Skip to content
2000
image of TGF-β: The Molecular Mechanisms of Atherosclerosis - insights into SMAD Pathways and Gene Therapy Prospects

Abstract

Atherosclerosis, a leading cause of global morbidity and mortality, is characterized by plaque formation resulting from the accumulation of fibrous elements, lipids, and calcification in arteries, leading to complications such as ischemic stroke, coronary artery disease, and myocardial infarction. Traditional treatments primarily address symptoms but fail to target underlying causes, prompting exploration of novel approaches like gene therapy. The TGF-β family, encompassing TGF-β1, TGF-β2, and TGF-β3, plays a critical role in cellular processes including proliferation, apoptosis, and migration, with its dysregulation strongly linked to cardiovascular diseases. In atherosclerosis, TGF-β influences key factors, such as macrophage cholesterol regulation, plaque stability, and vascular smooth muscle cell function, while also contributing to endothelial dysfunction-an early stage in disease development. Personalized medicine has highlighted the importance of tailoring therapies to genetic profiles, particularly regarding TGF-β pathway variations such as SNPs in TGF-β1 and TGFBR2, which could inform more precise interventions. Emerging technologies like CRISPR-Cas9 and RNA-based therapies enable targeted modulation of these genetic factors, offering new avenues to mitigate disease progression. CRISPR-Cas9 allows direct editing of gene loci linked to atherosclerosis, potentially correcting mutations or modulating expression levels, while RNA-based therapies, including siRNAs and antisense oligonucleotides, provide additional precision tools for addressing dysregulated genes. This review focuses on identifying key genes and additional molecular players involved in or regulated by the TGF-β pathway that may serve as precise targets for gene therapy intervention in atherosclerosis and related cardiovascular diseases. By targeting genes involved in cholesterol metabolism, inflammation, and endothelial function, gene therapy offers a targeted strategy to ameliorate the genetic drivers of these conditions. In summary, modulation of TGF-β signaling by gene therapy has the potential to revolutionize the treatment of atherosclerosis and other cardiovascular diseases while shedding light on the underlying genetic mechanisms of these disorders.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673373967250313053208
2025-04-15
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673373967250313053208/BMS-CMC-2024-HT129-5674-14.html?itemId=/content/journals/cmc/10.2174/0109298673373967250313053208&mimeType=html&fmt=ahah

References

  1. Jebari-Benslaiman S. Galicia-García U. Larrea-Sebal A. Olaetxea J.R. Alloza I. Vandenbroeck K. Benito-Vicente A. Martín C. Pathophysiology of atherosclerosis. Int. J. Mol. Sci. 2022 23 6 3346 10.3390/ijms23063346 35328769
    [Google Scholar]
  2. Ma M.M. Xu Y.Y. Sun L.H. Cui W.J. Fan M. Zhang S. Liu L. Wu L.Z. Li L.C. Statin-associated liver dysfunction and muscle injury: Epidemiology, mechanisms, and management strategies. Int. J. Gen. Med. 2024 17 2055 2063 10.2147/IJGM.S460305 38751493
    [Google Scholar]
  3. Fan J. Watanabe T. Atherosclerosis: Known and unknown. Pathol. Int. 2022 72 3 151 160 10.1111/pin.13202 35076127
    [Google Scholar]
  4. Rafieian-Kopaei M. Setorki M. Doudi M. Baradaran A. Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med. 2014 5 8 927 946 25489440
    [Google Scholar]
  5. Cao G. Xuan X. Zhang R. Hu J. Dong H. Gene therapy for cardiovascular disease: Basic research and clinical prospects. Front. Cardiovasc. Med. 2021 8 760140 10.3389/fcvm.2021.760140 34805315
    [Google Scholar]
  6. Lee Y.S. Choi J.R. Kim J.B. Gene therapy for cardiovascular disease: Clinical perspectives. Yonsei Med. J. 2024 65 10 557 571 10.3349/ymj.2024.0127 39313446
    [Google Scholar]
  7. Chen P.Y. Qin L. Li G. Wang Z. Dahlman J.E. Malagon-Lopez J. Gujja S. Cilfone N.A. Kauffman K.J. Sun L. Sun H. Zhang X. Aryal B. Canfran-Duque A. Liu R. Kusters P. Sehgal A. Jiao Y. Anderson D.G. Gulcher J. Fernandez-Hernando C. Lutgens E. Schwartz M.A. Pober J.S. Chittenden T.W. Tellides G. Simons M. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 2019 1 9 912 926 10.1038/s42255‑019‑0102‑3 31572976
    [Google Scholar]
  8. Redondo S. Jorge Navarro-Dorado Ramajo M. Medina U. Tejerina T. The complex regulation of TGF-ß in cardiovascular disease. Vasc. Health Risk Manag. 2012 8 533 539 10.2147/VHRM.S28041 23028232
    [Google Scholar]
  9. Liuizė Abramavičiūtė A. Mongirdienė A. TGF-β isoforms and GDF-15 in the development and progression of atherosclerosis. Int. J. Mol. Sci. 2024 25 4 2104 10.3390/ijms25042104 38396781
    [Google Scholar]
  10. Liu H. Sun M. Wu N. Liu B. Liu Q. Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun. Inflamm. Dis. 2023 11 11 e1060 10.1002/iid3.1060 38018603
    [Google Scholar]
  11. Zhang M. Zhang Y.Y. Chen Y. Wang J. Wang Q. Lu H. TGF-β signaling and resistance to cancer therapy. Front. Cell Dev. Biol. 2021 9 786728 10.3389/fcell.2021.786728 34917620
    [Google Scholar]
  12. Haque S. Morris J.C. Transforming growth factor-β: A therapeutic target for cancer. Hum. Vaccin. Immunother. 2017 13 8 1741 1750 10.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  13. Walton K.L. Johnson K.E. Harrison C.A. Targeting TGF-β mediated SMAD signaling for the prevention of fibrosis. Front. Pharmacol. 2017 8 461 10.3389/fphar.2017.00461 28769795
    [Google Scholar]
  14. Su D.N. Wu S.P. Xu S.Z. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Res. Ther. 2020 11 1 395 10.1186/s13287‑020‑01911‑4 32928296
    [Google Scholar]
  15. Danielpour D. Advances and challenges in targeting TGF-β isoforms for therapeutic intervention of cancer: A mechanism-based perspective. Pharmaceuticals (Basel) 2024 17 4 533 10.3390/ph17040533 38675493
    [Google Scholar]
  16. Goumans M.J. ten Dijke P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb. Perspect. Biol. 2018 10 2 a022210 10.1101/cshperspect.a022210 28348036
    [Google Scholar]
  17. Toma I. McCaffrey T.A. Transforming growth factor-β and atherosclerosis: Interwoven atherogenic and atheroprotective aspects. Cell Tissue Res. 2012 347 1 155 175 10.1007/s00441‑011‑1189‑3 21626289
    [Google Scholar]
  18. Chen P.Y. Qin L. Simons M. TGFβ signaling pathways in human health and disease. Front. Mol. Biosci. 2023 10 1113061 10.3389/fmolb.2023.1113061 37325472
    [Google Scholar]
  19. Sachan N. Phoon C.K.L. Bu L. Zilberberg L. Ahamed J. Rifkin D.B. Binding requirements for latent transforming growth factor Beta2 activation. Matrix Biology Plus 2024 22 100149 10.1016/j.mbplus.2024.100149 38831847
    [Google Scholar]
  20. Lockhart-Cairns M.P. Cain S.A. Dajani R. Steer R. Thomson J. Alanazi Y.F. Kielty C.M. Baldock C. Latent TGF-β complexes are transglutaminase cross-linked to fibrillin to facilitate TGF-β activation. Matrix Biol. 2022 107 24 39 10.1016/j.matbio.2022.01.005 35122964
    [Google Scholar]
  21. Annes J.P. Rifkin D.B. Munger J.S. The integrin α V β 6 binds and activates latent TGF-β3. FEBS Lett. 2002 511 1-3 65 68 10.1016/S0014‑5793(01)03280‑X 11821050
    [Google Scholar]
  22. Deng Z. Fan T. Xiao C. Tian H. Zheng Y. Li C. He J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024 9 1 61 10.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  23. Nguyen H.L. Lee Y.J. Shin J. Lee E. Park S.O. McCarty J.H. Oh S.P. TGF-β signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab. Invest. 2011 91 11 1554 1563 10.1038/labinvest.2011.124 21876535
    [Google Scholar]
  24. Bonowicz K. Mikołajczyk K. Faisal I. Qamar M. Steinbrink K. Kleszczyński K. Grzanka A. Gagat M. Mechanism of extracellular vesicle secretion associated with TGF-β-dependent inflammatory response in the tumor microenvironment. Int. J. Mol. Sci. 2022 23 23 15335 10.3390/ijms232315335 36499660
    [Google Scholar]
  25. Low E.L. Baker A.H. Bradshaw A.C. TGFβ, smooth muscle cells and coronary artery disease: A review. Cell. Signal. 2019 53 90 101 10.1016/j.cellsig.2018.09.004 30227237
    [Google Scholar]
  26. Furukawa F. Matsuzaki K. Mori S. Tahashi Y. Yoshida K. Sugano Y. Yamagata H. Matsushita M. Seki T. Inagaki Y. Nishizawa M. Fujisawa J. Inoue K. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003 38 4 879 889 10.1002/hep.1840380414 14512875
    [Google Scholar]
  27. Effendi W.I. Nagano T. Connective tissue growth factor in idiopathic pulmonary fibrosis: Breaking the bridge. Int. J. Mol. Sci. 2022 23 11 6064 10.3390/ijms23116064 35682743
    [Google Scholar]
  28. Li J. Zou Y. Kantapan J. Su H. Wang L. Dechsupa N. TGF-β/Smad signaling in chronic kidney disease: Exploring post-translational regulatory perspectives (Review). Mol. Med. Rep. 2024 30 2 143 10.3892/mmr.2024.13267 38904198
    [Google Scholar]
  29. Nijman S.M.B. Luna-Vargas M.P.A. Velds A. Brummelkamp T.R. Dirac A.M.G. Sixma T.K. Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005 123 5 773 786 10.1016/j.cell.2005.11.007 16325574
    [Google Scholar]
  30. Zhan X. Yang Y. Li Q. He F. The role of deubiquitinases in cardiac disease. Expert Rev. Mol. Med. 2024 26 e3 10.1017/erm.2024.2 38525836
    [Google Scholar]
  31. Ning W. Xu X. Zhou S. Wu X. Wu H. Zhang Y. Han J. Wang J. Effect of high glucose supplementation on pulmonary fibrosis involving reactive oxygen species and TGF-β. Front. Nutr. 2022 9 998662 10.3389/fnut.2022.998662 36304232
    [Google Scholar]
  32. Zhang D. Jin W. Wu R. Li J. Park S.A. Tu E. Zanvit P. Xu J. Liu O. Cain A. Chen W. High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 2019 51 4 671 681.e5 10.1016/j.immuni.2019.08.001 31451397
    [Google Scholar]
  33. Garg P. Pareek S. Kulkarni P. Horne D. Salgia R. Singhal S.S. Exploring the potential of TGF-β as a diagnostic marker and therapeutic target against cancer. Biochem. Pharmacol. 2025 231 116646 10.1016/j.bcp.2024.116646 39577704
    [Google Scholar]
  34. Déglise S. Bechelli C. Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front. Physiol. 2023 13 1081881 10.3389/fphys.2022.1081881 36685215
    [Google Scholar]
  35. Michael D.R. Salter R.C. Ramji D.P. TGF-β inhibits the uptake of modified low density lipoprotein by human macrophages through a Smad-dependent pathway: A dominant role for Smad-2. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 10 1608 1616 10.1016/j.bbadis.2012.06.002 22705205
    [Google Scholar]
  36. Ahmadi J. Hosseini E. Kargar F. Ghasemzadeh M. Stable CAD patients show higher levels of platelet-borne TGF-β1 associated with a superior pro-inflammatory state than the pro-aggregatory status; Evidence highlighting the importance of platelet-derived TGF-β1 in atherosclerosis. J. Thromb. Thrombolysis 2022 55 1 102 115 10.1007/s11239‑022‑02729‑y 36352058
    [Google Scholar]
  37. Gómez-Bernal F. Quevedo-Abeledo J.C. García-González M. Fernández-Cladera Y. González-Rivero A.F. Martín-González C. González-Gay M.Á. Ferraz-Amaro I. Transforming growth factor beta 1 is associated with subclinical carotid atherosclerosis in patients with systemic lupus erythematosus. Arthritis Res. Ther. 2023 25 1 64 10.1186/s13075‑023‑03046‑2 37069672
    [Google Scholar]
  38. Edsfeldt A. Singh P. Matthes F. Tengryd C. Cavalera M. Bengtsson E. Dunér P. Volkov P. Karadimou G. Gisterå A. Orho-Melander M. Nilsson J. Sun J. Gonçalves I. Transforming growth factor-β2 is associated with atherosclerotic plaque stability and lower risk for cardiovascular events. Cardiovasc. Res. 2023 119 11 2061 2073 10.1093/cvr/cvad079 37200403
    [Google Scholar]
  39. Ma T.Y. Tang S.L. Wang B. Wang G. Sun C.M. Pan J.X. Han D.Q. Li J.Y. Zhong J.H. Role of TGF -β3 in modulating inflammatory responses and wound healing processes in ischemic ulcers in atherosclerotic patients. Int. Wound J. 2024 21 2 e14762 10.1111/iwj.14762 38356162
    [Google Scholar]
  40. Sitia S. Tomasoni L. Atzeni F. Ambrosio G. Cordiano C. Catapano A. Tramontana S. Perticone F. Naccarato P. Camici P. Picano E. Cortigiani L. Bevilacqua M. Milazzo L. Cusi D. Barlassina C. Sarzi-Puttini P. Turiel M. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010 9 12 830 834 10.1016/j.autrev.2010.07.016 20678595
    [Google Scholar]
  41. Ma J. Sanchez-Duffhues G. Goumans M.J. ten Dijke P. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering. Front. Cell Dev. Biol. 2020 8 260 10.3389/fcell.2020.00260 32373613
    [Google Scholar]
  42. Yang D.R. Wang M.Y. Zhang C.L. Wang Y. Endothelial dysfunction in vascular complications of diabetes: A comprehensive review of mechanisms and implications. Front. Endocrinol. (Lausanne) 2024 15 1359255 10.3389/fendo.2024.1359255 38645427
    [Google Scholar]
  43. Singh A. Bhatt K.S. Nguyen H.C. Frisbee J.C. Singh K.K. Endothelial-to-mesenchymal transition in cardiovascular pathophysiology. Int. J. Mol. Sci. 2024 25 11 6180 10.3390/ijms25116180 38892367
    [Google Scholar]
  44. Zhu X. Wang Y. Soaita I. Lee H.W. Bae H. Boutagy N. Bostwick A. Zhang R.M. Bowman C. Xu Y. Trefely S. Chen Y. Qin L. Sessa W. Tellides G. Jang C. Snyder N.W. Yu L. Arany Z. Simons M. Acetate controls endothelial-to-mesenchymal transition. Cell Metab. 2023 35 7 1163 1178.e10 10.1016/j.cmet.2023.05.010 37327791
    [Google Scholar]
  45. Liu H.T. Zhou Z.X. Ren Z. Yang S. Liu L.S. Wang Z. Wei D.H. Ma X.F. Ma Y. Jiang Z.S. End M.T. EndMT: Potential target of H2S against atherosclerosis. Curr. Med. Chem. 2021 28 18 3666 3680 10.2174/0929867327999201116194634 33200693
    [Google Scholar]
  46. Zhang Y. Alexander P.B. Wang X.F. TGF-β Family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 2017 9 4 a022145 10.1101/cshperspect.a022145 27920038
    [Google Scholar]
  47. Saura M. Zaragoza C. Herranz B. Griera M. Diez-Marqués L. Rodriguez-Puyol D. Rodriguez-Puyol M. Nitric oxide regulates transforming growth factor-beta signaling in endothelial cells. Circ. Res. 2005 97 11 1115 1123 10.1161/01.RES.0000191538.76771.66 16239590
    [Google Scholar]
  48. Singh N. Ramji D. The role of transforming growth factor-β in atherosclerosis. Cytokine Growth Factor Rev. 2006 17 6 487 499 10.1016/j.cytogfr.2006.09.002 17056295
    [Google Scholar]
  49. Gimbrone M.A. Jr García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 2016 118 4 620 636 10.1161/CIRCRESAHA.115.306301 26892962
    [Google Scholar]
  50. Serralheiro P. Soares A. Costa Almeida C. Verde I. TGF-β1 in vascular wall pathology: Unraveling chronic venous insufficiency pathophysiology. Int. J. Mol. Sci. 2017 18 12 2534 10.3390/ijms18122534 29186866
    [Google Scholar]
  51. Gu S. Derynck R. Chen Y.G. Feng X.H. New progress in roles of TGF-β signaling crosstalks in cellular functions, immunity and diseases. Cell Regen. (Lond.) 2024 13 1 11 10.1186/s13619‑024‑00194‑x 38780677
    [Google Scholar]
  52. Deng H. Xu Y. Hu X. Zhuang Z.W. Chang Y. Wang Y. Ntokou A. Schwartz M.A. Su B. Simons M. MEKK3–TGFβ crosstalk regulates inward arterial remodeling. Proc. Natl. Acad. Sci. USA 2021 118 51 e2112625118 10.1073/pnas.2112625118 34911761
    [Google Scholar]
  53. Cai C. Gu S. Yu Y. Zhu Y. Zhang H. Yuan B. Shen L. Yang B. Feng X.H. PRMT5 enables robust STAT3 activation via arginine symmetric dimethylation of SMAD7. Adv. Sci. (Weinh.) 2021 8 10 2003047 10.1002/advs.202003047 34026434
    [Google Scholar]
  54. Allahverdian S. Chaabane C. Boukais K. Francis G.A. Bochaton-Piallat M.L. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 2018 114 4 540 550 10.1093/cvr/cvy022 29385543
    [Google Scholar]
  55. Wang G. Jacquet L. Karamariti E. Xu Q. Origin and differentiation of vascular smooth muscle cells. J. Physiol. 2015 593 14 3013 3030 10.1113/JP270033 25952975
    [Google Scholar]
  56. Ashraf J.V. Al Haj Zen A. Role of vascular smooth muscle cell phenotype switching in arteriogenesis. Int. J. Mol. Sci. 2021 22 19 10585 10.3390/ijms221910585 34638923
    [Google Scholar]
  57. Hu B. Wu Z. Liu T. Ullenbruch M.R. Jin H. Phan S.H. Gut-enriched Krüppel-like factor interaction with Smad3 inhibits myofibroblast differentiation. Am. J. Respir. Cell Mol. Biol. 2007 36 1 78 84 10.1165/rcmb.2006‑0043OC 16858008
    [Google Scholar]
  58. Manabe I. Owens G.K. CArG elements control smooth muscle subtype–specific expression of smooth muscle myosin in vivo. J. Clin. Invest. 2001 107 7 823 834 10.1172/JCI11385 11285301
    [Google Scholar]
  59. Parmacek M.S. Myocardin. Arterioscler. Thromb. Vasc. Biol. 2008 28 8 1416 1417 10.1161/ATVBAHA.108.168930 18650504
    [Google Scholar]
  60. Shi X. DiRenzo D. Guo L.W. Franco S.R. Wang B. Seedial S. Kent K.C. TGF-β/Smad3 stimulates stem cell/developmental gene expression and vascular smooth muscle cell de-differentiation. PLoS One 2014 9 4 e93995 10.1371/journal.pone.0093995 24718260
    [Google Scholar]
  61. Chen S. Crawford M. Day R.M. Briones V.R. Leader J.E. Jose P.A. Lechleider R.J. Rho A. RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. J. Biol. Chem. 2006 281 3 1765 1770 10.1074/jbc.M507771200 16317010
    [Google Scholar]
  62. Guo X. Chen S-Y. Transforming growth factor-β and smooth muscle differentiation. World J. Biol. Chem. 2012 3 3 41 52 10.4331/wjbc.v3.i3.41 22451850
    [Google Scholar]
  63. Beccacece L. Abondio P. Bini C. Pelotti S. Luiselli D. The link between prostanoids and cardiovascular diseases. Int. J. Mol. Sci. 2023 24 4 4193 10.3390/ijms24044193 36835616
    [Google Scholar]
  64. Lu P. Takai K. Weaver V.M. Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011 3 12 a005058 10.1101/cshperspect.a005058 21917992
    [Google Scholar]
  65. Verma B.K. Chatterjee A. Kondaiah P. Gundiah N. Substrate stiffness modulates TGF-β activation and ECM-associated gene expression in fibroblasts. Bioengineering (Basel) 2023 10 9 998 10.3390/bioengineering10090998 37760100
    [Google Scholar]
  66. Vilaça-Faria H. Noro J. Reis R.L. Pirraco R.P. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application. Bioact. Mater. 2024 34 494 519 10.1016/j.bioactmat.2024.01.004 38298755
    [Google Scholar]
  67. Wang Y. Li J. Current progress in growth factors and extracellular vesicles in tendon healing. Int. Wound J. 2023 20 9 3871 3883 10.1111/iwj.14261 37291064
    [Google Scholar]
  68. Ren L.L. Miao H. Wang Y.N. Liu F. Li P. Zhao Y.Y. TGF-β as a master regulator of aging-associated tissue fibrosis. Aging Dis. 2023 14 5 1633 1650 10.14336/AD.2023.0222 37196129
    [Google Scholar]
  69. Cao Q. Xiao B. Jin G. Lin J. Wang Y. Young C. Lin J. Zhou Y. Zhang B. Cao M. Wu K. Zheng D. Expression of transforming growth factor β and matrix metalloproteinases in the aqueous humor of patients with congenital ectopia lentis. Mol. Med. Rep. 2019 20 1 559 566 10.3892/mmr.2019.10287 31180551
    [Google Scholar]
  70. Katsuda S. Kaji T. Atherosclerosis and extracellular matrix. J. Atheroscler. Thromb. 2003 10 5 267 274 10.5551/jat.10.267 14718743
    [Google Scholar]
  71. Cabral-Pacheco G.A. Garza-Veloz I. Castruita-De la Rosa C. Ramirez-Acuña J.M. Perez-Romero B.A. Guerrero-Rodriguez J.F. Martinez-Avila N. Martinez-Fierro M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020 21 24 9739 10.3390/ijms21249739 33419373
    [Google Scholar]
  72. Wu X. Yang J. Zhang J. Song Y. Gene editing therapy for cardiovascular diseases. MedComm 2024 5 7 e639 10.1002/mco2.639 38974714
    [Google Scholar]
  73. Chen X. Zheng M. Lin S. Huang M. Chen S. Chen S. The application of CRISPR/Cas9–based genome-wide screening to disease research. Mol. Cell. Probes 2025 79 102004 10.1016/j.mcp.2024.102004 39709065
    [Google Scholar]
  74. Nasrallah A. Sulpice E. Kobaisi F. Gidrol X. Rachidi W. CRISPR-Cas9 technology for the creation of biological avatars capable of modeling and treating pathologies: From discovery to the latest improvements. Cells 2022 11 22 3615 10.3390/cells11223615 36429042
    [Google Scholar]
  75. Horodecka K. Düchler M. CRISPR/Cas9: Principle, applications, and delivery through extracellular vesicles. Int. J. Mol. Sci. 2021 22 11 6072 10.3390/ijms22116072 34199901
    [Google Scholar]
  76. Aljabali A.A.A. El-Tanani M. Tambuwala M.M. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery. J. Drug Deliv. Sci. Technol. 2024 92 105338 10.1016/j.jddst.2024.105338
    [Google Scholar]
  77. Barrangou R. Marraffini L.A. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 2014 54 2 234 244 10.1016/j.molcel.2014.03.011 24766887
    [Google Scholar]
  78. Demirci Y. Zhang B. Unver T. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing. J. Cell. Physiol. 2018 233 3 1844 1859 10.1002/jcp.25970 28430356
    [Google Scholar]
  79. Aherrahrou R. Guo L. Nagraj V.P. Aguhob A. Hinkle J. Chen L. Yuhl Soh J. Lue D. Alencar G.F. Boltjes A. van der Laan S.W. Farber E. Fuller D. Anane-Wae R. Akingbesote N. Manichaikul A.W. Ma L. Kaikkonen M.U. Björkegren J.L.M. Önengüt-Gümüşcü S. Pasterkamp G. Miller C.L. Owens G.K. Finn A. Navab M. Fogelman A.M. Berliner J.A. Civelek M. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ. Res. 2020 127 12 1552 1565 10.1161/CIRCRESAHA.120.317415 33040646
    [Google Scholar]
  80. Kathiresan S. Srivastava D. Genetics of human cardiovascular disease. Cell 2012 148 6 1242 1257 10.1016/j.cell.2012.03.001 22424232
    [Google Scholar]
  81. Lee R.G. Mazzola A.M. Braun M.C. Platt C. Vafai S.B. Kathiresan S. Rohde E. Bellinger A.M. Khera A.V. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models. Circulation 2023 147 3 242 253 10.1161/CIRCULATIONAHA.122.062132 36314243
    [Google Scholar]
  82. Ding Q. Strong A. Patel K.M. Ng S.L. Gosis B.S. Regan S.N. Cowan C.A. Rader D.J. Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 2014 115 5 488 492 10.1161/CIRCRESAHA.115.304351 24916110
    [Google Scholar]
  83. Liu N. Olson E.N. CRISPR modeling and correction of cardiovascular disease. Circ. Res. 2022 130 12 1827 1850 10.1161/CIRCRESAHA.122.320496 35679361
    [Google Scholar]
  84. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  85. Nishiga M. Liu C. Qi L.S. Wu J.C. The use of new CRISPR tools in cardiovascular research and medicine. Nat. Rev. Cardiol. 2022 19 8 505 521 10.1038/s41569‑021‑00669‑3 35145236
    [Google Scholar]
  86. Ma H. Marti-Gutierrez N. Park S.W. Wu J. Lee Y. Suzuki K. Koski A. Ji D. Hayama T. Ahmed R. Darby H. Van Dyken C. Li Y. Kang E. Park A.R. Kim D. Kim S.T. Gong J. Gu Y. Xu X. Battaglia D. Krieg S.A. Lee D.M. Wu D.H. Wolf D.P. Heitner S.B. Belmonte J.C.I. Amato P. Kim J.S. Kaul S. Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature 2017 548 7668 413 419 10.1038/nature23305 28783728
    [Google Scholar]
  87. Reyes-Soffer G. Sztalryd C. Horenstein R.B. Holleran S. Matveyenko A. Thomas T. Nandakumar R. Ngai C. Karmally W. Ginsberg H.N. Ramakrishnan R. Pollin T.I. Effects of APOC3 heterozygous deficiency on plasma lipid and lipoprotein metabolism. Arterioscler. Thromb. Vasc. Biol. 2019 39 1 63 72 10.1161/ATVBAHA.118.311476 30580564
    [Google Scholar]
  88. Zha Y. Lu Y. Zhang T. Yan K. Zhuang W. Liang J. Cheng Y. Wang Y. CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits. Lipids Health Dis. 2021 20 1 180 10.1186/s12944‑021‑01605‑7 34922545
    [Google Scholar]
  89. Guo M. Xu Y. Dong Z. Zhou Z. Cong N. Gao M. Huang W. Wang Y. Liu G. Xian X. Inactivation of ApoC3 by CRISPR/Cas9 protects against atherosclerosis in hamsters. Circ. Res. 2020 127 11 1456 1458 10.1161/CIRCRESAHA.120.317686 32951534
    [Google Scholar]
  90. Yuan T. Tang H. Xu X. Shao J. Wu G. Cho Y.C. Ping Y. Liang G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023 26 6 106872 10.1016/j.isci.2023.106872 37260750
    [Google Scholar]
  91. Boada C. Sukhovershin R. Pettigrew R. Cooke J.P. RNA therapeutics for cardiovascular disease. Curr. Opin. Cardiol. 2021 36 3 256 263 10.1097/HCO.0000000000000850 33709981
    [Google Scholar]
  92. Sun H. Hodgkinson C.P. Pratt R.E. Dzau V.J. Crispr- Cas9 deletion of hepatic angiotensinogen gene results in sustained control of hypertension: A potential for cure? Hypertension 2021 77 1990 2000 10.1161/HYPERTENSIONAHA.120.16870 33813849
    [Google Scholar]
  93. Wang F. Zuroske T. Watts J.K. RNA therapeutics on the rise. Nat. Rev. Drug Discov. 2020 19 7 441 442 10.1038/d41573‑020‑00078‑0 32341501
    [Google Scholar]
  94. Wierzbicki A.S. Viljoen A. Anti-sense oligonucleotide therapies for the treatment of hyperlipidaemia. Expert Opin. Biol. Ther. 2016 16 9 1125 1134 10.1080/14712598.2016.1196182 27248482
    [Google Scholar]
  95. Ray K.K. Landmesser U. Leiter L.A. Kallend D. Dufour R. Karakas M. Hall T. Troquay R.P.T. Turner T. Visseren F.L.J. Wijngaard P. Wright R.S. Kastelein J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 2017 376 15 1430 1440 10.1056/NEJMoa1615758 28306389
    [Google Scholar]
  96. Täubel J. Hauke W. Rump S. Viereck J. Batkai S. Poetzsch J. Rode L. Weigt H. Genschel C. Lorch U. Theek C. Levin A.A. Bauersachs J. Solomon S.D. Thum T. Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. Eur. Heart J. 2021 42 2 178 188 10.1093/eurheartj/ehaa898 33245749
    [Google Scholar]
  97. Anttila V. Saraste A. Knuuti J. Jaakkola P. Hedman M. Svedlund S. Lagerström-Fermér M. Kjaer M. Jeppsson A. Gan L.M. Synthetic mRNA encoding VEGF-a in patients undergoing coronary artery bypass grafting: Design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 2020 18 464 472 10.1016/j.omtm.2020.05.030 32728595
    [Google Scholar]
  98. Santos R.D. Duell P.B. East C. Guyton J.R. Moriarty P.M. Chin W. Mittleman R.S. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur. Heart J. 2015 36 9 566 575 10.1093/eurheartj/eht549 24366918
    [Google Scholar]
  99. Santos R.D. Raal F.J. Donovan J.M. Cromwell W.C. Mipomersen preferentially reduces small low-density lipoprotein particle number in patients with hypercholesterolemia. J. Clin. Lipidol. 2015 9 2 201 209 10.1016/j.jacl.2014.12.008 25911076
    [Google Scholar]
  100. Hu Y.W. Wang Q. Ma X. Li X.X. Liu X.H. Xiao J. Liao D.F. Xiang J. Tang C.K. TGF-beta1 up-regulates expression of ABCA1, ABCG1 and SR-BI through liver X receptor alpha signaling pathway in THP-1 macrophage-derived foam cells. J. Atheroscler. Thromb. 2010 17 5 493 502 10.5551/jat.3152 20057170
    [Google Scholar]
  101. Lin L. Mahner S. Jeschke U. Hester A. The distinct roles of transcriptional factor KLF11 in normal cell growth regulation and cancer as a mediator of TGF-β signaling pathway. Int. J. Mol. Sci. 2020 21 8 2928 10.3390/ijms21082928 32331236
    [Google Scholar]
  102. Fan Y. Guo Y. Zhang J. Subramaniam M. Song C-Z. Urrutia R. Chen Y.E. Krüppel like factor 11, a transcription factor involved in diabetes, suppresses endothelial cell activation via the NF-κB signaling pathway. Arterioscler. Thromb. Vasc. Biol. 2012 32 2981 2988 10.1161/ATVBAHA.112.300349 23042817
    [Google Scholar]
  103. Itoh F. Itoh S. Adachi T. Ichikawa K. Matsumura Y. Takagi T. Festing M. Watanabe T. Weinstein M. Karlsson S. Kato M. Smad2/Smad3 in endothelium is indispensable for vascular stability via S1PR1 and N-cadherin expressions. Blood 2012 119 22 5320 5328 10.1182/blood‑2011‑12‑395772 22498737
    [Google Scholar]
  104. Feinberg M.W. Shimizu K. Lebedeva M. Haspel R. Takayama K. Chen Z. Frederick J.P. Wang X.F. Simon D.I. Libby P. Mitchell R.N. Jain M.K. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ. Res. 2004 94 5 601 608 10.1161/01.RES.0000119170.70818.4F 14752027
    [Google Scholar]
  105. Deng H. Min E. Baeyens N. Coon B.G. Hu R. Zhuang Z.W. Chen M. Huang B. Afolabi T. Zarkada G. Acheampong A. McEntee K. Eichmann A. Liu F. Su B. Simons M. Schwartz M.A. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Proc. Natl. Acad. Sci. USA 2021 118 37 e2105339118 10.1073/pnas.2105339118 34504019
    [Google Scholar]
  106. González-Núñez M. Muñoz-Félix J.M. López-Novoa J.M. The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 10 1492 1510 10.1016/j.bbadis.2013.05.016 23707512
    [Google Scholar]
  107. Misra G. Qaisar S. Singh P. CRISPR-based therapeutic targeting of signaling pathways in breast cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 1 166872 10.1016/j.bbadis.2023.166872 37666438
    [Google Scholar]
  108. Siew W.S. Tang Y.Q. Kong C.K. Goh B.H. Zacchigna S. Dua K. Chellappan D.K. Duangjai A. Saokaew S. Phisalprapa P. Yap W.H. Harnessing the potential of CRISPR/Cas in atherosclerosis: Disease modeling and therapeutic applications. Int. J. Mol. Sci. 2021 22 16 8422 10.3390/ijms22168422 34445123
    [Google Scholar]
  109. Roudaut M. Idriss S. Caillaud A. Girardeau A. Rimbert A. Champon B. David A. Lévêque A. Arnaud L. Pichelin M. Prieur X. Prat A. Seidah N.G. Zibara K. May C.L. Cariou B. Si-Tayeb K. PCSK9 regulates the NODAL signaling pathway and cellular proliferation in hiPSCs. Stem Cell Repo. 2021 16 12 2958 2972 10.1016/j.stemcr.2021.10.004 34739847
    [Google Scholar]
  110. Tripathi R. Sinha N.R. Kempuraj D. Balne P.K. Landreneau J.R. Juneja A. Webel A.D. Mohan R.R. Evaluation of CRISPR/Cas9 mediated TGIF gene editing to inhibit corneal fibrosis in vitro. Exp. Eye Res. 2022 220 109113 10.1016/j.exer.2022.109113 35588782
    [Google Scholar]
  111. Gardin A. Ronzitti G. Current limitations of gene therapy for rare pediatric diseases: Lessons learned from clinical experience with AAV vectors. Arch. Pediatr. 2023 30 8S1 8S46 8S52 10.1016/S0929‑693X(23)00227‑0 38043983
    [Google Scholar]
  112. Grieger J.C. Samulski R.J. Packaging capacity of adeno-associated virus serotypes: Impact of larger genomes on infectivity and postentry steps. J. Virol. 2005 79 15 9933 9944 10.1128/JVI.79.15.9933‑9944.2005 16014954
    [Google Scholar]
  113. Uddin F. Rudin C.M. Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 2020 10 1387 10.3389/fonc.2020.01387 32850447
    [Google Scholar]
  114. Nielsen R.V. Fuster V. Bundgaard H. Fuster J.J. Johri A.M. Kofoed K.F. Douglas P.S. Diederichsen A. Shapiro M.D. Nicholls S.J. Nordestgaard B.G. Lindholt J.S. MacRae C. Yuan C. Newby D.E. Urbina E.M. Bergström G. Ridderstråle M. Budoff M.J. Bøttcher M. Raitakari O.T. Hansen T.H. Näslund U. Sillesen H. Eldrup N. Ibanez B. Personalized intervention based on early detection of atherosclerosis. J. Am. Coll. Cardiol. 2024 83 21 2112 2127 10.1016/j.jacc.2024.02.053 38777513
    [Google Scholar]
  115. Abdulfattah S.Y. Salman Alagely H. Abid Kathum O. Samawi F.T. Association of serum level of TGF-B1 and its genetic polymorphisms (C509T and T869C) with Ischemic heart disease in Iraqi population. Hum. Immunol. 2024 85 6 111145 10.1016/j.humimm.2024.111145 39305813
    [Google Scholar]
  116. Tseng Z.H. Vittinghoff E. Musone S.L. Lin F. Whiteman D. Pawlikowska L. Kwok P.Y. Olgin J.E. Aouizerat B.E. Association of TGFBR2 polymorphism with risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm 2009 6 12 1745 1750 10.1016/j.hrthm.2009.08.031 19959123
    [Google Scholar]
  117. Yang M. Zhu M. Tang L. Zhu H. Lu Y. Xu B. Jiang J. Chen X. Polymorphisms of TGF-β-1 and TGFBR2 in relation to coronary artery disease in a Chinese population. Clin. Biochem. 2016 49 12 873 878 10.1016/j.clinbiochem.2016.05.022 27234600
    [Google Scholar]
  118. Petrovič D. Letonja J. Petrovič D. SMAD3 rs17228212 polymorphism is associated with advanced carotid atherosclerosis in a slovenian population. Biomedicines 2024 12 5 1103 10.3390/biomedicines12051103 38791063
    [Google Scholar]
  119. Rayat S. Ramezanidoraki N. Kazemi N. Modarressi M.H. Falah M. Zardadi S. Morovvati S. Association study between polymorphisms in MIA3, SELE, SMAD3 and CETP genes and coronary artery disease in an Iranian population. BMC Cardiovasc. Disord. 2022 22 1 298 10.1186/s12872‑022‑02695‑6 35768776
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673373967250313053208
Loading
/content/journals/cmc/10.2174/0109298673373967250313053208
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gene editing ; TGF-β ; SMAD pathways ; atheroma plaques ; gene loci ; Atherosclerosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test