Skip to content
2000
image of Emerging New Treatments for Colon Cancer

Abstract

Colorectal cancer includes cancer of the rectum and colon. It is the primary cause of cancer-related deaths among men under 50 years of age. In 2022, over 1.9 million cases of CRC were reported, resulting in approximately 904,000 deaths worldwide. Factors like smoking, alcohol consumption, obesity, familial history, and inflammation significantly contribute to the risk of CRC development. Additionally, bacterial infections from organisms like and also play a role in increasing this risk. Conventional treatment methods for CRC typically involve surgery/polypectomy, chemotherapy, and radiotherapy. Because of limitations like lack of target specificity, the risk of tumor relapse, and the potential for tumor resistance, there is a growing necessity for more individually tailored treatment strategies to improve the outcomes of patients with CRC. As such, emerging treatments like cancer vaccine, (CAR) T-cells, CAR-NK cells, macrophages, and stem cell engineering (particularly mesenchymal stem cells), dendritic vaccine, siRNA, and miRNA, hold significant promise in enhancing outcomes for CRC patients. Moreover, specific gut microbiomes like and , linked to CRC development, have been identified. Hence, modulating the gut microbiome to potentially enhance responses to CRC in high-risk populations could be a new line of treatment. This modulation can be accomplished through dietary interventions, prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). This review summarizes the most promising new emerging treatments in the fight against colon cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673372776250505155945
2025-05-16
2025-09-11
Loading full text...

Full text loading...

References

  1. Huang X. Review on colonrectal cancer. E3S Web Conf. 2021 271 1 6
    [Google Scholar]
  2. Furtak-Niczyporuk M. Zardzewiały W. Balicki D. Bernacki R. Jaworska G. Kozłowska M. Drop B. Colorectal cancer-the worst enemy is the one we do not know. Int. J. Environ. Res. Public Health 2023 20 3 1866 10.3390/ijerph20031866 36767228
    [Google Scholar]
  3. Islami F. Sauer G.A. Miller K.D. Siegel R.L. Fedewa S.A. Jacobs E.J. McCullough M.L. Patel A.V. Ma J. Soerjomataram I. Flanders W.D. Brawley O.W. Gapstur S.M. Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 2018 68 1 31 54 10.3322/caac.21440 29160902
    [Google Scholar]
  4. Morgan E. Arnold M. Gini A. Lorenzoni V. Cabasag C.J. Laversanne M. Vignat J. Ferlay J. Murphy N. Bray F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023 72 2 338 344 10.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  5. Nguyen H. Duong H.Q. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy (Review). Oncol. Lett. 2018 16 1 9 18 10.3892/ol.2018.8679 29928381
    [Google Scholar]
  6. Luetzkendorf J. Mueller L.P. Mueller T. Caysa H. Nerger K. Schmoll H.J. Growth inhibition of colorectal carcinoma by lentiviral TRAIL -transgenic human mesenchymal stem cells requires their substantial intratumoral presence. J. Cell. Mol. Med. 2010 14 9 2292 2304 10.1111/j.1582‑4934.2009.00794.x 19508388
    [Google Scholar]
  7. Bosman F. Hamilton S. Lambert R. Chapter 5.5 World Cancer Report. Colo-Rectal Cancer. Stewart B.W. Wild C.P. Lyon, France International Agency for Research on Cancer 2014 392 402
    [Google Scholar]
  8. Ou S. Wang H. Tao Y. Luo K. Ye J. Ran S. Guan Z. Wang Y. Hu H. Huang R. Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front. Cell. Infect. Microbiol. 2022 12 1020583 10.3389/fcimb.2022.1020583 36523635
    [Google Scholar]
  9. Avril M. DePaolo R.W. “Driver-passenger” bacteria and their metabolites in the pathogenesis of colorectal cancer. Gut Microbes 2021 13 1 1941710 10.1080/19490976.2021.1941710 34225577
    [Google Scholar]
  10. Eaden J.A. Abrams K.R. Mayberry J.F. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 2001 48 4 526 535 10.1136/gut.48.4.526 11247898
    [Google Scholar]
  11. Dey A. Mitra A. Pathak S. Prasad S. Zhang A.S. Zhang H. Sun X.F. Banerjee A. Recent advancements, limitations, and future perspectives of the use of personalized medicine in treatment of colon cancer. Technol. Cancer Res. Treat. 2023 22 15330338231178403 10.1177/15330338231178403 37248615
    [Google Scholar]
  12. Siegel R.L. Wagle N.S. Cercek A. Smith R.A. Jemal A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023 73 3 233 254 10.3322/caac.21772 36856579
    [Google Scholar]
  13. Cappell M.S. Pathophysiology, clinical presentation, and management of colon cancer. Gastroenterol. Clin. North Am. 2008 37 1 1 24, v 10.1016/j.gtc.2007.12.002 18313537
    [Google Scholar]
  14. Chlumská A. Boudová L. Zámecník M. Sessile serrated adenomas of the large bowel. Clinicopathologic and immunohistochemical study including comparison with common hyperplastic polyps and adenomas. Cesk. Patol. 2006 42 3 133 138 16955561
    [Google Scholar]
  15. Spring K.J. Zhao Z.Z. Karamatic R. Walsh M.D. Whitehall V.L.J. Pike T. Simms L.A. Young J. James M. Montgomery G.W. Appleyard M. Hewett D. Togashi K. Jass J.R. Leggett B.A. High prevalence of sessile serrated adenomas with BRAF mutations: A prospective study of patients undergoing colonoscopy. Gastroenterology 2006 131 5 1400 1407 10.1053/j.gastro.2006.08.038 17101316
    [Google Scholar]
  16. Gangireddy V.G.R. Coleman T. Kanneganti P. Talla S. Annapureddy A.R. Amin R. Parikh S. Polypectomy versus surgery in early colon cancer: Size and location of colon cancer affect long-term survival. Int. J. Colorectal Dis. 2018 33 10 1349 1357 10.1007/s00384‑018‑3101‑z 29938362
    [Google Scholar]
  17. Yamanashi T. Nakamura T. Sato T. Naito M. Miura H. Tsutsui A. Shimazu M. Watanabe M. Laparoscopic surgery for locally advanced T4 colon cancer: The long-term outcomes and prognostic factors. Surg. Today 2018 48 5 534 544 10.1007/s00595‑017‑1621‑8 29288349
    [Google Scholar]
  18. Xie Y.H. Chen Y.X. Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 22 10.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  19. Ohishi T. Kaneko M.K. Yoshida Y. Takashima A. Kato Y. Kawada M. Current targeted therapy for metastatic colorectal cancer. Int. J. Mol. Sci. 2023 24 2 1702 10.3390/ijms24021702 36675216
    [Google Scholar]
  20. Sharma V. Chouhan P. Pandey R.K. Prajapati V.K. Recent therapeutic strategies for the treatment of colon cancer. Colon Cancer Diagnosis and Therapy. Cham Springer 2021 2 73 90 10.1007/978‑3‑030‑64668‑4_4
    [Google Scholar]
  21. Boute T.C. Swartjes H. Greuter M.J.E. Elferink M.A.G. Eekelen V.R. Vink G.R. Wilt D.J.H.W. Coupé V.M.H. Cumulative incidence, risk factors, and overall survival of disease recurrence after curative resection of stage ii–iii colorectal cancer: A population-based study. Cancer Res. Communicat. 2024 4 2 607 616 10.1158/2767‑9764.CRC‑23‑0512 38363145
    [Google Scholar]
  22. Chan L.Y. Dass S.A. Tye G.J. Imran S.A.M. Zaman W.K.W.S. Nordin F. CAR-T Cells/-NK cells in cancer immunotherapy and the potential of msc to enhance its efficacy: A review. Biomedicines 2022 10 4 804 10.3390/biomedicines10040804 35453554
    [Google Scholar]
  23. Maus M.V. Levine B.L. Chimeric antigen receptor T-cell therapy for the community oncologist. Oncologist 2016 21 5 608 617 10.1634/theoncologist.2015‑0421 27009942
    [Google Scholar]
  24. Liu Y. Yan X. Zhang F. Zhang X. Tang F. Han Z. Li Y. TCR-T immunotherapy: The challenges and solutions. Front. Oncol. 2022 11 794183 10.3389/fonc.2021.794183 35145905
    [Google Scholar]
  25. Abou-el-Enein M. Elsallab M. Feldman S.A. Fesnak A.D. Heslop H.E. Marks P. Till B.G. Bauer G. Savoldo B. Scalable manufacturing of car T cells for cancer immunotherapy. Blood Cancer Discov. 2021 2 5 408 422 10.1158/2643‑3230.BCD‑21‑0084 34568831
    [Google Scholar]
  26. Ghassemi S. Durgin J.S. Nunez-Cruz S. Patel J. Leferovich J. Pinzone M. Shen F. Cummins K.D. Plesa G. Cantu V.A. Reddy S. Bushman F.D. Gill S.I. O’Doherty U. O’Connor R.S. Milone M.C. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 2022 6 2 118 128 10.1038/s41551‑021‑00842‑6 35190680
    [Google Scholar]
  27. Shank B.R. Do B. Sevin A. Chen S.E. Neelapu S.S. Horowitz S.B. Chimeric antigen receptor T cells in hematologic malignancies. Pharmacotherapy 2017 37 3 334 345 10.1002/phar.1900 28079265
    [Google Scholar]
  28. Aparicio C. Belver M. Enríquez L. Espeso F. Núñez L. Sánchez A. Fuente L.D.M.Á. González-Vallinas M. Cell therapy for colorectal cancer: The promise of chimeric antigen receptor (CAR)-T cells. Int. J. Mol. Sci. 2021 22 21 11781 10.3390/ijms222111781 34769211
    [Google Scholar]
  29. Guedan S. Calderon H. Posey A.D. Jr Maus M.V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 2018 12 145 156 10.1016/j.omtm.2018.12.009 30666307
    [Google Scholar]
  30. Liu H. Wang S. Xin J. Wang J. Yao C. Zhang Z. Role of NKG2D and its ligands in cancer immunotherapy. Am. J. Cancer Res. 2019 9 10 2064 2078 31720075
    [Google Scholar]
  31. Deng X. Gao F. Li N. Li Q. Zhou Y. Yang T. Cai Z. Du P. Chen F. Cai J. Antitumor activity of NKG2D CAR-T cells against human colorectal cancer cells in vitro and in vivo. Am. J. Cancer Res. 2019 9 5 945 958 31218103
    [Google Scholar]
  32. Zarei M. Abdoli S. Farazmandfar T. Shahbazi M. Lenalidomide improves NKG2D-based CAR-T cell activity against colorectal cancer cells invitro. Heliyon 2023 9 10 e20460 10.1016/j.heliyon.2023.e20460 37790973
    [Google Scholar]
  33. Ghazi B. Ghanmi E.A. Kandoussi S. Ghouzlani A. Badou A. CAR-T cells for colorectal cancer immunotherapy: Ready to go? Front. Immunol. 2022 13 978195 10.3389/fimmu.2022.978195 36458008
    [Google Scholar]
  34. Zhang C. Wang Z. Yang Z. Wang M. Li S. Li Y. Zhang R. Xiong Z. Wei Z. Shen J. Luo Y. Zhang Q. Liu L. Qin H. Liu W. Wu F. Chen W. Pan F. Zhang X. Bie P. Liang H. Pecher G. Qian C. Phase I. Phase I escalating-dose trial of Car-T therapy targeting CEA+ metastatic colorectal cancers. Mol. Ther. 2017 25 5 1248 1258 10.1016/j.ymthe.2017.03.010 28366766
    [Google Scholar]
  35. Gargett T. Truong N.T.H. Gardam B. Yu W. Ebert L.M. Johnson A. Yeo E.C.F. Wittwer N.L. Rico T.G. Logan J. Sivaloganathan P. Collis M. Ruszkiewicz A. Brown M.P. Safety and biological outcomes following a phase 1 trial of GD2-specific CAR-T cells in patients with GD2-positive metastatic melanoma and other solid cancers. J. Immunother. Cancer 2024 12 5 e008659 10.1136/jitc‑2023‑008659 38754916
    [Google Scholar]
  36. Chen N. Pu C. Zhao L. Li W. Wang C. Zhu R. Liang T. Niu C. Huang X. Tang H. Wang Y. Yang H. Jia B. Jiang X. Han G. Wang W. Chen D. Wang Y. Rowinsky E.K. Kennedy E. Lu V.X. Cui G. Wu Z. Xiao L. Cui J. Chimeric antigen receptor T cells targeting CD19 and gcc in metastatic colorectal cancer. JAMA Oncol. 2024 10 11 1532 1536 10.1001/jamaoncol.2024.3891 39298141
    [Google Scholar]
  37. Yan T. Zhu L. Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: Tumor-associated antigens and the tumor microenvironment. Exp. Hematol. Oncol. 2023 12 1 14 10.1186/s40164‑023‑00373‑7 36707873
    [Google Scholar]
  38. Schmidt D. Ebrahimabadi S. Gomes K.R.S. Aguiar M.D.G. Tirapelle C.M. Silvestre N.R. Azevedo D.J.T.C. Covas T.D. Picanço-Castro V. Engineering CAR-NK cells: How to tune innate killer cells for cancer immunotherapy. Immunotherapy Advances 2022 2 1 ltac003 10.1093/immadv/ltac003 35919494
    [Google Scholar]
  39. Wrona E. Borowiec M. Potemski P. CAR-NK Cells in the treatment of solid tumors. Int. J. Mol. Sci. 2021 22 11 5899 10.3390/ijms22115899 34072732
    [Google Scholar]
  40. Lanier L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 2008 9 5 495 502 10.1038/ni1581 18425106
    [Google Scholar]
  41. Prager I. Watzl C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 2019 105 6 1319 1329 10.1002/JLB.MR0718‑269R
    [Google Scholar]
  42. Ijaz A. Broere F. Rutten V.P.M.G. Jansen C.A. Veldhuizen E.J.A. Perforin and granzyme A release as novel tool to measure NK cell activation in chickens. Dev. Comp. Immunol. 2023 149 105047 10.1016/j.dci.2023.105047 37625470
    [Google Scholar]
  43. Li C.M.Y. Tomita Y. Dhakal B. Li R. Li J. Drew P. Price T. Smith E. Maddern G.J. Fenix K.A. Use of cytokine-induced killer cell therapy in patients with colorectal cancer: A systematic review and meta-analysis. J. Immunother. Cancer 2023 11 4 e006764 10.1136/jitc‑2023‑006764 37117007
    [Google Scholar]
  44. Fayyaz F. Yazdanpanah N. Rezaei N. Cytokine-induced killer cells mediated pathways in the treatment of colorectal cancer. Cell Commun. Signal. 2022 20 1 41 10.1186/s12964‑022‑00836‑0 35346234
    [Google Scholar]
  45. Torchiaro E. Cortese M. Petti C. Basirico’ M. Invrea F. D’Andrea A. Franco L. Sangiolo D. Medico E. Repurposing anti-mesothelin CAR-NK immunotherapy against colorectal cancer. J. Transl. Med. 2024 22 1 1100 10.1186/s12967‑024‑05851‑y 39627822
    [Google Scholar]
  46. Greenlee J.D. Zhang Z. Subramanian T. Liu K. King M.R. TRAIL -conjugated liposomes that bind natural killer cells to induce colorectal cancer cell apoptosis. J. Biomed. Mater. Res. A 2024 112 1 110 120 10.1002/jbm.a.37621 37772330
    [Google Scholar]
  47. Tan Z. Tian L. Luo Y. Ai K. Zhang X. Yuan H. Zhou J. Ye G. Yang S. Zhong M. Li G. Wang Y. Preventing postsurgical colorectal cancer relapse: A hemostatic hydrogel loaded with METTL3 inhibitor for CAR-NK cell therapy. Bioact. Mater. 2025 44 236 255 10.1016/j.bioactmat.2024.10.015 39497707
    [Google Scholar]
  48. Li X. Zhang Y. Mao Z. Zhao H. Cao H. Wang J. Liu W. Dai S. Yang Y. Huang Y. Wang H. Decorin-armed oncolytic adenovirus promotes natural killers (NKs) activation and infiltration to enhance NK therapy in CRC model. Molecular Biomed. 2024 5 1 48 10.1186/s43556‑024‑00212‑z 39482550
    [Google Scholar]
  49. Daher M. Garcia M.L. Li Y. Rezvani K. CAR-NK cells: The next wave of cellular therapy for cancer. Clin. Transl. Immunol. 2021 10 4 e1274 10.1002/cti2.1274 33959279
    [Google Scholar]
  50. Vishwasrao P. Hui S.K. Smith D.L. Khairnar V. Role of NK cells in cancer and immunotherapy. Onco 2021 1 2 158 175 10.3390/onco1020013
    [Google Scholar]
  51. Olson J.A. Leveson-Gower D.B. Gill S. Baker J. Beilhack A. Negrin R.S. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood 2010 115 21 4293 4301 10.1182/blood‑2009‑05‑222190 20233969
    [Google Scholar]
  52. Geng S. Yu X. Yu S. Efficacy and safety of natural killer cells injection combined with XELOX chemotherapy in postoperative patients with stage III colorectal cancer in China: A prospective randomised controlled clinical trial study protocol. BMJ Open 2024 14 3 e080377 10.1136/bmjopen‑2023‑080377 38531576
    [Google Scholar]
  53. Tang M. Diao J. Cattral M.S. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell. Mol. Life Sci. 2017 74 5 761 776 10.1007/s00018‑016‑2317‑8 27491428
    [Google Scholar]
  54. Lurje I. Hammerich L. Tacke F. Dendritic cell and t cell crosstalk in liver fibrogenesis and hepatocarcinogenesis: Implications for prevention and therapy of liver cancer. Int. J. Mol. Sci. 2020 21 19 7378 10.3390/ijms21197378 33036244
    [Google Scholar]
  55. Soto J.A. Gálvez N.M.S. Andrade C.A. Pacheco G.A. Bohmwald K. Berrios R.V. Bueno S.M. Kalergis A.M. The role of dendritic cells during infections caused by highly prevalent viruses. Front. Immunol. 2020 11 1513 10.3389/fimmu.2020.01513 32765522
    [Google Scholar]
  56. Embgenbroich M. Burgdorf S. Current concepts of antigen cross-presentation. Front. Immunol. 2018 9 1643 10.3389/fimmu.2018.01643 30061897
    [Google Scholar]
  57. Hato L. Vizcay A. Eguren I. Pérez-Gracia J.L. Rodríguez J. Larraya G.P.J. Sarobe P. Inogés S. Díaz de Cerio A.L. Santisteban M. Dendritic cells in cancer immunology and immunotherapy. Cancers 2024 16 5 981 10.3390/cancers16050981 38473341
    [Google Scholar]
  58. Sabado R.L. Balan S. Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017 27 1 74 95 10.1038/cr.2016.157 28025976
    [Google Scholar]
  59. Kajihara M. Takakura K. Kanai T. Ito Z. Saito K. Takami S. Shimodaira S. Okamoto M. Ohkusa T. Koido S. Dendritic cell-based cancer immunotherapy for colorectal cancer. World J. Gastroenterol. 2016 22 17 4275 4286 10.3748/wjg.v22.i17.4275 27158196
    [Google Scholar]
  60. Barth R.J. Jr Fisher D.A. Wallace P.K. Channon J.Y. Noelle R.J. Gui J. Ernstoff M.S. A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: Tumor-specific immune responses are associated with improved survival. Clin. Cancer Res. 2010 16 22 5548 5556 10.1158/1078‑0432.CCR‑10‑2138 20884622
    [Google Scholar]
  61. Lesterhuis W.J. Vries D.I.J.M. Aarntzen E.A. Boer D.A. Scharenborg N.M. Rakt D.V.M. Spronsen V.D-J. Preijers F.W. Figdor C.G. Adema G.J. Punt C.J.A. A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br. J. Cancer 2010 103 9 1415 1421 10.1038/sj.bjc.6605935 20924373
    [Google Scholar]
  62. Caballero-Baños M. Benitez-Ribas D. Tabera J. Varea S. Vilana R. Bianchi L. Ayuso J.R. Pagés M. Carrera G. Cuatrecasas M. Martin-Richard M. Cid J. Lozano M. Castells A. García-Albéniz X. Maurel J. Vilella R. Phase I.I. Phase II randomised trial of autologous tumour lysate dendritic cell plus best supportive care compared with best supportive care in pre-treated advanced colorectal cancer patients. Eur. J. Cancer 2016 64 167 174 10.1016/j.ejca.2016.06.008 27428073
    [Google Scholar]
  63. Zhang W. Guan J. Wang W. Chen G. Fan L. Lu Z. Neoantigen-specific mRNA/DC vaccines for effective anticancer immunotherapy. Genes Immun. 2024 25 6 514 524 10.1038/s41435‑024‑00305‑3 39592852
    [Google Scholar]
  64. Gorodilova A.V. Kitaeva K.V. Filin I.Y. Mayasin Y.P. Kharisova C.B. Issa S.S. Solovyeva V.V. Rizvanov A.A. The potential of dendritic cell subsets in the development of personalized immunotherapy for cancer treatment. Curr. Issues Mol. Biol. 2023 45 10 8053 8070 10.3390/cimb45100509 37886952
    [Google Scholar]
  65. Español-Rego M. Fernández-Martos C. Elez E. Foguet C. Pedrosa L. Rodríguez N. Ruiz-Casado A. Pineda E. Cid J. Cabezón R. Oliveres H. Lozano M. Ginés A. García-Criado A. Ayuso J.R. Pagés M. Cuatrecasas M. Torres F. Thomson T. Cascante M. Benítez-Ribas D. Maurel J. A Phase I-II multicenter trial with Avelumab plus autologous dendritic cell vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer patients; GEMCAD 1602 study. Cancer Immunol. Immunother. 2023 72 4 827 840 10.1007/s00262‑022‑03283‑5 36083313
    [Google Scholar]
  66. Liu Y. Cao X. The origin and function of tumor-associated macrophages. Cell. Mol. Immunol. 2015 12 1 1 4 10.1038/cmi.2014.83 25220733
    [Google Scholar]
  67. Zhang X. Li W. Sun J. Yang Z. Guan Q. Wang R. Li X. Li Y. Feng Y. Wang Y. How to use macrophages to realise the treatment of tumour. J. Drug Target. 2020 28 10 1034 1045 10.1080/1061186X.2020.1775236 32603199
    [Google Scholar]
  68. Zhang Y. Zhao Y. Li Q. Wang Y. Macrophages, as a promising strategy to targeted treatment for colorectal cancer metastasis in tumor immune microenvironment. Front. Immunol. 2021 12 685978 10.3389/fimmu.2021.685978 34326840
    [Google Scholar]
  69. Zhang Q. Sioud M. Tumor-associated macrophage subsets: Shaping polarization and targeting. Int. J. Mol. Sci. 2023 24 8 7493 10.3390/ijms24087493 37108657
    [Google Scholar]
  70. Yang S. Wang Y. Jia J. Fang Y. Yang Y. Yuan W. Hu J. Advances in engineered macrophages: A new frontier in cancer immunotherapy. Cell Death Dis. 2024 15 4 238 10.1038/s41419‑024‑06616‑7 38561367
    [Google Scholar]
  71. Lu D. Xu Y. Liu Q. Zhang Q. Mesenchymal stem cell-macrophage crosstalk and maintenance of inflammatory microenvironment homeostasis. Front. Cell. Dev. Biol. 2021 9 681171 10.3389/fcell.2021.681171
    [Google Scholar]
  72. Bowdish D.M.E. Loffredo M.S. Mukhopadhyay S. Mantovani A. Gordon S. Macrophage receptors implicated in the “adaptive” form of innate immunity. Microbes Infect. 2007 9 14-15 1680 1687 10.1016/j.micinf.2007.09.002 18023392
    [Google Scholar]
  73. Li M. Wang M. Wen Y. Zhang H. Zhao G.N. Gao Q. Signaling pathways in macrophages: Molecular mechanisms and therapeutic targets. MedComm 2023 4 5 e349 10.1002/mco2.349 37706196
    [Google Scholar]
  74. Wang H. Tian T. Zhang J. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis. Int. J. Mol. Sci. 2021 22 16 8470 10.3390/ijms22168470 34445193
    [Google Scholar]
  75. Fridman W.H. Pagès F. Sautès-Fridman C. Galon J. The immune contexture in human tumours: Impact on clinical outcome. Nat. Rev. Cancer 2012 12 4 298 306 10.1038/nrc3245 22419253
    [Google Scholar]
  76. Mishra A.K. Malonia S.K. Advancing cellular immunotherapy with macrophages. Life Sci. 2023 328 121857 10.1016/j.lfs.2023.121857 37307965
    [Google Scholar]
  77. Wang S. Yang Y. Ma P. Huang H. Tang Q. Miao H. Fang Y. Jiang N. Li Y. Zhu Q. Tao W. Zha Y. Li N. Landscape and perspectives of macrophage -targeted cancer therapy in clinical trials. Mol. Ther. Oncolytics 2022 24 799 813 10.1016/j.omto.2022.02.019 35317518
    [Google Scholar]
  78. Shen X. Zhou S. Yang Y. Hong T. Xiang Z. Zhao J. Zhu C. Zeng L. Zhang L. TAM-targeted reeducation for enhanced cancer immunotherapy: Mechanism and recent progress. Front. Oncol. 2022 12 1034842 10.3389/fonc.2022.1034842 36419877
    [Google Scholar]
  79. Fu J. Wang D. Mei D. Zhang H. Wang Z. He B. Dai W. Zhang H. Wang X. Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J. Control. Release 2015 204 11 19 10.1016/j.jconrel.2015.01.039 25646783
    [Google Scholar]
  80. Pang L. Zhu Y. Qin J. Zhao W. Wang J. Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Deliv. 2018 25 1 1922 1931 10.1080/10717544.2018.1502839 30465444
    [Google Scholar]
  81. Huang Z. Zhang Z. Jiang Y. Zhang D. Chen J. Dong L. Zhang J. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Cont. Rel. 2012 158 2 286 292 10.1016/j.jconrel.2011.11.013
    [Google Scholar]
  82. Kortylewski M. Moreira D. Myeloid cells as a target for oligonucleotide therapeutics: Turning obstacles into opportunities. Cancer Immunol. Immunother. 2017 66 8 979 988 10.1007/s00262‑017‑1966‑2 28214929
    [Google Scholar]
  83. Zou L. Tao Y. Payne G. Do L. Thomas T. Rodriguez J. Dou H. Targeted delivery of nano-PTX to the brain tumor-associated macrophages. Oncotarget 2017 8 4 6564 6578 10.18632/oncotarget.14169 28036254
    [Google Scholar]
  84. Kim H. Park H.J. Chang H.W. Back J.H. Lee S.J. Park Y.E. Kim E.H. Hong Y. Kwak G. Kwon I.C. Lee J.E. Lee Y.S. Kim S.Y. Yang Y. Kim S.H. Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer. Bioact. Mater. 2023 25 527 540 10.1016/j.bioactmat.2022.07.021 37056267
    [Google Scholar]
  85. Carvalho D.T.G. Lara P. Jorquera-Cordero C. Aragão C.F.S. Oliveira S.D.A. Garcia V.B. Souza P.D.S.V. Schomann T. Soares L.A.L. da Matta Guedes P.M. Júnior A.D.R.F. Inhibition of murine colorectal cancer metastasis by targeting M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived extracellular vesicles loaded with oxaliplatin, retinoic acid, and Libidibia ferrea. Biomed. Pharmacother. 2023 168 115663 10.1016/j.biopha.2023.115663 37832408
    [Google Scholar]
  86. Georgoudaki A.M. Prokopec K.E. Boura V.F. Hellqvist E. Sohn S. Östling J. Dahan R. Harris R.A. Rantalainen M. Klevebring D. Sund M. Brage S.E. Fuxe J. Rolny C. Li F. Ravetch J.V. Karlsson M.C.I. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 2016 15 9 2000 2011 10.1016/j.celrep.2016.04.084 27210762
    [Google Scholar]
  87. Olsson A. Nakhlé J. Sundstedt A. Plas P. Bauchet A.L. Pierron V. Bruetschy L. Deronic A. Törngren M. Liberg D. Schmidlin F. Leanderson T. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment. J. Immunother. Cancer 2015 3 1 53 10.1186/s40425‑015‑0098‑5 26673090
    [Google Scholar]
  88. Halama N. Zoernig I. Berthel A. Kahlert C. Klupp F. Suarez-Carmona M. Suetterlin T. Brand K. Krauss J. Lasitschka F. Lerchl T. Luckner-Minden C. Ulrich A. Koch M. Weitz J. Schneider M. Buechler M.W. Zitvogel L. Herrmann T. Benner A. Kunz C. Luecke S. Springfeld C. Grabe N. Falk C.S. Jaeger D. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 2016 29 4 587 601 10.1016/j.ccell.2016.03.005 27070705
    [Google Scholar]
  89. Zhu M. Bai L. Liu X. Peng S. Xie Y. Bai H. Yu H. Wang X. Yuan P. Ma R. Lin J. Wu L. Huang M. Li Y. Luo Y. Silence of a dependence receptor CSF1R in colorectal cancer cells activates tumor-associated macrophages. J. Immunother. Cancer 2022 10 12 e005610 10.1136/jitc‑2022‑005610 36600555
    [Google Scholar]
  90. Qiao T. Yang W. He X. Song P. Chen X. Liu R. Xiao J. Yang X. Li M. Gao Y. Chen G. Lu Y. Zhang J. Leng J. Ren H. Dynamic differentiation of F4/80+ tumor-associated macrophage and its role in tumor vascularization in a syngeneic mouse model of colorectal liver metastasis. Cell Death Dis. 2023 14 2 117 10.1038/s41419‑023‑05626‑1 36781833
    [Google Scholar]
  91. Limagne E. Thibaudin M. Nuttin L. Spill A. Derangère V. Fumet J.D. Amellal N. Peranzoni E. Cattan V. Ghiringhelli F. Trifluridine/tipiracil plus oxaliplatin improves PD-1 blockade in colorectal cancer by Inducing immunogenic cell death and depleting macrophages. Cancer Immunol. Res. 2019 7 12 1958 1969 10.1158/2326‑6066.CIR‑19‑0228 31611243
    [Google Scholar]
  92. Sanchez-Lopez E. Flashner-Abramson E. Shalapour S. Zhong Z. Taniguchi K. Levitzki A. Karin M. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene 2016 35 20 2634 2644 10.1038/onc.2015.326 26364612
    [Google Scholar]
  93. Chen T.W. Hung W.Z. Chiang S.F. Chen W.T.L. Ke T.W. Liang J.A. Huang C.Y. Yang P.C. Huang K.C.Y. Chao K.S.C. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett. 2022 543 215795 10.1016/j.canlet.2022.215795 35718267
    [Google Scholar]
  94. Razak A.R.A. Cleary J.M. Moreno V. Boyer M. Aller C.E. Edenfield W. Tie J. Harvey R.D. Rutten A. Shah M.A. Olszanski A.J. Jäger D. Lakhani N. Ryan D.P. Rasmussen E. Juan G. Wong H. Soman N. Smit M.A.D. Nagorsen D. Papadopoulos K.P. Safety and efficacy of AMG 820, an anti-colony-stimulating factor 1 receptor antibody, in combination with pembrolizumab in adults with advanced solid tumors. J. Immunother. Cancer 2020 8 2 e001006 10.1136/jitc‑2020‑001006 33046621
    [Google Scholar]
  95. Cherney R.J. Anjanappa P. Selvakumar K. Batt D.G. Brown G.D. Rose A.V. Vuppugalla R. Chen J. Pang J. Xu S. Yarde M. Tebben A.J. Paidi V.R. Cvijic M.E. Mathur A. Barrish J.C. Mandlekar S. Zhao Q. Carter P.H. BMS-813160: A potent CCR2 and CCR5 dual antagonist selected as a clinical candidate. ACS Med. Chem. Lett. 2021 12 11 1753 1758 10.1021/acsmedchemlett.1c00373 34795864
    [Google Scholar]
  96. Vito D.A. Orecchia P. Balza E. Reverberi D. Scaldaferri D. Taramelli R. Noonan D.M. Acquati F. Mortara L. Overexpression of murine rnaset2 in a colon syngeneic mouse carcinoma model leads to rebalance of intra-tumor M1/M2 macrophage ratio, activation of t cells, delayed tumor growth, and rejection. Cancers 2020 12 3 717 10.3390/cancers12030717 32197460
    [Google Scholar]
  97. Brempelis K.J. Cowan C.M. Kreuser S.A. Labadie K.P. Prieskorn B.M. Lieberman N.A.P. Ene C.I. Moyes K.W. Chinn H. DeGolier K.R. Matsumoto L.R. Daniel S.K. Yokoyama J.K. Davis A.D. Hoglund V.J. Smythe K.S. Balcaitis S.D. Jensen M.C. Ellenbogen R.G. Campbell J.S. Pierce R.H. Holland E.C. Pillarisetty V.G. Crane C.A. Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. J. Immunother. Cancer 2020 8 2 e001356 10.1136/jitc‑2020‑001356 33115946
    [Google Scholar]
  98. Biglari A. Southgate T.D. Fairbairn L.J. Gilham D.E. Human monocytes expressing a CEA-specific chimeric CD64 receptor specifically target CEA-expressing tumour cells in vitro and in vivo. Gene Ther. 2006 13 7 602 610 10.1038/sj.gt.3302706 16397508
    [Google Scholar]
  99. Villanueva M.T. Macrophages get a CAR. Nat. Rev. Cancer 2020 20 6 300 10.1038/s41568‑020‑0259‑9 32265522
    [Google Scholar]
  100. Klichinsky M. Ruella M. Shestova O. Lu X.M. Best A. Zeeman M. Schmierer M. Gabrusiewicz K. Anderson N.R. Petty N.E. Cummins K.D. Shen F. Shan X. Veliz K. Blouch K. Yashiro-Ohtani Y. Kenderian S.S. Kim M.Y. O’Connor R.S. Wallace S.R. Kozlowski M.S. Marchione D.M. Shestov M. Garcia B.A. June C.H. Gill S. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 2020 38 8 947 953 10.1038/s41587‑020‑0462‑y 32361713
    [Google Scholar]
  101. Anderson N.R. Minutolo N.G. Gill S. Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021 81 5 1201 1208 10.1158/0008‑5472.CAN‑20‑2990 33203697
    [Google Scholar]
  102. Sloas C. Gill S. Klichinsky M. Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front. Immunol. 2021 12 783305 10.3389/fimmu.2021.783305 34899748
    [Google Scholar]
  103. Pierini S. Gabbasov R. Gabitova L. Ohtani Y. Shestova O. Gill S. Abramson S. Condamine T. Klichinsky M. Abstract 63: Chimeric antigen receptor macrophages (CAR-M) induce anti-tumor immunity and synergize with T cell checkpoint inhibitors in pre-clinical solid tumor models. Cancer Res. 2021 81 13_Supplement 63 10.1158/1538‑7445.AM2021‑63
    [Google Scholar]
  104. Gabrusiewicz K. Anderson N. Lu X. Shan X. Shestova O. Petty N. Shen F. Schmierer M. Best A. Zeeman M. Ohtani Y. Cummins K. Gill S. Klichinsky M. Abstract B65: CT-0508, a novel CAR macrophage product directed against HER2, promotes a proinflammatory tumor microenvironment. Cancer Immunol. Res. 2020 8 3_Supplement B65 10.1158/2326‑6074.TUMIMM19‑B65
    [Google Scholar]
  105. Chen K. Liu M. Wang J. Fang S. CAR-macrophage versus CAR-T for solid tumors: The race between a rising star and a superstar. Biomol. Biomed. 2024 24 3 465 476 10.17305/bb.2023.9675 37877819
    [Google Scholar]
  106. O’Malley G. Heijltjes M. Houston A.M. Rani S. Ritter T. Egan L.J. Ryan A.E. Mesenchymal stromal cells (MSCs) and colorectal cancer: A troublesome twosome for the anti-tumour immune response? Oncotarget 2016 7 37 60752 60774 10.18632/oncotarget.11354 27542276
    [Google Scholar]
  107. Ahn S.Y. The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Res. 2020 40 6 3039 3047 10.21873/anticanres.14284 32487597
    [Google Scholar]
  108. Yagi H. Kitagawa Y. The role of mesenchymal stem cells in cancer development. Front. Genet. 2013 4 261 10.3389/fgene.2013.00261 24348516
    [Google Scholar]
  109. Li X. Fan Q. Peng X. Yang S. Wei S. Liu J. Yang L. Li H. Mesenchymal/stromal stem cells: Necessary factors in tumour progression. Cell Death Discov. 2022 8 1 333 10.1038/s41420‑022‑01107‑0 35869057
    [Google Scholar]
  110. Hombach A.A. Geumann U. Günther C. Hermann F.G. Abken H. IL7-IL12 engineered mesenchymal stem cells (MSCs) improve a car t cell attack against colorectal cancer cells. Cells 2020 9 4 873 10.3390/cells9040873 32260097
    [Google Scholar]
  111. Hmadcha A. Martin-Montalvo A. Gauthier B.R. Soria B. Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front. Bioeng. Biotechnol. 2020 8 43 10.3389/fbioe.2020.00043 32117924
    [Google Scholar]
  112. Treviño G.E.N. Reyes Q.A.G. Murillo R.J.A. Kalife G.L.D.D.A. Gonzalez D.P. Islas J.F. Rodriguez E.A.E. Villarreal G.C.A. Cell therapy as target therapy against colon cancer stem cells. Int. J. Mol. Sci. 2023 24 9 8163 10.3390/ijms24098163 37175871
    [Google Scholar]
  113. Mueller L.P. Luetzkendorf J. Widder M. Nerger K. Caysa H. Mueller T. TRAIL-transduced multipotent mesenchymal stromal cells (TRAIL-MSC) overcome TRAIL resistance in selected CRC cell lines in vitro and in vivo. Cancer Gene Ther. 2011 18 4 229 239 10.1038/cgt.2010.68 21037557
    [Google Scholar]
  114. Zwacka R.M. Dunlop M.G. Gene therapy for colon cancer. Hematol. Oncol. Clin. North Am. 1998 12 3 595 615 10.1016/S0889‑8588(05)70010‑1 9684100
    [Google Scholar]
  115. Sun W. Shi Q. Zhang H. Yang K. Ke Y. Wang Y. Qiao L. Advances in the techniques and methodologies of cancer gene therapy. Discov. Med. 2019 27 146 45 55 30721651
    [Google Scholar]
  116. Chung-Faye G.A. Chen M.J. Green N.K. Burton A. Anderson D. Mautner V. Searle P.F. Kerr D.J. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther. 2001 8 20 1547 1554 10.1038/sj.gt.3301557 11704815
    [Google Scholar]
  117. Reid T.R. Freeman S. Post L. McCormick F. Sze D.Y. Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther. 2005 12 8 673 681 10.1038/sj.cgt.7700819 15803147
    [Google Scholar]
  118. Tu S.P. Cui J.T. Liston P. Jiang X.H. Xu R. Lin M.C.M. Zhu Y.B. Zou B. Ng S.S.M. Jiang S.H. Xia H.H.X. Wong W.M. Chan A.O.O. Yuen M.F. Lam S.K. Kung H.F. Wong B.C.Y. Gene therapy for colon cancer by adeno-associated viral vector-mediated transfer of survivin Cys84Ala mutant. Gastroenterology 2005 128 2 361 375 10.1053/j.gastro.2004.11.058 15685548
    [Google Scholar]
  119. He L.F. Wang Y.G. Xiao T. Zhang K.J. Li G.C. Gu J.F. Chu L. Tang W.H. Tan W.S. Liu X.Y. Suppression of cancer growth in mice by adeno-associated virus vector-mediated IFN-β expression driven by hTERT promoter. Cancer Lett. 2009 286 2 196 205 10.1016/j.canlet.2009.05.024 19564073
    [Google Scholar]
  120. Vidic S. Markelc B. Sersa G. Coer A. Kamensek U. Tevz G. Kranjc S. Cemazar M. MicroRNAs targeting mutant K-ras by electrotransfer inhibit human colorectal adenocarcinoma cell growth in vitro and in vivo. Cancer Gene Ther. 2010 17 6 409 419 10.1038/cgt.2009.87 20094071
    [Google Scholar]
  121. Wu Y. Guo Z. Zhang D. Zhang W. Yan Q. Shi X. Zhang M. Zhao Y. Zhang Y. Jiang B. Cheng T. Bai Y. Wang J. A novel colon cancer gene therapy using rAAV-mediated expression of human shRNA-FHL2. Int. J. Oncol. 2013 43 5 1618 1626 10.3892/ijo.2013.2090 24008552
    [Google Scholar]
  122. Ju H-Q. Lu Y-X. Wu Q-N. Liu J. Zeng Z-L. Mo H-Y. Chen Y. Tian T. Wang Y. Kang T-B. Xie D. Zeng M-S. Huang P. Xu R-H. Disrupting G6PD-mediated Redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene 2017 36 45 6282 6292 10.1038/onc.2017.227 28692052
    [Google Scholar]
  123. Liu X. Gao X. Zheng S. Wang B. Li Y. Zhao C. Muftuoglu Y. Chen S. Li Y. Yao H. Sun H. Mao Q. You C. Guo G. Wei Y. Modified nanoparticle mediated IL-12 immunogene therapy for colon cancer. Nanomedicine 2017 13 6 1993 2004 10.1016/j.nano.2017.04.006 28428054
    [Google Scholar]
  124. Pishavar E. Ramezani M. Hashemi M. Co-delivery of doxorubicin and TRAIL plasmid by modified PAMAM dendrimer in colon cancer cells, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2019 45 12 1931 1939 10.1080/03639045.2019.1680995 31609130
    [Google Scholar]
  125. Gao Y. Men K. Pan C. Li J. Wu J. Chen X. Lei S. Gao X. Duan X. Functionalized DMP-039 hybrid nanoparticle as a novel mrna vector for efficient cancer suicide gene therapy. Int. J. Nanomedicine 2021 16 5211 5232 10.2147/IJN.S319092 34366664
    [Google Scholar]
  126. Li X.-L. Zhou J. Chen Z.-R. Chng W.-J. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J. Gastroenterol. 2015 21 1 84 93 10.3748/wjg.v21.i1.84
    [Google Scholar]
  127. Andreyev H.J.N. Norman A.R. Cunningham D. Oates J. Dix B.R. Iacopetta B.J. Young J. Walsh T. Ward R. Hawkins N. Beranek M. Jandik P. Benamouzig R. Jullian E. Laurent-Puig P. Olschwang S. Muller O. Hoffmann I. Rabes H.M. Zietz C. Troungos C. Valavanis C. Yuen S.T. Ho J.W.C. Croke C.T. O’Donoghue D.P. Giaretti W. Rapallo A. Russo A. Bazan V. Tanaka M. Omura K. Azuma T. Ohkusa T. Fujimori T. Ono Y. Pauly M. Faber C. Glaesener R. Goeij A.F.P.M. Arends J.W. Andersen S.N. Lövig T. Breivik J. Gaudernack G. Clausen O.P.F. Angelis P.D. Meling G.I. Rognum T.O. Smith R. Goh H-S. Font A. Rosell R. Sun X.F. Zhang H. Benhattar J. Losi L. Lee J.Q. Wang S.T. Clarke P.A. Bell S. Quirke P. Bubb V.J. Piris J. Cruickshank N.R. Morton D. Fox J.C. Al-Mulla F. Lees N. Hall C.N. Snary D. Wilkinson K. Dillon D. Costa J. Pricolo V.E. Finkelstein S.D. Thebo J.S. Senagore A.J. Halter S.A. Wadler S. Malik S. Krtolica K. Urosevic N. Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br. J. Cancer 2001 85 5 692 696 10.1054/bjoc.2001.1964 11531254
    [Google Scholar]
  128. Dinu D.M. Lu Y.X. Wu Q.N. Liu J. Disrupting G6PD-mediated redox homeostasis enhances chemosensitivity in colorectal cancer. Oncogene 2014 36 45 6282 6292 10.1038/onc.2017.227
    [Google Scholar]
  129. Hayama T. Hashiguchi Y. Okamoto K. Okada Y. Ono K. Shimada R. Ozawa T. Toyoda T. Tsuchiya T. Iinuma H. Nozawa K. Matsuda K. G12V and G12C mutations in the gene KRAS are associated with a poorer prognosis in primary colorectal cancer. Int. J. Colorectal Dis. 2019 34 8 1491 1496 10.1007/s00384‑019‑03344‑9 31309326
    [Google Scholar]
  130. Scott A. Goffredo P. Ginader T. Hrabe J. Gribovskaja-Rupp I. Kapadia M.R. Weigel R.J. Hassan I. The impact of KRAS mutation on the presentation and prognosis of non-metastatic colon cancer: An analysis from the national cancer database. J. Gastrointest. Surg. 2020 24 6 1402 1410 10.1007/s11605‑020‑04543‑4 32128676
    [Google Scholar]
  131. Li H. Zhang J. Tong J.H.M. Chan A.W.H. Yu J. Kang W. To K.F. Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int. J. Mol. Sci. 2019 20 23 5999 10.3390/ijms20235999 31795192
    [Google Scholar]
  132. Lisiansky V. Naumov I. Shapira S. Kazanov D. Starr A. Arber N. Kraus S. Gene therapy of pancreatic cancer targeting the K-Ras oncogene. Cancer Gene Ther. 2012 19 12 862 869 10.1038/cgt.2012.73 23099885
    [Google Scholar]
  133. Murugan A.K. Grieco M. Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin. Cancer Biol. 2019 59 23 35 10.1016/j.semcancer.2019.06.007 31255772
    [Google Scholar]
  134. Brenner A.J. Peters K.B. Vredenburgh J. Bokstein F. Blumenthal D.T. Yust-Katz S. Peretz I. Oberman B. Freedman L.S. Ellingson B.M. Cloughesy T.F. Sher N. Cohen Y.C. Lowenton-Spier N. Minei R.T. Yakov N. Mendel I. Breitbart E. Wen P.Y. Safety and efficacy of VB-111, an anticancer gene therapy, in patients with recurrent glioblastoma: Results of a phase I/II study. Neuro-oncol. 2020 22 5 694 704 10.1093/neuonc/noz231 31844886
    [Google Scholar]
  135. Han P. Li J. Zhang B. Lv J. Li Y. Gu X. Yu Z. Jia Y. Bai X. Li L. Liu Y. Cui B. The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol. Cancer 2017 16 1 9 10.1186/s12943‑017‑0583‑1 28086904
    [Google Scholar]
  136. Greenberger S. Shaish A. Varda-Bloom N. Levanon K. Breitbart E. Goldberg I. Barshack I. Hodish I. Yaacov N. Bangio L. Goncharov T. Wallach D. Harats D. Transcription-controlled gene therapy against tumor angiogenesis. J. Clin. Invest. 2004 113 7 1017 1024 10.1172/JCI200420007 15057308
    [Google Scholar]
  137. Hasbullah H.H. Musa M. Gene therapy targeting p53 and KRAS for colorectal cancer treatment: A myth or the way forward? Int. J. Mol. Sci. 2021 22 21 11941 10.3390/ijms222111941 34769370
    [Google Scholar]
  138. Linnebacher M. Gebert J. Rudy W. Woerner S. Yuan Y.P. Bork P. Doeberitz K.V.M. Frameshift peptide-derived T-cell epitopes: A source of novel tumor-specific antigens. Int. J. Cancer 2001 93 1 6 11 10.1002/ijc.1298 11391614
    [Google Scholar]
  139. Wagner S. Mullins C.S. Linnebacher M. Colorectal cancer vaccines: Tumor-associated antigens vs neoantigens. World J. Gastroenterol. 2018 24 48 5418 5432 10.3748/wjg.v24.i48.5418 30622371
    [Google Scholar]
  140. Shahnazari M. Samadi P. Pourjafar M. Jalali A. Therapeutic vaccines for colorectal cancer: The progress and future prospect. Int. Immunopharmacol. 2020 88 106944 10.1016/j.intimp.2020.106944 33182032
    [Google Scholar]
  141. Zhang Y. Ma J.A. Zhang H.X. Jiang Y.N. Luo W.H. Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev. Vaccines 2020 19 2 163 173 10.1080/14760584.2020.1733420 32174221
    [Google Scholar]
  142. Hu L.F. Lan H.R. Huang D. Li X.M. Jin K.T. Personalized Immunotherapy in Colorectal cancers: Where do we stand? Front. Oncol. 2021 11 769305 10.3389/fonc.2021.769305 34888246
    [Google Scholar]
  143. Entezari A.A. Snook A.E. Waldman S.A. Guanylyl cyclase 2C (GUCY2C) in gastrointestinal cancers: Recent innovations and therapeutic potential. Expert Opin. Ther. Targets 2021 25 5 335 346 10.1080/14728222.2021.1937124 34056991
    [Google Scholar]
  144. Hazama S. Nakamura Y. Tanaka H. Hirakawa K. Tahara K. Shimizu R. Ozasa H. Etoh R. Sugiura F. Okuno K. Furuya T. Nishimura T. Sakata K. Yoshimatsu K. Takenouchi H. Tsunedomi R. Inoue Y. Kanekiyo S. Shindo Y. Suzuki N. Yoshino S. Shinozaki H. Kamiya A. Furukawa H. Yamanaka T. Fujita T. Kawakami Y. Oka M. A phase ΙI study of five peptides combination with oxaliplatin-based chemotherapy as a first-line therapy for advanced colorectal cancer (FXV study). J. Transl. Med. 2014 12 1 108 10.1186/1479‑5876‑12‑108 24884643
    [Google Scholar]
  145. Murahashi M. Hijikata Y. Yamada K. Tanaka Y. Kishimoto J. Inoue H. Marumoto T. Takahashi A. Okazaki T. Takeda K. Hirakawa M. Fujii H. Okano S. Morita M. Baba E. Mizumoto K. Maehara Y. Tanaka M. Akashi K. Nakanishi Y. Yoshida K. Tsunoda T. Tamura K. Nakamura Y. Tani K. Phase I. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin. Immunol. 2016 166-167 48 58 10.1016/j.clim.2016.03.015 27072896
    [Google Scholar]
  146. Uyldegroot C. Vermorken J. Hanna M. Jr Verboom P. Groot M. Bonsel G. Meijer C. Pinedo H. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: A prospective study of medical and economic benefits. Vaccine 2005 23 17-18 2379 2387 10.1016/j.vaccine.2005.01.015 15755632
    [Google Scholar]
  147. Hubbard J.M. Cremolini C. Graham R.P. Moretto R. Mitchelll J.L. Wessling J. Toke E.R. Csiszovszki Z. Lőrincz O. Molnar L. Somogyi E. Megyesi M. Pantya K. Tóth J. Miklós I. Lisziewicz J. Lori F. Molnar L. A phase I study of polypepi1018 vaccine plus maintenance therapy in patients with metastatic colorectal cancer with a predictive biomarker (OBERTO). J. Clin. Oncol. 2019 37 15 1 6 10.1200/JCO.2019.37.15_suppl.3557
    [Google Scholar]
  148. Snook A.E. Baybutt T.R. Xiang B. Abraham T.S. Flickinger J.C. Jr Hyslop T. Zhan T. Kraft W.K. Sato T. Waldman S.A. Split tolerance permits safe Ad5-GUCY2C-PADRE vaccine-induced T-cell responses in colon cancer patients. J. Immunother. Cancer 2019 7 1 104 10.1186/s40425‑019‑0576‑2 31010434
    [Google Scholar]
  149. Toh H.C. Wang W.W. Chia W.K. Kvistborg P. Sun L. Teo K. Phoon Y.P. Soe Y. Tan S.H. Hee S.W. Foo K.F. Ong S. Koo W.H. Zocca M.B. Claesson M.H. Clinical benefit of allogeneic melanoma cell lysate–pulsed autologous dendritic cell vaccine in mage-positive colorectal cancer patients. Clin. Cancer Res. 2009 15 24 7726 7736 10.1158/1078‑0432.CCR‑09‑1537 19996212
    [Google Scholar]
  150. Shi G. Xu Y. Qiu H. Cao F. Xiao Z.X. Zhang C Zha G.F. Personalized membrane protein vaccine based on a lipid nanoparticle delivery system prevents postoperative recurrence in colorectal cancer models. Acta Biomater. 2024 192 315 327 10.1016/j.actbio.2024.12.003
    [Google Scholar]
  151. Zhang S. Huang C. Li Y. Li Z. Zhu Y. Yang L. Hu H. Sun Q. Liu M. Cao S. Anti-cancer immune effect of human colorectal cancer neoantigen peptide based on MHC class I molecular affinity screening. Front. Immunol. 2024 15 1473145 10.3389/fimmu.2024.1473145 39559350
    [Google Scholar]
  152. Jiang S. Good D. Wei M.Q. Vaccinations for colorectal cancer: Progress, strategies, and novel adjuvants. Int. J. Mol. Sci. 2019 20 14 3403 10.3390/ijms20143403 31373300
    [Google Scholar]
  153. Liu J. Miao L. Sui J. Hao Y. Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J. Pharm. Sci. 2020 15 5 576 590 10.1016/j.ajps.2019.10.006 33193861
    [Google Scholar]
  154. Rahma O.E. Gammoh E. Simon R.M. Khleif S.N. Is the “3+3” dose-escalation phase I clinical trial design suitable for therapeutic cancer vaccine development? A recommendation for alternative design. Clin. Cancer Res. 2014 20 18 4758 4767 10.1158/1078‑0432.CCR‑13‑2671 25037736
    [Google Scholar]
  155. Seidel J.A. Otsuka A. Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol. 2018 8 86 10.3389/fonc.2018.00086 29644214
    [Google Scholar]
  156. Mutlu A.U. Aytaç E. Gülmez M. Erdamar S. Özer L. Case Report: Chemoimmunotherapy in microsatellite-instability-high advanced goblet cell carcinoma of the colon. Front. Immunol. 2023 14 1160586 10.3389/fimmu.2023.1160586 37483589
    [Google Scholar]
  157. Prasad V. Kaestner V. Nivolumab and pembrolizumab: Monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Semin. Oncol. 2017 44 2 132 135 10.1053/j.seminoncol.2017.06.007 28923211
    [Google Scholar]
  158. Sanghavi K. Zhang J. Zhao X. Feng Y. Statkevich P. Sheng J. Roy A. Vezina H.E. Population pharmacokinetics of ipilimumab in combination with nivolumab in patients with advanced solid tumors. CPT Pharmacometrics Syst. Pharmacol. 2020 9 1 29 39 10.1002/psp4.12477 31709718
    [Google Scholar]
  159. Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021 21 1 1325 10.1186/s12885‑021‑09054‑2 34895176
    [Google Scholar]
  160. Kostic A.D. Chun E. Robertson L. Glickman J.N. Gallini C.A. Michaud M. Clancy T.E. Chung D.C. Lochhead P. Hold G.L. El-Omar E.M. Brenner D. Fuchs C.S. Meyerson M. Garrett W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013 14 2 207 215 10.1016/j.chom.2013.07.007 23954159
    [Google Scholar]
  161. Tomkovich S. Yang Y. Winglee K. Gauthier J. Mühlbauer M. Sun X. Mohamadzadeh M. Liu X. Martin P. Wang G.P. Oswald E. Fodor A.A. Jobin C. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017 77 10 2620 2632 10.1158/0008‑5472.CAN‑16‑3472 28416491
    [Google Scholar]
  162. Tsoi H. Chu E. S. H. Zhang X. Sheng J. Nakatsu G. Ng S.C. Chan A.W.H. Chan F.K.L. Sung J.J.Y. Yu J. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017 152 6 1419 1433 10.1053/j.gastro.2017.01.009
    [Google Scholar]
  163. Huycke M.M. Abrams V. Moore D.R. Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 2002 23 3 529 536 10.1093/carcin/23.3.529 11895869
    [Google Scholar]
  164. Sears C.L. Garrett W.S. Microbes, microbiota, and colon cancer. Cell Host Microbe 2014 15 3 317 328 10.1016/j.chom.2014.02.007 24629338
    [Google Scholar]
  165. Boleij A. Hechenbleikner E.M. Goodwin A.C. Badani R. Stein E.M. Lazarev M.G. Ellis B. Carroll K.C. Albesiano E. Wick E.C. Platz E.A. Pardoll D.M. Sears C.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 2015 60 2 208 215 10.1093/cid/ciu787 25305284
    [Google Scholar]
  166. Wong S.H. Yu J. Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2019 16 11 690 704 10.1038/s41575‑019‑0209‑8 31554963
    [Google Scholar]
  167. Vinolo M.A.R. Rodrigues H.G. Nachbar R.T. Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011 3 10 858 876 10.3390/nu3100858 22254083
    [Google Scholar]
  168. Louis P. Hold G.L. Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014 12 10 661 672 10.1038/nrmicro3344 25198138
    [Google Scholar]
  169. Ou J. Carbonero F. Zoetendal E.G. DeLany J.P. Wang M. Newton K. Gaskins H.R. O’Keefe S.J.D. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 2013 98 1 111 120 10.3945/ajcn.112.056689 23719549
    [Google Scholar]
  170. Ajouz H. Mukherji D. Shamseddine A. Secondary bile acids: An underrecognized cause of colon cancer. World J. Surg. Oncol. 2014 12 1 164 10.1186/1477‑7819‑12‑164 24884764
    [Google Scholar]
  171. Schatzkin A. Mouw T. Park Y. Subar A.F. Kipnis V. Hollenbeck A. Leitzmann M.F. Thompson F.E. Dietary fiber and whole-grain consumption in relation to colorectal cancer in the NIH-AARP diet and health study. Am. J. Clin. Nutr. 2007 85 5 1353 1360 10.1093/ajcn/85.5.1353 17490973
    [Google Scholar]
  172. Dahm C.C. Dietary fiber and colorectal cancer risk: A nested case-control study using food diaries. J. Natl. Cancer Inst. 2011 103 1484 10.1093/jnci/djq092 20407088
    [Google Scholar]
  173. Hansen L. Skeie G. Landberg R. Lund E. Palmqvist R. Johansson I. Dragsted L.O. Egeberg R. Johnsen N.F. Christensen J. Overvad K. Tjønneland A. Olsen A. Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int. J. Cancer 2012 131 2 469 478 10.1002/ijc.26381 21866547
    [Google Scholar]
  174. Song M. Wu K. Meyerhardt J.A. Ogino S. Wang M. Fuchs C.S. Giovannucci E.L. Chan A.T. Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncol. 2018 4 1 71 79 10.1001/jamaoncol.2017.3684 29098294
    [Google Scholar]
  175. Deehan E.C. Yang C. Perez-Muñoz M.E. Nguyen N.K. Cheng C.C. Triador L. Zhang Z. Bakal J.A. Walter J. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host Microbe 2020 27 3 389 404.e6 10.1016/j.chom.2020.01.006 32004499
    [Google Scholar]
  176. Bishehsari F. Engen P.A. Preite N.Z. Tuncil Y.E. Naqib A. Shaikh M. Rossi M. Wilber S. Green S.J. Hamaker B.R. Khazaie K. Voigt R.M. Forsyth C.B. Keshavarzian A. Dietary fiber treatment corrects the composition of gut microbiota, promotes scfa production, and suppresses colon carcinogenesis. Genes 2018 9 2 102 10.3390/genes9020102 29462896
    [Google Scholar]
  177. Volpato M. Hull M.A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metast. Rev. 2018 37 2-3 545 555 10.1007/s10555‑018‑9744‑y 29971573
    [Google Scholar]
  178. Watson H. Mitra S. Croden F.C. Taylor M. Wood H.M. Perry S.L. Spencer J.A. Quirke P. Toogood G.J. Lawton C.L. Dye L. Loadman P.M. Hull M.A. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut 2018 67 11 1974 1983 10.1136/gutjnl‑2017‑314968 28951525
    [Google Scholar]
  179. Sofi F. Dinu M. Pagliai G. Pierre F. Gueraud F. Bowman J. Gerard P. Longo V. Giovannelli L. Caderni G. Filippo D.C. Fecal microbiome as determinant of the effect of diet on colorectal cancer risk: Comparison of meat-based versus pesco-vegetarian diets (the MeaTIc study). Trials 2019 20 1 688 689 10.1186/s13063‑019‑3801‑x 31815647
    [Google Scholar]
  180. Aglago E.K. Huybrechts I. Murphy N. Casagrande C. Nicolas G. Pischon T. Fedirko V. Severi G. Boutron-Ruault M.C. Fournier A. Katzke V. Kühn T. Olsen A. Tjønneland A. Dahm C.C. Overvad K. Lasheras C. Agudo A. Sánchez M.J. Amiano P. Huerta J.M. Ardanaz E. Perez-Cornago A. Trichopoulou A. Karakatsani A. Martimianaki G. Palli D. Pala V. Tumino R. Naccarati A. Panico S. Bueno-de-Mesquita B. May A. Derksen J.W.G. Hellstrand S. Ohlsson B. Wennberg M. Guelpen V.B. Skeie G. Brustad M. Weiderpass E. Cross A.J. Ward H. Riboli E. Norat T. Chajes V. Gunter M.J. Consumption of fish and long-chain n-3 polyunsaturated fatty acids is associated with reduced risk of colorectal cancer in a large european cohort. Clin. Gastroenterol. Hepatol. 2020 18 3 654 666.e6 10.1016/j.cgh.2019.06.031 31252190
    [Google Scholar]
  181. Golkhalkhali B. Rajandram R. Paliany A.S. Ho G.F. Ishak W.W.Z. Johari C.S. Chin K.F. Strain-specific probiotic (microbial cell preparation) and omega-3 fatty acid in modulating quality of life and inflammatory markers in colorectal cancer patients: A randomized controlled trial. Asia Pac. J. Clin. Oncol. 2018 14 3 179 191 10.1111/ajco.12758 28857425
    [Google Scholar]
  182. Ohara T. Yoshino K. Kitajima M. Possibility of preventing colorectal carcinogenesis with probiotics. Hepatogastroenterology 2010 57 104 1411 1415 21443095
    [Google Scholar]
  183. Drago L. Probiotics and colon cancer Microorganisms 2019 7 66 10.3390/microorganisms7030066 30823471
    [Google Scholar]
  184. Hatakka K. Holma R. El-Nezami H. Suomalainen T. Kuisma M. Saxelin M. Poussa T. Mykkänen H. Korpela R. The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int. J. Food Microbiol. 2008 128 2 406 410 10.1016/j.ijfoodmicro.2008.09.010 18945506
    [Google Scholar]
  185. Vinderola G. Perdigón G. Duarte J. Farnworth E. Matar C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 2006 36 5-6 254 260 10.1016/j.cyto.2007.01.003 17363262
    [Google Scholar]
  186. Galdeano C.M. Perdigón G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin. Vaccine Immunol. 2006 13 2 219 226 10.1128/CVI.13.2.219‑226.2006 16467329
    [Google Scholar]
  187. Wang L. Qin W. Xu W. Huang F. Xie X. Wang F. Ma L. Zhang C. Bacteria-mediated tumor therapy via photothermally-programmed cytolysin a expression. Small 2021 17 40 2102932 10.1002/smll.202102932 34472212
    [Google Scholar]
  188. Qin W. Xu W. Wang L. Ren D. Cheng Y. Song W. Jiang T. Ma L. Zhang C. Bacteria-elicited specific thrombosis utilizing acid-induced cytolysin a expression to enable potent tumor therapy. Adv. Sci. 2022 9 15 2105086 10.1002/advs.202105086 35411710
    [Google Scholar]
  189. Chiang C.J. Huang P.H. Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci. Rep. 2021 11 1 5853 10.1038/s41598‑021‑85372‑6 33712706
    [Google Scholar]
  190. Lehouritis P. Stanton M. McCarthy F.O. Jeavons M. Tangney M. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria. J. Control. Release 2016 222 9 17 10.1016/j.jconrel.2015.11.030 26655063
    [Google Scholar]
  191. Battaglin F. Puccini A. Intini R. Schirripa M. Ferro A. Bergamo F. Lonardi S. Zagonel V. Lenz H.J. Loupakis F. The role of tumor angiogenesis as a therapeutic target in colorectal cancer. Expert Rev. Anticancer Ther. 2018 18 3 251 266 10.1080/14737140.2018.1428092 29338550
    [Google Scholar]
  192. Fan J.X. Liu X.H. Wang X.N. Niu M.T. Chen Q.W. Zheng D.W. Wei J.S. Yang X.Q. Zeng X. Zhang X.Z. Antibody engineered platelets attracted by bacteria-induced tumor-specific blood coagulation for checkpoint inhibitor immunotherapy. Adv. Funct. Mater. 2021 31 22 2009744 10.1002/adfm.202009744
    [Google Scholar]
  193. Zhang J. Jiang H. Zhang H. In situ administration of cytokine combinations induces tumor regression in mice. EBioMedicine 2018 37 38 46 10.1016/j.ebiom.2018.09.050 30297145
    [Google Scholar]
  194. Phan T. Nguyen V.H. D’Alincourt M.S. Manuel E.R. Kaltcheva T. Tsai W. Blazar B.R. Diamond D.J. Melstrom L.G. Salmonella-mediated therapy targeting indoleamine 2, 3-dioxygenase 1 (IDO) activates innate immunity and mitigates colorectal cancer growth. Cancer Gene Ther. 2020 27 3-4 235 245 10.1038/s41417‑019‑0089‑7 30824815
    [Google Scholar]
  195. Han H. Zhang Y. Tang H. Zhou T. Khan A. A review of the use of native and engineered probiotics for colorectal cancer therapy. Int. J. Mol. Sci. 2024 25 7 3896 10.3390/ijms25073896 38612706
    [Google Scholar]
  196. Kim D. Kim K.S. Ko H. Anti-tumor activity of an immunotoxin (TGFalpha-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 2017 8 37550 37560 10.18632/oncotarget.17197
    [Google Scholar]
  197. Li W. Li C.B. Effect of oral Lactococcus lactis containing endostatin on 1, 2-dimethylhydrazine-induced colon tumor in rats. World J. Gastroenterol. 2005 11 46 7242 7247 10.3748/wjg.v11.i46.7242 16437622
    [Google Scholar]
  198. Liang K. Liu Q. Li P. Han Y. Bian X. Tang Y. Kong Q. Endostatin gene therapy delivered by attenuated Salmonella typhimurium in murine tumor models. Cancer Gene Ther. 2018 25 7-8 167 183 10.1038/s41417‑018‑0021‑6 29755110
    [Google Scholar]
  199. Sudhakar A. Sugimoto H. Yang C. Lively J. Zeisberg M. Kalluri R. Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by αvβ3 and α5β1 integrins. Proc. Natl. Acad. Sci. USA 2003 100 8 4766 4771 10.1073/pnas.0730882100 12682293
    [Google Scholar]
  200. Yoon J. Shin M. Lee J.Y. Lee S.N. Choi J.H. Choi J.W. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J. Control. Release 2022 342 228 240 10.1016/j.jconrel.2022.01.012 35016917
    [Google Scholar]
  201. Kara G. Calin G.A. Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv. Drug Deliv. Rev. 2022 182 114113 10.1016/j.addr.2022.114113 35063535
    [Google Scholar]
  202. Conlon K.C. Miljkovic M.D. Waldmann T.A. Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 2019 39 1 6 21 10.1089/jir.2018.0019 29889594
    [Google Scholar]
  203. Saltzman D.A. Heise C.P. Hasz D.E. Zebede M. Kelly S.M. Curtiss R. Leonard A.S. Anderson P.M. Int. J. Mol. Sci. 2024 25 3896
    [Google Scholar]
  204. Saltzman D.A. Heise C.P. Hasz D.E. Zebede M. Kelly S.M. Curtiss R. III Leonard A.S. Anderson P.M. Attenuated Salmonella typhimurium containing interleukin-2 decreases MC-38 hepatic metastases: A novel anti-tumor agent. Cancer Biother. Radiopharm. 1996 11 2 145 153 10.1089/cbr.1996.11.145 10851531
    [Google Scholar]
  205. Loeffler M. Le’Negrate G. Krajewska M. Reed J.C. Attenuated salmonella engineered to produce human cytokine light inhibit tumor growth. Proc. Natl. Acad. Sci. USA. 2007 104 31 12879 12883 10.1073/pnas.0701959104
    [Google Scholar]
  206. Loeffler M. Le’Negrate G. Krajewska M. Reed J.C. Inhibition of tumor growth using salmonella expressing Fas ligand. J. Natl. Cancer Inst. 2008 100 15 1113 1116 10.1093/jnci/djn205 18664657
    [Google Scholar]
  207. Phan T.X. Nguyen V.H. Duong M.T.Q. Hong Y. Choy H.E. Min J.J. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol. Immunol. 2015 59 11 664 675 10.1111/1348‑0421.12333 26500022
    [Google Scholar]
  208. Cortese M. Torchiaro E. D’Andrea A. Petti C. Invrea F. Franco L. Donini C. Leuci V. Leto S.M. Vurchio V. Cottino F. Isella C. Arena S. Vigna E. Bertotti A. Trusolino L. Sangiolo D. Medico E. Preclinical efficacy of a HER2 synNotch/CEA-CAR combinatorial immunotherapy against colorectal cancer with HER2 amplification. Mol. Ther. 2024 32 8 2741 2761 10.1016/j.ymthe.2024.06.023 38894542
    [Google Scholar]
  209. Zhu C. Zhao Y. He J. Zhao H. Ni L. Cheng X. Chen Y. Mu L. Zhou X. Shi Q. Sun J. TIL-derived car t cells improve immune cell infiltration and survival in the treatment of CD19-humanized mouse colorectal cancer. Cancers 2023 15 23 5567 10.3390/cancers15235567 38067271
    [Google Scholar]
  210. Paasch D. Meyer J. Stamopoulou A. Lenz D. Kuehle J. Kloos D. Buchegger T. Holzinger A. Falk C.S. Kloth C. Kaisenberg V.C.S. Abken H. Schambach A. Lachmann N. Morgan M. Moritz T. Ex vivo generation of car macrophages from hematopoietic stem and progenitor cells for use in cancer therapy. Cells 2022 11 6 994 10.3390/cells11060994 35326445
    [Google Scholar]
  211. Tanaka J. Tanaka N. Wang Y.H. Mitsuhashi K. Ryuzaki M. Iizuka Y. Watanabe A. Ishiyama M. Shinohara A. Kazama H. Hagiwara S. Yoshinaga K. Kougen Y. Kobayashi H. Kanno H. Shiseki M. Phase I study of cellular therapy using ex vivo expanded natural killer cells from autologous peripheral blood mononuclear cells combined with rituximab-containing chemotherapy for relapsed CD20-positive malignant lymphoma patients. Haematologica 2020 105 4 e190 e193 10.3324/haematol.2019.226696 31399525
    [Google Scholar]
  212. Jung D. Baek Y.S. Lee I.J. Kim K.Y. Jang H. Hwang S. Jung J. Moon Y. Park K.S. Choi Y.S. An H.J. Ex vivo expanded allogeneic natural killer cells have potent cytolytic activity against cancer cells through different receptor-ligand interactions. J. Exp. Clin. Cancer Res. 2021 40 1 333 10.1186/s13046‑021‑02089‑0 34686187
    [Google Scholar]
  213. Jiang W. Wang Z. Luo Q. Dai Z. Zhu J. Tao X. Xie Y. Du Y. Jiang L. Chu X. Fu G. Lei Z. Combined immunotherapy with dendritic cells and cytokine-induced killer cells for solid tumors: A systematic review and meta-analysis of randomized controlled trials. J. Transl. Med. 2024 22 1 1122 10.1186/s12967‑024‑05940‑y 39707416
    [Google Scholar]
  214. Che D.N. Lee N. Lee H.J. Kim Y.W. Battulga S. Lee H.N. Ham W.K. Lee H. Lee M.Y. Kim D. Kang H. Yun S. Park J. Won D.D. Lee J.K. Comparing the efficacy of combined versus single immune cell adaptive therapy targeting colorectal cancer. Ann. Coloproctol. 2024 40 2 121 135 10.3393/ac.2023.00402.0057 38712438
    [Google Scholar]
  215. Chen J. Zhu T. Jiang G. Zeng Q. Li Z. Huang X. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Mol. Cancer 2023 22 1 131 10.1186/s12943‑023‑01830‑x 37563723
    [Google Scholar]
  216. Yang S. Sheffer M. Kaplan I.E. Wang Z. Tarannum M. Dinh K. Abdulhamid Y. Bobilev E. Shapiro R. Porter R. Soiffer R. Ritz J. Koreth J. Wei Y. Chen P. Zhang K. Márquez-Pellegrin V. Bonanno S. Joshi N. Guan M. Yang M. Li D. Bellini C. Liu F. Chen J. Wu C.J. Barbie D. Li J. Romee R. Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti- tumor and CAR NK cell responses. Nat. Biotechnol. 2024 10.1038/s41587‑024‑02418‑6 39367093
    [Google Scholar]
  217. Vincent R.L. Gurbatri C.R. Li F. Vardoshvili A. Coker C. Im J. Ballister E.R. Rouanne M. Savage T. los Santos-Alexis D.K. Redenti A. Brockmann L. Komaranchath M. Arpaia N. Danino T. Probiotic-guided CAR-T cells for solid tumor targeting. Science 2023 382 6667 211 218 10.1126/science.add7034 37824640
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673372776250505155945
Loading
/content/journals/cmc/10.2174/0109298673372776250505155945
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: probiotics ; CRC ; CAR-NK cells ; siRNA ; cancer vaccine ; (CAR) T-cells ; microbiome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test