Skip to content
2000
image of Binding Specificity and Local Frustration in Structure-based Drug Discovery

Abstract

Evolution has optimized proteins to balance stability and function by reducing unfavorable energy states, leading to regions of flexibility and frustration on protein surfaces. These locally frustrated regions correspond to functionally important areas, such as active sites and regions for ligand binding and conformational plasticity. Typical strategies of structure-based drug discovery primarily concentrate on enhancing the binding affinity during compound screening and target identification. However, this often overlooks the binding specificity, which is critical for distinguishing specific binding partners from competing ones and avoiding off-target effects. According to the energy landscape theory, optimization of the intrinsic binding specificity involves globally minimizing the frustrations existing in the biomolecular interactions. Recent studies have demonstrated that identifying local frustrations provides a promising approach for screening more specific compounds binding with targets, and quantifying binding specificity complements typical strategies that focus on binding affinity only. This review explores the principles and strategies of computationally quantifying the binding specificity and local frustrations and discusses their applications in structure-based drug discovery. Moreover, given the advancements of artificial intelligence in protein science, this review aims to motivate the integration of AI and available approaches in quantifying the binding specificity and local frustration. We expect that an AI-powered prediction model will accelerate the drug discovery process and improve the success rate of hit compounds.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673376099250428054846
2025-05-12
2025-09-07
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673376099250428054846/BMS-CMC-2024-974.html?itemId=/content/journals/cmc/10.2174/0109298673376099250428054846&mimeType=html&fmt=ahah

References

  1. Sun D. Gao W. Hu H. Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022 12 7 3049 3062 10.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  2. Berdigaliyev N. Aljofan M. An overview of drug discovery and development. Future Med. Chem. 2020 12 10 939 947 10.4155/fmc‑2019‑0307 32270704
    [Google Scholar]
  3. Wu F. Zhou Y. Li L. Shen X. Chen G. Wang X. Liang X. Tan M. Huang Z. Computational approaches in preclinical studies on drug discovery and development. Front Chem. 2020 8 726 10.3389/fchem.2020.00726 33062633
    [Google Scholar]
  4. Sadybekov A.V. Katritch V. Computational approaches streamlining drug discovery. Nature 2023 616 7958 673 685 10.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  5. Özçelik R. van Tilborg D. Jiménez-Luna J. Grisoni F. Structure-based drug discovery with deep learning. ChemBioChem 2023 24 13 e202200776 10.1002/cbic.202200776 37014633
    [Google Scholar]
  6. Klebe G. Recent developments in structure-based drug design. J. Mol. Med. (Berl.) 2000 78 5 269 281 10.1007/s001090000084 10954199
    [Google Scholar]
  7. Merz K.M. Ringe D. Reynolds C.H. Pharmacophore methods. Drug Design: Structure- and Ligand-Based Approaches Cambridge University Press 2010 137 150 10.1017/CBO9780511730412
    [Google Scholar]
  8. Kim G. Lee S. Levy Karin E. Kim H. Moriwaki Y. Ovchinnikov S. Steinegger M. Mirdita M. Easy and accurate protein structure prediction using ColabFold. Nat. Protoc. 2024 20 3 620 642 10.1038/s41596‑024‑01060‑5 39402428
    [Google Scholar]
  9. Lin Z. Akin H. Rao R. Hie B. Zhu Z. Lu W. Smetanin N. Verkuil R. Kabeli O. Shmueli Y. dos Santos Costa A. Fazel-Zarandi M. Sercu T. Candido S. Rives A. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023 379 6637 1123 1130 10.1126/science.ade2574 36927031
    [Google Scholar]
  10. Baek M. DiMaio F. Anishchenko I. Dauparas J. Ovchinnikov S. Lee G.R. Wang J. Cong Q. Kinch L.N. Schaeffer R.D. Millán C. Park H. Adams C. Glassman C.R. DeGiovanni A. Pereira J.H. Rodrigues A.V. van Dijk A.A. Ebrecht A.C. Opperman D.J. Sagmeister T. Buhlheller C. Pavkov-Keller T. Rathinaswamy M.K. Dalwadi U. Yip C.K. Burke J.E. Garcia K.C. Grishin N.V. Adams P.D. Read R.J. Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021 373 6557 871 876 10.1126/science.abj8754 34282049
    [Google Scholar]
  11. Binder J.L. Berendzen J. Stevens A.O. He Y. Wang J. Dokholyan N.V. Oprea T.I. AlphaFold illuminates half of the dark human proteins. Curr. Opin. Struct. Biol. 2022 74 102372 10.1016/j.sbi.2022.102372 35439658
    [Google Scholar]
  12. Maia E.H.B. Assis L.C. de Oliveira T.A. da Silva A.M. Taranto A.G. Structure-based virtual screening: From classical to artificial intelligence. Front Chem. 2020 8 343 10.3389/fchem.2020.00343 32411671
    [Google Scholar]
  13. Rester U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: A medicinal chemistry perspective. Curr. Opin. Drug Discov. Devel. 2008 11 4 559 568 18600572
    [Google Scholar]
  14. Wang J. Zheng X. Yang Y. Drueckhammer D. Yang W. Verkhivker G. Wang E. Quantifying intrinsic specificity: A potential complement to affinity in drug screening. Phys. Rev. Lett. 2007 99 19 198101 10.1103/PhysRevLett.99.198101 18233118
    [Google Scholar]
  15. Yan Z. Wang J. Specificity quantification of biomolecular recognition and its implication for drug discovery. Sci. Rep. 2012 2 1 309 10.1038/srep00309 22413060
    [Google Scholar]
  16. Huggins D.J. Sherman W. Tidor B. Rational approaches to improving selectivity in drug design. J. Med. Chem. 2012 55 4 1424 1444 10.1021/jm2010332 22239221
    [Google Scholar]
  17. Kawasaki Y. Freire E. Finding a better path to drug selectivity. Drug Discov. Today 2011 16 21-22 985 990 10.1016/j.drudis.2011.07.010 21839183
    [Google Scholar]
  18. Schmidt F. Matter H. Hessler G. Czich A. Predictive in silico off-target profiling in drug discovery. Future Med. Chem. 2014 6 3 295 317 10.4155/fmc.13.202 24575966
    [Google Scholar]
  19. Yan Z. Zheng X. Wang E. Wang J. Thermodynamic and kinetic specificities of ligand binding. Chem. Sci. (Camb.) 2013 4 6 2387 2395 10.1039/c3sc50478f
    [Google Scholar]
  20. Wang J. Verkhivker G.M. Energy landscape theory, funnels, specificity, and optimal criterion of biomolecular binding. Phys. Rev. Lett. 2003 90 18 188101 10.1103/PhysRevLett.90.188101 12786043
    [Google Scholar]
  21. Tokuriki N. Stricher F. Serrano L. Tawfik D.S. How protein stability and new functions trade off. PLOS Comput. Biol. 2008 4 2 e1000002 10.1371/journal.pcbi.1000002 18463696
    [Google Scholar]
  22. Luque I. Leavitt S.A. Freire E. The linkage between protein folding and functional cooperativity: Two sides of the same coin? Annu. Rev. Biophys. Biomol. Struct. 2002 31 1 235 256 10.1146/annurev.biophys.31.082901.134215 11988469
    [Google Scholar]
  23. Yan Z. Wang J. Superfunneled energy landscape of protein evolution unifies the principles of protein evolution, folding, and design. Phys. Rev. Lett. 2019 122 1 018103 10.1103/PhysRevLett.122.018103 31012725
    [Google Scholar]
  24. Yan Z. Wang J. Funneled energy landscape unifies principles of protein binding and evolution. Proc. Natl. Acad. Sci. USA 2020 117 44 27218 27223 10.1073/pnas.2013822117 33067388
    [Google Scholar]
  25. Yan Z. Wang J. Evolution shapes interaction patterns for epistasis and specific protein binding in a two-component signaling system. Commun. Chem. 2024 7 1 13 10.1038/s42004‑024‑01098‑2 38233668
    [Google Scholar]
  26. Nassar R. Dignon G.L. Razban R.M. Dill K.A. The protein folding problem: The role of theory. J. Mol. Biol. 2021 433 20 167126 10.1016/j.jmb.2021.167126 34224747
    [Google Scholar]
  27. Onuchic J.N. Wolynes P.G. Theory of protein folding. Curr. Opin. Struct. Biol. 2004 14 1 70 75 10.1016/j.sbi.2004.01.009 15102452
    [Google Scholar]
  28. Gonzalo Parra R. Komives E.A. Wolynes P.G. Ferreiro D.U. Frustration in physiology and molecular medicine. arXiv 2025 10.48550/arXiv.2502.03851
    [Google Scholar]
  29. Ferreiro D.U. Komives E.A. Wolynes P.G. Frustration in biomolecules. Q. Rev. Biophys. 2014 47 4 285 363 10.1017/S0033583514000092 25225856
    [Google Scholar]
  30. Ferreiro D.U. Komives E.A. Wolynes P.G. Frustration, function and folding. Curr. Opin. Struct. Biol. 2018 48 68 73 10.1016/j.sbi.2017.09.006 29101782
    [Google Scholar]
  31. Freiberger M.I. Guzovsky A.B. Wolynes P.G. Parra R.G. Ferreiro D.U. Local frustration around enzyme active sites. Proc. Natl. Acad. Sci. USA 2019 116 10 4037 4043 10.1073/pnas.1819859116 30765513
    [Google Scholar]
  32. Froes T.Q. Castilho M.S. The interplay between protein frustration and hotspot formation. J. Braz. Chem. Soc. 2024 35 10 e–20240168 10.21577/0103‑5053.20240168
    [Google Scholar]
  33. Chen M. Chen X. Schafer N.P. Clementi C. Komives E.A. Ferreiro D.U. Wolynes P.G. Surveying biomolecular frustration at atomic resolution. Nat. Commun. 2020 11 1 5944 10.1038/s41467‑020‑19560‑9 33230150
    [Google Scholar]
  34. Freiberger M.I. Clemente C.M. Valero E. Pombo J.G. Leonetti C.O. Ravetti S. FrustraPocket: A protein–ligand binding site predictor using energetic local frustration. bioRxiv 2022
    [Google Scholar]
  35. Chakraborti A. Garg S. Kumar R. Motiwala H. Jadhavar P. Progress in COX-2 inhibitors: A journey so far. Curr. Med. Chem. 2010 17 15 1563 1593 10.2174/092986710790979980 20166930
    [Google Scholar]
  36. Carlsson J. Luttens A. Structure-based virtual screening of vast chemical space as a starting point for drug discovery. Curr. Opin. Struct. Biol. 2024 87 102829 10.1016/j.sbi.2024.102829 38848655
    [Google Scholar]
  37. Kitchen D.B. Decornez H. Furr J.R. Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004 3 11 935 949 10.1038/nrd1549 15520816
    [Google Scholar]
  38. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8061 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  39. Scardino V. Di Filippo J.I. Cavasotto C.N. How good are AlphaFold models for docking-based virtual screening? iScience 2023 26 1 105920 10.1016/j.isci.2022.105920 36686396
    [Google Scholar]
  40. Liu Z. Su M. Han L. Liu J. Yang Q. Li Y. Wang R. Forging the basis for developing protein–ligand interaction scoring functions. Acc. Chem. Res. 2017 50 2 302 309 10.1021/acs.accounts.6b00491 28182403
    [Google Scholar]
  41. Yan Z. Wang J. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Proteins 2015 83 9 1632 1642 10.1002/prot.24848 26111900
    [Google Scholar]
  42. Yan Z. Guo L. Hu L. Wang J. Specificity and affinity quantification of protein–protein interactions. Bioinformatics 2013 29 9 1127 1133 10.1093/bioinformatics/btt121 23476023
    [Google Scholar]
  43. Yan Z. Wang J. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity. PLoS One 2013 8 9 e74443 10.1371/journal.pone.0074443 24098651
    [Google Scholar]
  44. Yan Z. Wang J. Incorporating specificity into optimization: Evaluation of SPA using CSAR 2014 and CASF 2013 benchmarks. J. Comput. Aided Mol. Des. 2016 30 3 219 227 10.1007/s10822‑016‑9897‑0 26879323
    [Google Scholar]
  45. Yan Z. Wang J. SPA-LN: A scoring function of ligand–nucleic acid interactions via optimizing both specificity and affinity. Nucleic Acids Res. 2017 45 12 e110 e110 10.1093/nar/gkx255 28431169
    [Google Scholar]
  46. Bryngelson J.D. Wolynes P.G. Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 1987 84 21 7524 7528 10.1073/pnas.84.21.7524 3478708
    [Google Scholar]
  47. Wolynes P.G. Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 2015 119 218 230 10.1016/j.biochi.2014.12.007 25530262
    [Google Scholar]
  48. Gianni S. Freiberger M.I. Jemth P. Ferreiro D.U. Wolynes P.G. Fuxreiter M. Fuzziness and frustration in the energy landscape of protein folding, function, and assembly. Acc. Chem. Res. 2021 54 5 1251 1259 10.1021/acs.accounts.0c00813 33550810
    [Google Scholar]
  49. Ferreiro D.U. Hegler J.A. Komives E.A. Wolynes P.G. Localizing frustration in native proteins and protein assemblies. Proc. Natl. Acad. Sci. USA 2007 104 50 19819 19824 10.1073/pnas.0709915104 18077414
    [Google Scholar]
  50. Parra R.G. Schafer N.P. Radusky L.G. Tsai M.Y. Guzovsky A.B. Wolynes P.G. Ferreiro D.U. Protein Frustratometer 2: A tool to localize energetic frustration in protein molecules, now with electrostatics. Nucleic Acids Res. 2016 44 W1 W356 W360 10.1093/nar/gkw304 27131359
    [Google Scholar]
  51. Rausch A.O. Freiberger M.I. Leonetti C.O. Luna D.M. Radusky L.G. Wolynes P.G. Ferreiro D.U. Parra R.G. FrustratometeR: An R-package to compute local frustration in protein structures, point mutants and MD simulations. Bioinformatics 2021 37 18 3038 3040 10.1093/bioinformatics/btab176 33720293
    [Google Scholar]
  52. Lill M.A. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations. Biochemistry 2011 50 28 6157 6169 10.1021/bi2004558 21678954
    [Google Scholar]
  53. Tokuriki N. Tawfik D.S. Protein dynamism and evolvability. Science 2009 324 5924 203 207 10.1126/science.1169375 19359577
    [Google Scholar]
  54. Gianni S. Dogan J. Jemth P. Distinguishing induced fit from conformational selection. Biophys. Chem. 2014 189 33 39 10.1016/j.bpc.2014.03.003 24747333
    [Google Scholar]
  55. Lu W. Zhang J. Huang W. Zhang Z. Jia X. Wang Z. Shi L. Li C. Wolynes P.G. Zheng S. DynamicBind: Predicting ligand-specific protein-ligand complex structure with a deep equivariant generative model. Nat. Commun. 2024 15 1 1071 10.1038/s41467‑024‑45461‑2 38316797
    [Google Scholar]
  56. Monteiro da Silva G. Cui J.Y. Dalgarno D.C. Lisi G.P. Rubenstein B.M. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat. Commun. 2024 15 1 2464 10.1038/s41467‑024‑46715‑9 38538622
    [Google Scholar]
  57. Bryant P. Noé F. Structure prediction of alternative protein conformations. Nat. Commun. 2024 15 1 7328 10.1038/s41467‑024‑51507‑2 39187507
    [Google Scholar]
  58. Sala D. Engelberger F. Mchaourab H.S. Meiler J. Modeling conformational states of proteins with AlphaFold. Curr. Opin. Struct. Biol. 2023 81 102645 10.1016/j.sbi.2023.102645 37392556
    [Google Scholar]
  59. Guan X. Tang Q.Y. Ren W. Chen M. Wang W. Wolynes P.G. Li W. Predicting protein conformational motions using energetic frustration analysis and AlphaFold2. Proc. Natl. Acad. Sci. USA 2024 121 35 e2410662121 10.1073/pnas.2410662121 39163334
    [Google Scholar]
  60. Song X. Bao L. Feng C. Huang Q. Zhang F. Gao X. Han R. Accurate prediction of protein structural flexibility by deep learning integrating intricate atomic structures and Cryo-EM density information. Nat. Commun. 2024 15 1 5538 10.1038/s41467‑024‑49858‑x 38956032
    [Google Scholar]
  61. Ahn N.G. Wang A.H.J. Proteomics and genomics: Perspectives on drug and target discovery. Curr. Opin. Chem. Biol. 2008 12 1 1 3 10.1016/j.cbpa.2008.02.016 18302945
    [Google Scholar]
  62. Rask-Andersen M. Almén M.S. Schiöth H.B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 2011 10 8 579 590 10.1038/nrd3478 21804595
    [Google Scholar]
  63. Dang C.V. Reddy E.P. Shokat K.M. Soucek L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer 2017 17 8 502 508 10.1038/nrc.2017.36 28643779
    [Google Scholar]
  64. Xie X. Yu T. Li X. Zhang N. Foster L.J. Peng C. Huang W. He G. Recent advances in targeting the “undruggable” proteins: From drug discovery to clinical trials. Signal Transduct. Target. Ther. 2023 8 1 335 10.1038/s41392‑023‑01589‑z 37669923
    [Google Scholar]
  65. Colombo G. Computing allostery: From the understanding of biomolecular regulation and the discovery of cryptic sites to molecular design. Curr. Opin. Struct. Biol. 2023 83 102702 10.1016/j.sbi.2023.102702 37716095
    [Google Scholar]
  66. Zhang G. Zhang J. Gao Y. Li Y. Li Y. Strategies for targeting undruggable targets. Expert Opin. Drug Discov. 2022 17 1 55 69 10.1080/17460441.2021.1969359 34455870
    [Google Scholar]
  67. Rehman A.U. Lu S. Khan A.A. Khurshid B. Rasheed S. Wadood A. Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin. Drug Discov. 2022 17 3 283 295 10.1080/17460441.2022.2017876 34933653
    [Google Scholar]
  68. Ostrem J.M. Peters U. Sos M.L. Wells J.A. Shokat K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013 503 7477 548 551 10.1038/nature12796 24256730
    [Google Scholar]
  69. Blair H.A. Sotorasib: First approval. Drugs 2021 81 13 1573 1579 10.1007/s40265‑021‑01574‑2 34357500
    [Google Scholar]
  70. Xia Y. Pan X. Shen H.B. A comprehensive survey on protein-ligand binding site prediction. Curr. Opin. Struct. Biol. 2024 86 102793 10.1016/j.sbi.2024.102793 38447285
    [Google Scholar]
  71. Henrich S. Salo-Ahen O.M.H. Huang B. Rippmann F.F. Cruciani G. Wade R.C. Computational approaches to identifying and characterizing protein binding sites for ligand design. J. Mol. Recognit. 2010 23 2 209 219 10.1002/jmr.984 19746440
    [Google Scholar]
  72. Amaro R.E. Will the real cryptic pocket please stand out? Biophys. J. 2019 116 5 753 754 10.1016/j.bpj.2019.01.018 30739726
    [Google Scholar]
  73. Meller A. Ward M. Borowsky J. Kshirsagar M. Lotthammer J.M. Oviedo F. Ferres J.L. Bowman G.R. Predicting locations of cryptic pockets from single protein structures using the PocketMiner graph neural network. Nat. Commun. 2023 14 1 1177 10.1038/s41467‑023‑36699‑3 36859488
    [Google Scholar]
  74. Wayment-Steele H.K. Ojoawo A. Otten R. Apitz J.M. Pitsawong W. Hömberger M. Ovchinnikov S. Colwell L. Kern D. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 2024 625 7996 832 839 10.1038/s41586‑023‑06832‑9 37956700
    [Google Scholar]
  75. Wang T. He X. Li M. Li Y. Bi R. Wang Y. Cheng C. Shen X. Meng J. Zhang H. Liu H. Wang Z. Li S. Shao B. Liu T.Y. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature 2024 635 8040 1019 1027 10.1038/s41586‑024‑08127‑z 39506110
    [Google Scholar]
  76. Zhang L. Han J. Wang H. Car R. e W. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 2018 120 14 143001 10.1103/PhysRevLett.120.143001 29694129
    [Google Scholar]
  77. Yang H. Xiong Z. Zonta F. Construction of a deep neural network energy function for protein physics. J. Chem. Theory Comput. 2022 18 9 5649 5658 10.1021/acs.jctc.2c00069 35939398
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673376099250428054846
Loading
/content/journals/cmc/10.2174/0109298673376099250428054846
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test