterial smooth muscle cells. Int. J. Biochem. Cell Biol. 2022 153 106326 10.1016/j.biocel.2022.106326 36330887
    [Google Scholar]
  13. Mannell H Kameritsch P Beck H Pfeifer A Pohl U Pogoda K. Cx43 promotes endothelial cell migration and angiogenesis via the tyrosine phosphatase SHP-2. Int. J. Mol. Sci. 2021 23 1 294 10.3390/ijms23010294 35008716
    [Google Scholar]
  14. Johnstone S. Isakson B. Locke D. Biological and biophysical properties of vascular connexin channels. Int. Rev. Cell Mol. Biol. 2009 278 69 118 10.1016/S1937‑6448(09)78002‑5 19815177
    [Google Scholar]
  15. Musil L.S. Goodenough D.A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 1993 74 6 1065 1077 10.1016/0092‑8674(93)90728‑9 7691412
    [Google Scholar]
  16. Shimura D. Shaw RM. GJA1-20k and mitochondrial dynamics. Front Physiol 2022 13 867358 10.3389/fphys.2022.867358 35399255
    [Google Scholar]
  17. Strauss R.E. Gourdie R.G. Cx43 and the actin cytoskeleton: Novel roles and implications for cell-cell junction-based barrier function regulation. Biomolecules 2020 10 12 1656 10.3390/biom10121656 33321985
    [Google Scholar]
  18. Haefliger JA Meda P Alonso F Endothelial connexins in developmental and pathological angiogenesis. Cold Spring Harb. Perspect. Med. 2022 12 5 a041158 10.1101/cshperspect.a041158 35074793
    [Google Scholar]
  19. Wettschureck N. Strilic B. Offermanns S. Passing the vascular barrier: Endothelial signaling processes controlling extravasation. Physiol. Rev. 2019 99 3 1467 1525 10.1152/physrev.00037.2018 31140373
    [Google Scholar]
  20. Claesson-Welsh L. Dejana E. McDonald D.M. Permeability of the endothelial barrier: Identifying and reconciling controversies. Trends Mol. Med. 2021 27 4 314 331 10.1016/j.molmed.2020.11.006 33309601
    [Google Scholar]
  21. Little T.L. Beyer E.C. Duling B.R. Connexin 43 and connexin 40 gap junctional proteins are present in arteriolar smooth muscle and endothelium in vivo. Am. J. Physiol. Heart Circ. Physiol. 1995 268 2 H729 H739 10.1152/ajpheart.1995.268.2.H729 7864199
    [Google Scholar]
  22. Strauss RE Mezache L Veeraraghavan R Gourdie RG The Cx43 carboxyl-terminal mimetic peptide αCT1 protects endothelial barrier function in a ZO1 binding-competent manner. Biomolecules 2021 11 8 1192 10.3390/biom11081192 34439858
    [Google Scholar]
  23. Koepple C Zhou Z Huber L. Expression of connexin43 stimulates endothelial angiogenesis independently of gap junctional communication in vitro. Int. J. Mol. Sci. 2021 22 14 7400 10.3390/ijms22147400 34299018
    [Google Scholar]
  24. Wang H.H. Kung C.I. Tseng Y.Y. Lin Y.C. Chen C.H. Tsai C.H. Yeh H.I. Activation of endothelial cells to pathological status by down-regulation of connexin43. Cardiovasc. Res. 2008 79 3 509 518 10.1093/cvr/cvn112 18445604
    [Google Scholar]
  25. Yu W. Jin H. Sun W. Nan D. Deng J. Jia J. Yu Z. Huang Y. Connexin43 promotes angiogenesis through activating the HIF-1α/VEGF signaling pathway under chronic cerebral hypoperfusion. J. Cereb. Blood Flow Metab. 2021 41 10 2656 2675 10.1177/0271678X211010354 33899559
    [Google Scholar]
  26. Uemura A. Fruttiger M. D’Amore P.A. De Falco S. Joussen A.M. Sennlaub F. Brunck L.R. Johnson K.T. Lambrou G.N. Rittenhouse K.D. Langmann T. VEGFR1 signaling in retinal angiogenesis and microinflammation. Prog. Retin. Eye. Res. 2021 84 100954 10.1016/j.preteyeres.2021.100954 33640465
    [Google Scholar]
  27. Zhou Z Chai W Liu Y. Connexin 43 overexpression induces lung cancer angiogenesis in vitro following phosphorylation at Ser279 in its C-terminus. Oncol. Lett. 2022 24 3 293 10.3892/ol.2022.13413 35949588
    [Google Scholar]
  28. Chaytor AT. Evans WH. Griffith TM. Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J. Physiol. 1997 503 (Pt 1) 99 110 10.1111/j.1469‑7793.1997.099bi.x
    [Google Scholar]
  29. Liao Y. Day K.H. Damon D.N. Duling B.R. Endothelial cell-specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc. Natl. Acad. Sci. USA 2001 98 17 9989 9994 10.1073/pnas.171305298 11481448
    [Google Scholar]
  30. Alaaeddine R. Elkhatib M.A.W. Mroueh A. Fouad H. Saad E.I. El-Sabban M.E. Plane F. El-Yazbi A.F. Impaired endothelium-dependent hyperpolarization underlies endothelial dysfunction during early metabolic challenge: Increased ROS generation and possible interference with NO function. J. Pharmacol. Exp. Ther. 2019 371 3 567 582 10.1124/jpet.119.262048 31511364
    [Google Scholar]
  31. Figueroa X.F. Duling B.R. Gap junctions in the control of vascular function. Antioxid. Redox. Signal. 2009 11 2 251 266 10.1089/ars.2008.2117 18831678
    [Google Scholar]
  32. Fujiwara H. Wake Y. Hashikawa-Hobara N. Makino K. Takatori S. Zamami Y. Kitamura Y. Kawasaki H. Endothelium-derived relaxing factor-mediated vasodilation in mouse mesenteric vascular beds. J. Pharmacol. Sci. 2012 118 3 373 381 10.1254/jphs.11197FP 22450195
    [Google Scholar]
  33. Ampey B.C. Morschauser T.J. Lampe P.D. Magness R.R. Gap junction regulation of vascular tone: Implications of modulatory intercellular communication during gestation. Adv. Exp. Med. Biol. 2014 814 117 132 10.1007/978‑1‑4939‑1031‑1_11 25015806
    [Google Scholar]
  34. Souilhol C. Serbanovic-Canic J. Fragiadaki M. Chico T.J. Ridger V. Roddie H. Evans P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020 17 1 52 63 10.1038/s41569‑019‑0239‑5 31366922
    [Google Scholar]
  35. Köhler R. Hoyer J. The endothelium-derived hyperpolarizing factor: Insights from genetic animal models. Kidney Int. 2007 72 2 145 150 10.1038/sj.ki.5002303 17457372
    [Google Scholar]
  36. Chen G. Yamamoto Y. Miwa K. Suzuki H. Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances. Am. J. Physiol. Heart Circ. Physiol. 1991 260 6 H1888 H1892 10.1152/ajpheart.1991.260.6.H1888 1905491
    [Google Scholar]
  37. Edwards G. Dora K.A. Gardener M.J. Garland C.J. Weston A.H. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998 396 6708 269 272 10.1038/24388 9834033
    [Google Scholar]
  38. Campbell W.B. Gebremedhin D. Pratt P.F. Harder D.R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 1996 78 3 415 423 10.1161/01.RES.78.3.415 8593700
    [Google Scholar]
  39. Shimokawa H. Morikawa K. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J. Mol. Cell. Cardiol. 2005 39 5 725 732 10.1016/j.yjmcc.2005.07.007 16122755
    [Google Scholar]
  40. Chauhan S.D. Nilsson H. Ahluwalia A. Hobbs A.J. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc. Natl. Acad. Sci. USA 2003 100 3 1426 1431 10.1073/pnas.0336365100 12552127
    [Google Scholar]
  41. Cao W. Wu L. Zhang X. Zhou J. Wang J. Yang Z. Su H. Liu Y. Wilcox C.S. Hou F.F. Sympathetic overactivity in CKD disrupts buffering of neurotransmission by endothelium-derived hyperpolarizing factor and enhances vasoconstriction. J. Am. Soc. Nephrol. 2020 31 10 2312 2325 10.1681/ASN.2020030234 32616538
    [Google Scholar]
  42. López D. Rodríguez-Sinovas A. Agulló E. García Á. Sánchez J.A. García-Dorado D. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation. Exp. Physiol. 2009 94 10 1088 1097 10.1113/expphysiol.2009.048413 19617266
    [Google Scholar]
  43. Jiang T. Jiang D. Zhang L. Ding M. Zhou H. Anagliptin ameliorates high glucose- induced endothelial dysfunction via suppression of NLRP3 inflammasome activation mediated by SIRT1. Mol. Immunol. 2019 107 54 60 10.1016/j.molimm.2019.01.006 30660990
    [Google Scholar]
  44. Jiang T. Zhang W. Wang Z. Laquinimod protects against TNF-α-induced attachment of monocytes to human aortic endothelial cells (HAECs) by increasing the expression of KLF2. Drug. Des. Devel. Ther. 2020 12 1683 1691 10.2147/DDDT.S243666 32440094
    [Google Scholar]
  45. Li C. Tian M. Gou Q. Jia Y.R. Su X. Connexin43 modulates X-ray-induced pyroptosis in human umbilical vein endothelial cells. Biomed. Environ. Sci. 2019 32 3 177 188 10.3967/bes2019.025 30987692
    [Google Scholar]
  46. Scrivo R. Vasile M. Bartosiewicz I. Valesini G. Inflammation as “common soil” of the multifactorial diseases. Autoimmun. Rev. 2011 10 7 369 374 10.1016/j.autrev.2010.12.006 21195808
    [Google Scholar]
  47. Michiels C. Endothelial cell functions. J. Cell. Physiol. 2003 196 3 430 443 10.1002/jcp.10333 12891700
    [Google Scholar]
  48. Véliz L.P. González F.G. Duling B.R. Sáez J.C. Boric M.P. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo. Am. J. Physiol. Heart Circ. Physiol. 2008 295 3 H1056 H1066 10.1152/ajpheart.00266.2008 18599597
    [Google Scholar]
  49. Li X. Zhang Q. Zhang R. Cheng N. Guo N. Liu Y. Cai J. Yuan D. Down-regulation of Cx43 expression on PIH-HUVEC cells attenuates monocyte–endothelial adhesion. Thromb. Res. 2019 179 104 113 10.1016/j.thromres.2019.05.009 31112837
    [Google Scholar]
  50. Ji H. Qiu R. Gao X. Zhang R. Li X. Hei Z. Yuan D. Propofol attenuates monocyte-endothelial adhesion via modulating connexin43 expression in monocytes. Life Sci. 2019 232 116624 10.1016/j.lfs.2019.116624 31276689
    [Google Scholar]
  51. Sarieddine M.Z.R. Scheckenbach K.E.L. Foglia B. Maass K. Garcia I. Kwak B.R. Chanson M. Connexin43 modulates neutrophil recruitment to the lung. J. Cell. Mol. Med. 2009 13 11-12 4560 4570 10.1111/j.1582‑4934.2008.00654.x 19166484
    [Google Scholar]
  52. Qin X.H. Ma X. Fang S.F. Zhang Z.Z. Lu J.M. IL-17 produced by Th17 cells alleviates the severity of fungal keratitis by suppressing CX43 expression in corneal peripheral vascular endothelial cells. Cell Cycle 2019 18 3 274 287 10.1080/15384101.2018.1556059 30661459
    [Google Scholar]
  53. Robertson J. Lang S. Lambert P.A. Martin P.E. Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells. J. Biochem. 2010 432 1 133 143 10.1042/BJ20091753 20815816
    [Google Scholar]
  54. Sáez JC. Contreras-Duarte S. Gómez GI. Connexin 43 hemichannel activity promoted by pro-inflammatory cytokines and high glucose alters endothelial cell function. Front Immunol 2018 9 1899 10.3389/fimmu.2018.01899 30158937
    [Google Scholar]
  55. Sáez J.C. Contreras-Duarte S. Labra V.C. Santibañez C.A. Mellado L.A. Inostroza C.A. Alvear T.F. Retamal M.A. Velarde V. Orellana J.A. Interferon-γ and high glucose-induced opening of Cx43 hemichannels causes endothelial cell dysfunction and damage. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 8 118720 10.1016/j.bbamcr.2020.118720 32302669
    [Google Scholar]
  56. Pober J.S. Min W. Bradley J.R. Mechanisms of endothelial dysfunction, injury, and death. Annu. Rev. Pathol. 2009 4 1 71 95 10.1146/annurev.pathol.4.110807.092155 18754744
    [Google Scholar]
  57. Li A.F. Roy S. High glucose-induced downregulation of connexin 43 expression promotes apoptosis in microvascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 2009 50 3 1400 1407 10.1167/iovs.07‑1519 19029021
    [Google Scholar]
  58. Yin G. Yang X. Li B. Yang M. Ren M. Connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL: an involvement of ERK signaling pathway. Mol. Cell. Biochem. 2014 394 1-2 101 107 10.1007/s11010‑014‑2085‑4 24833468
    [Google Scholar]
  59. Ma J. Ji D. Li Q. Zhang T. Luo L. Inhibition of connexin 43 attenuates oxidative stress and apoptosis in human umbilical vein endothelial cells. BMC Pulm. Med. 2020 20 1 19 10.1186/s12890‑019‑1036‑y 31964358
    [Google Scholar]
  60. Zhang J. Yang G. Zhu Y. Peng X. Li T. Liu L. Role of connexin 43 in vascular hyperpermeability and relationship to Rock1-MLC 20 pathway in septic rats. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015 309 11 L1323 L1332 10.1152/ajplung.00016.2015 26342084
    [Google Scholar]
  61. Wang P. Verin A.D. Birukova A. Gilbert-McClain L.I. Jacobs K. Garcia J.G.N. Mechanisms of sodium fluoride-induced endothelial cell barrier dysfunction: Role of MLC phosphorylation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001 281 6 L1472 L1483 10.1152/ajplung.2001.281.6.L1472 11704544
    [Google Scholar]
  62. Phillips C.M. Johnson A.M. Stamatovic S.M. Keep R.F. Andjelkovic A.V. 20 kDa isoform of connexin-43 augments spatial reorganization of the brain endothelial junctional complex and lesion leakage in cerebral cavernous malformation type-3. Neurobiol. Dis. 2023 186 106277 10.1016/j.nbd.2023.106277 37652184
    [Google Scholar]
  63. Johnson A.M. Roach J.P. Hu A. Stamatovic S.M. Zochowski M.R. Keep R.F. Andjelkovic A.V. Connexin 43 gap junctions contribute to brain endothelial barrier hyperpermeability in familial cerebral cavernous malformations type III by modulating tight junction structure. FASEB J. 2018 32 5 2615 2629 10.1096/fj.201700699R 29295866
    [Google Scholar]
  64. Basheer WA Fu Y Shimura D Stress response protein GJA1-20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI Insight 2018 3 20 e121900 10.1172/jci.insight.121900 30333316
    [Google Scholar]
  65. Shimura D. Nuebel E. Baum R. Valdez S.E. Xiao S. Warren J.S. Palatinus J.A. Hong T. Rutter J. Shaw R.M. Protective mitochondrial fission induced by stress-responsive protein GJA1-20k. eLife 2021 10 e69207 10.7554/eLife.69207 34608863
    [Google Scholar]
  66. Sedovy M.W. Leng X. Leaf M.R. Iqbal F. Payne L.B. Chappell J.C. Johnstone S.R. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J. Vasc. Res. 2023 60 2 101 113 10.1159/000527469 36513042
    [Google Scholar]
  67. Hooglugt A. Klatt O. Huveneers S. Vascular stiffening and endothelial dysfunction in atherosclerosis. Curr. Opin. Lipidol. 2022 33 6 353 363 10.1097/MOL.0000000000000852 36206080
    [Google Scholar]
  68. Gimbrone M.A. Jr García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016 118 4 620 636 10.1161/CIRCRESAHA.115.306301 26892962
    [Google Scholar]
  69. Wang Y. Zhan Y. Wang L. Huang X. Xin H.B. Fu M. Qian Y. E3 ubiquitin ligases in endothelial dysfunction and vascular diseases: Roles and potential therapies. J. Cardiovasc. Pharmacol. 2023 82 2 93 103 10.1097/FJC.0000000000001441 37314134
    [Google Scholar]
  70. Morel S. Chanson M. Nguyen T.D. Glass A.M. Sarieddine M.Z.R. Meens M.J. Burnier L. Taffet S.M. Kwak B.R. Titration of the gap junction protein Connexin43 reduces atherogenesis. Thromb. Haemost. 2014 112 8 390 401 10.1160/TH13‑09‑0773 24828015
    [Google Scholar]
  71. Meghwani H. Berk B.C. MST1 kinase-Cx43-YAP/TAZ pathway mediates disturbed flow endothelial dysfunction. Circ. Res. 2022 131 9 765 767 10.1161/CIRCRESAHA.122.321921 36252051
    [Google Scholar]
  72. Quan M. Lv H. Liu Z. Li K. Zhang C. Shi L. Yang X. Lei P. Zhu Y. Ai D. MST1 suppresses disturbed flow induced atherosclerosis. Circ. Res. 2022 131 9 748 764 10.1161/CIRCRESAHA.122.321322 36164986
    [Google Scholar]
  73. Ramadan R. Vromans E. Anang D.C. Goetschalckx I. Hoorelbeke D. Decrock E. Baatout S. Leybaert L. Aerts A. Connexin43 hemichannel targeting with TAT-Gap19 alleviates radiation-induced endothelial cell damage. Front. Pharmacol. 2020 11 212 10.3389/fphar.2020.00212 32210810
    [Google Scholar]
  74. Baker J.E. Moulder J.E. Hopewell J.W. Radiation as a risk factor for cardiovascular disease. Antioxid. Redox Signal. 2011 15 7 1945 1956 10.1089/ars.2010.3742 21091078
    [Google Scholar]
  75. Yusuf S.W. Sami S. Daher I.N. Radiation-induced heart disease: A clinical update. Cardiol. Res. Pract. 2011 2011 1 9 10.4061/2011/317659 21403872
    [Google Scholar]
  76. Borghini A. Luca Gianicolo E.A. Picano E. Andreassi M.G. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013 230 1 40 47 10.1016/j.atherosclerosis.2013.06.010 23958250
    [Google Scholar]
  77. Baselet B Belmans N Coninx E Functional gene analysis reveals cell cycle changes and inflammation in endothelial cells irradiated with a single X-ray dose. Front. Pharmacol. 2017 8 213 10.3389/fphar.2017.00213 28487652
    [Google Scholar]
  78. Tapio S. Pathology and biology of radiation-induced cardiac disease. J. Radiat. Res. (Tokyo) 2016 57 5 439 448 10.1093/jrr/rrw064 27422929
    [Google Scholar]
  79. Yi F.X. Boeldt D.S. Gifford S.M. Sullivan J.A. Grummer M.A. Magness R.R. Bird I.M. Pregnancy enhances sustained Ca2+ bursts and endothelial nitric oxide synthase activation in ovine uterine artery endothelial cells through increased connexin 43 function. Biol. Reprod. 2010 82 1 66 75 10.1095/biolreprod.109.078253 19741206
    [Google Scholar]
  80. Bird I.M. Boeldt D.S. Krupp J. Grummer M.A. Yi F.X. Magness R.R. Pregnancy, programming and preeclampsia: Gap junctions at the nexus of pregnancy-induced adaptation of endothelial function and endothelial adaptive failure in PE. Curr. Vasc. Pharmacol. 2013 11 5 712 729 10.2174/1570161111311050009 24063383
    [Google Scholar]
  81. Ampey A.C. Dahn R.L. Grummer M.A. Bird I.M. Differential control of uterine artery endothelial monolayer integrity by TNF and VEGF is achieved through multiple mechanisms operating inside and outside the cell – Relevance to preeclampsia. Mol. Cell. Endocrinol. 2021 534 111368 10.1016/j.mce.2021.111368 34153378
    [Google Scholar]
  82. Szulcek R. Happé C.M. Rol N. Fontijn R.D. Dickhoff C. Hartemink K.J. Grünberg K. Tu L. Timens W. Nossent G.D. Paul M.A. Leyen T.A. Horrevoets A.J. de Man F.S. Guignabert C. Yu P.B. Vonk-Noordegraaf A. Amerongen G.P.N. Bogaard H.J. Delayed microvascular shear adaptation in pulmonary arterial hypertension. Role of platelet endothelial cell adhesion molecule-1 cleavage. Am. J. Respir. Crit. Care Med. 2016 193 12 1410 1420 10.1164/rccm.201506‑1231OC 26760925
    [Google Scholar]
  83. Mishra J.S. More A.S. Hankins G.D.V. Kumar S. Hyperandrogenemia reduces endothelium-derived hyperpolarizing factor-mediated relaxation in mesenteric artery of female rats. Biol. Reprod. 2017 96 6 1221 1230 10.1093/biolre/iox043 28486649
    [Google Scholar]
  84. Tachikawa M. Murakami K. Akaogi R. Akanuma S. Terasaki T. Hosoya K. Polarized hemichannel opening of pannexin 1/connexin 43 contributes to dysregulation of transport function in blood-brain barrier endothelial cells. Neurochem. Int. 2020 132 104600 10.1016/j.neuint.2019.104600 31712070
    [Google Scholar]
  85. Kaneko Y. Tachikawa M. Akaogi R. Fujimoto K. Ishibashi M. Uchida Y. Couraud P.O. Ohtsuki S. Hosoya K. Terasaki T. Contribution of pannexin 1 and connexin 43 hemichannels to extracellular calcium-dependent transport dynamics in human blood-brain barrier endothelial cells. J. Pharmacol. Exp. Ther. 2015 353 1 192 200 10.1124/jpet.114.220210 25670633
    [Google Scholar]
  86. Zhao D. Liu Q. Ji Y. Wang G. He X. Tian W. Xu H. Lei T. Wang Y. Effect of 18β-glycyrrhetinic acid on cerebral vasospasm caused by asymmetric dimethylarginine after experimental subarachnoid hemorrhage in rats. Neurol. Res. 2015 37 6 476 483 10.1179/1743132814Y.0000000462 25475507
    [Google Scholar]
  87. Zhou Z. Wei X. Xiang J. Gao J. Wang L. You J. Cai Y. Cai D. Protection of erythropoietin against ischemic neurovascular unit injuries through the effects of connexin43. Biochem. Biophys. Res. Commun. 2015 458 3 656 662 10.1016/j.bbrc.2015.02.020 25684187
    [Google Scholar]
  88. Zhao H. Kong H. Wang W. Chen T. Zhang Y. Zhu J. Feng D. Cui Y. High glucose aggravates retinal endothelial cell dysfunction by activating the RhoA/ROCK1/pMLC/connexin43 signaling pathway. Invest. Ophthalmol. Vis. Sci. 2022 63 8 22 10.1167/iovs.63.8.22 35881407
    [Google Scholar]
  89. Kim D. Mouritzen U. Larsen B.D. Roy S. Inhibition of Cx43 gap junction uncoupling prevents high glucose-induced apoptosis and reduces excess cell monolayer permeability in retinal vascular endothelial cells. Exp. Eye Res. 2018 173 85 90 10.1016/j.exer.2018.05.003 29750972
    [Google Scholar]
  90. Trudeau K. Muto T. Roy S. Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome C release in retinal endothelial cells. Invest. Ophthalmol. Vis. Sci. 2012 53 10 6675 6681 10.1167/iovs.12‑9895 22915032
    [Google Scholar]
  91. Sankaramoorthy A Roy S. High glucose-induced apoptosis is linked to mitochondrial connexin 43 level in RRECs: Implications for diabetic retinopathy. Cells 2021 10 11 3102 10.3390/cells10113102 34831325
    [Google Scholar]
  92. Zhang Q. Wu S. Sun G. Zhang R. Li X. Zhang Y. Huang F. Yuan D. Hyperglycemia aggravates monocyte-endothelial adhesion in human umbilical vein endothelial cells from women with gestational diabetes mellitus by inducing Cx43 overexpression. Ann. Transl. Med. 2021 9 3 234 10.21037/atm‑19‑4738 33708861
    [Google Scholar]
  93. Teng Z. Jiang B. Wang J. Liu T. Aniagu S. Zhu Z. Chen T. Jiang Y. Regulation of Cx43 and its role in trichloroethylene-induced cardiac toxicity in H9C2 rat cardiomyocytes. Chemosphere 2023 323 138249 10.1016/j.chemosphere.2023.138249 36842555
    [Google Scholar]
  94. Sun M. Zhai S. Gao Y. Hu N. Wang R. Zhang R. Circ_0049979 ameliorates myocardial infarction through improving Cx43-mediated endothelial functions. Toxicol. Appl. Pharmacol. 2024 492 117121 10.1016/j.taap.2024.117121 39384044
    [Google Scholar]
  95. Lee C.Y. Choi J.W. Shin S. Lee J. Seo H.H. Lim S. Lee S. Joo H.C. Kim S.W. Hwang K.C. Interaction of small G protein signaling modulator 3 with connexin 43 contributes to myocardial infarction in rat hearts. Biochem. Biophys. Res. Commun. 2017 491 2 429 435 10.1016/j.bbrc.2017.07.081 28716730
    [Google Scholar]
  96. Qin W. Zhang L. Li Z. Xiao D. Zhang Y. Yang H. Zhang H. Xu C. Zhang Y. Metoprolol protects against myocardial infarction by inhibiting miR-1 expression in rats. J. Pharm. Pharmacol. 2020 72 1 76 83 10.1111/jphp.13192 31702064
    [Google Scholar]
  97. Yao J. Ke J. Zhou Z. Tan G. Yin Y. Liu M. Chen J. Wu W. Combination of HGF and IGF-1 promotes connexin 43 expression and improves ventricular arrhythmia after myocardial infarction through activating the MAPK/ERK and MAPK/p38 signaling pathways in a rat model. Cardiovasc. Diagn. Ther. 2019 9 4 346 354 10.21037/cdt.2019.07.12 31555539
    [Google Scholar]
  98. Valls-Lacalle L. Negre-Pujol C. Rodríguez C. Opposite effects of moderate and extreme Cx43 deficiency in conditional Cx43-deficient mice on angiotensin II-induced cardiac fibrosis. Cells 2019 8 10 1299 10.3390/cells8101299 31652649
    [Google Scholar]
  99. Valls-Lacalle L. Consegal M. Ruiz-Meana M. Connexin 43 deficiency is associated with reduced myocardial scar size and attenuated TGFβ1 signaling after transient coronary occlusion in conditional knock-out mice. Biomolecules 2020 10 4 651 10.3390/biom10040651 32340244
    [Google Scholar]
  100. Kelm NQ. Solinger JC. Piell KM. Cole MP. Conjugated linoleic acid-mediated connexin-43 remodeling and sudden arrhythmic death in myocardial infarction. Int. J. Mol. Sci. 2023 24 13 11208 10.3390/ijms241311208
    [Google Scholar]
  101. Xue J. Yan X. Yang Y. Connexin 43 dephosphorylation contributes to arrhythmias and cardiomyocyte apoptosis in ischemia/reperfusion hearts. Basic. Res. Cardiol. 2019 114 5 40
    [Google Scholar]
  102. Yi J. Duan H. Chen K. Wen C. Cao Y. Gao H. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts. J. Cardiovasc. Transl. Res. 2022 15 6 1464 1473 10.1007/s12265‑022‑10256‑7 35689125
    [Google Scholar]
  103. Xiao S. Shimura D. Baum R. Hernandez D.M. Agvanian S. Nagaoka Y. Katsumata M. Lampe P.D. Kleber A.G. Hong T. Shaw R.M. Auxiliary trafficking subunit GJA1-20k protects connexin-43 from degradation and limits ventricular arrhythmias. J. Clin. Invest. 2020 130 9 4858 4870 10.1172/JCI134682 32525845
    [Google Scholar]
  104. Fu Y Zhang SS Xiao S Cx43 isoform GJA1-20k promotes microtubule dependent mitochondrial transport. Front. Physiol. 2017 8 905 10.3389/fphys.2017.00905 29163229
    [Google Scholar]
  105. Schrepfer E. Scorrano L. Mitofusins, from mitochondria to metabolism. Mol. Cell 2016 61 5 683 694 10.1016/j.molcel.2016.02.022 26942673
    [Google Scholar]
  106. Li Y Ge J Yin Y Yang R Kong J Gu J. Upregulated miR-206 aggravates deep vein thrombosis by regulating GJA1-mediated autophagy of endothelial progenitor cells. Cardiovasc. Ther. 2022 2022 1 16 10.1155/2022/9966306 35360546
    [Google Scholar]
  107. Turovsky EA Braga A Yu Y 1523/JNEUROSCI.1249-20.2020Johnstone SR, Best AK, Wright CS, Isakson BE, Errington RJ, Martin PE. Enhanced connexin 43 expression delays intra-mitotic duration and cell cycle traverse independently of gap junction channel function. J. Cell. Biochem. 2010 110 3 772 782 10.1002/jcb.22590 20512937
    [Google Scholar]
  108. Zhu Y. Chen X. Lu Y. Fan S. Yang Y. Chen Q. Huang Q. Xia L. Wei Y. Zheng J. Liu X. Diphenyleneiodonium enhances P2X7 dependent non-opsonized phagocytosis and suppresses inflammasome activation via blocking CX43-mediated ATP leakage. Pharmacol. Res. 2021 166 105470 10.1016/j.phrs.2021.105470 33529751
    [Google Scholar]
  109. Huckstepp R.T. id Bihi R. Eason R. Spyer K.M. Dicke N. Willecke K. Marina N. Gourine A.V. Dale N. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J. Physiol. 2010 588 Pt 20 3901 3920 10.1113/jphysiol.2010.192088 20736421
    [Google Scholar]
  110. Turovsky EA. Varlamova EG. Mechanism of Ca2+-dependent pro-apoptotic action of selenium nanoparticles, mediated by activation of Cx43 hemichannels. Biology 2021 10 8 743 10.3390/biology10080743 34439975
    [Google Scholar]
  111. Johnstone S.R. Kroncke B.M. Straub A.C. Best A.K. Dunn C.A. Mitchell L.A. Peskova Y. Nakamoto R.K. Koval M. Lo C.W. Lampe P.D. Columbus L. Isakson B.E. MAPK phosphorylation of connexin 43 promotes binding of cyclin E and smooth muscle cell proliferation. Circ. Res. 2012 111 2 201 211 10.1161/CIRCRESAHA.112.272302 22652908
    [Google Scholar]
  112. Obert E. Strauss R. Brandon C. Grek C. Ghatnekar G. Gourdie R. Rohrer B. Targeting the tight junction protein, zonula occludens-1, with the connexin43 mimetic peptide, αCT1, reduces VEGF-dependent RPE pathophysiology. J. Mol. Med. (Berl.) 2017 95 5 535 552 10.1007/s00109‑017‑1506‑8 28132078
    [Google Scholar]
  113. King DR Sedovy MW Leng X Mechanisms of connexin regulating peptides. Int. J. Mol. Sci. 2021 22 19 10186 10.3390/ijms221910186 34638526
    [Google Scholar]
  114. Leybaert L. Lampe P.D. Dhein S. Kwak B.R. Ferdinandy P. Beyer E.C. Laird D.W. Naus C.C. Green C.R. Schulz R. Connexins in cardiovascular and neurovascular health and disease: Pharmacological implications. Pharmacol. Rev. 2017 69 4 396 478 10.1124/pr.115.012062 28931622
    [Google Scholar]
  115. Wang N. De Vuyst E. Ponsaerts R. Boengler K. Palacios-Prado N. Wauman J. Lai C.P. De Bock M. Decrock E. Bol M. Vinken M. Rogiers V. Tavernier J. Evans W.H. Naus C.C. Bukauskas F.F. Sipido K.R. Heusch G. Schulz R. Bultynck G. Leybaert L. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury. Basic Res. Cardiol. 2013 108 1 309 10.1007/s00395‑012‑0309‑x 23184389
    [Google Scholar]
  116. Delvaeye T. De Smet MAJ. Verwaerde S. Blocking connexin43 hemichannels protects mice against tumour necrosis factor-induced inflammatory shock. Sci. Rep. 2019 9 1 16623 10.1038/s41598‑019‑52900‑4 31719598
    [Google Scholar]
  117. Wang N. De Bock M. Decrock E. Bol M. Gadicherla A. Bultynck G. Leybaert L. Connexin targeting peptides as inhibitors of voltage- and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 2013 75 506 516 10.1016/j.neuropharm.2013.08.021 24007825
    [Google Scholar]
  118. Michela P. Velia V. Aldo P. Ada P. Role of connexin 43 in cardiovascular diseases. Eur. J. Pharmacol. 2015 768 71 76 10.1016/j.ejphar.2015.10.030 26499977
    [Google Scholar]
  119. Fu Y.L. Tao L. Peng F.H. Zheng N.Z. Lin Q. Cai S.Y. Wang Q. GJA1-20k attenuates Ang II-induced pathological cardiac hypertrophy by regulating gap junction formation and mitochondrial function. Acta Pharmacol. Sin. 2021 42 4 536 549 10.1038/s41401‑020‑0459‑6 32620936
    [Google Scholar]
  120. Palatinus J.A. Valdez S. Taylor L. Whisenant C. Selzman C.H. Drakos S.G. Ranjan R. Hong T. Saffitz J.E. Shaw R.M. GJA1-20k rescues Cx43 localization and arrhythmias in arrhythmogenic cardiomyopathy. Circ. Res. 2023 132 6 744 746 10.1161/CIRCRESAHA.122.322294 36927183
    [Google Scholar]
  121. Ren D. Zheng P. Feng J. Gong Y. Wang Y. Duan J. Zhao L. Deng J. Chen H. Zou S. Hong T. Chen W. Correction to “overexpression of astrocytes-specific GJA1-20k enhances the viability and recovery of the neurons in a rat model of traumatic brain injury”. ACS Chem. Neurosci. 2022 13 14 2235 10.1021/acschemneuro.2c00340 35797417
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673376287250822041453
Loading
/content/journals/cmc/10.2174/0109298673376287250822041453
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test