Skip to content
2000
image of Diabetes and Skin Health: Insights into Autoimmunity, Metals, and AGE-Mediated Disorders

Abstract

Diabetes mellitus (DM) significantly impacts systemic and skin health, with advanced glycation end-products (AGEs), metal imbalances, and immune dysfunction emerging as central drivers of skin-related complications. Furthermore, dysregulation of essential metals like zinc, copper, and iron exacerbates oxidative damage and immune dysfunction, fostering a detrimental skin environment. Autoimmune processes, increasingly recognized in both type 1 and type 2 DM, contributes towards dermatological conditions such as bullous pemphigoid and vitiligo. Emerging therapeutic strategies, including AGE inhibitors, chelation therapies, antioxidants, RAGE antagonists, and immune modulators, offers promising avenues for intervention. Advances in diagnostic tools, such as LC-MS/MS and ICP-MS, facilitate precise detection of AGEs and metal imbalances, paving the way for innovative therapies. This review underscores the importance of multidisciplinary approaches to address the rising burden of DM-related skin disorders and improve the quality of life of affected individuals.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673372197250911050753
2025-10-09
2025-12-15
Loading full text...

Full text loading...

References

  1. Piérard G. Seité S. Hermanns-Lê T. Delvenne P. Scheen A. Piérard-Franchimont C. The skin landscape in diabetes mellitus. Focus on dermocosmetic management. Clin. Cosmet. Investig. Dermatol. 2013 6 127 135 10.2147/CCID.S43141 23696712
    [Google Scholar]
  2. Mendes A.L. Miot H.A. Haddad Junior V. Diabetes mellitus and the skin. An. Bras. Dermatol. 2017 92 1 8 20 10.1590/abd1806‑4841.20175514 28225950
    [Google Scholar]
  3. Zeng L. Yang K. Yu G. Hao W. Zhu X. Ge A. Chen J. Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis. 2024 15 7 481 10.1038/s41419‑024‑06807‑2 38965216
    [Google Scholar]
  4. Walker M. Human skin through the ages. Int. J. Pharm. 2022 622 121850 10.1016/j.ijpharm.2022.121850 35623487
    [Google Scholar]
  5. van Netten J.J. Price P.E. Lavery L.A. Monteiro-Soares M. Rasmussen A. Jubiz Y. Bus S.A. Prevention of foot ulcers in the at-risk patient with diabetes: A systematic review. Diabetes Metab. Res. Rev. 2016 32 S1 84 98 10.1002/dmrr.2701 26340966
    [Google Scholar]
  6. Lima A.L. Illing T. Schliemann S. Elsner P. Cutaneous manifestations of diabetes mellitus: A review. Am. J. Clin. Dermatol. 2017 18 4 541 553 10.1007/s40257‑017‑0275‑z 28374407
    [Google Scholar]
  7. Khalid M. Petroianu G. Adem A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022 12 4 542 10.3390/biom12040542 35454131
    [Google Scholar]
  8. Singh V.P. Bali A. Singh N. Jaggi A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014 18 1 1 14 10.4196/kjpp.2014.18.1.1 24634591
    [Google Scholar]
  9. Van Putte L. De Schrijver S. Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: A systematic review. Scars. Burn. Heal. 2016 2 2059513116676828 10.1177/2059513116676828 29799552
    [Google Scholar]
  10. Lee J. Yun J.S. Ko S.H. Advanced glycation end products and their effect on vascular complications in type 2 diabetes mellitus. Nutrients 2022 14 15 3086 10.3390/nu14153086 35956261
    [Google Scholar]
  11. Papachristou S. Pafili K. Papanas N. Skin AGEs and diabetic neuropathy. BMC Endocr. Disord. 2021 21 1 28 10.1186/s12902‑021‑00697‑7 33622304
    [Google Scholar]
  12. Planas A. Simó-Servat O. Hernández C. Simó R. Advanced glycations end products in the skin as biomarkers of cardiovascular risk in type 2 diabetes. Int. J. Mol. Sci. 2022 23 11 6234 10.3390/ijms23116234 35682915
    [Google Scholar]
  13. Poznyak A. Grechko A.V. Poggio P. Myasoedova V.A. Alfieri V. Orekhov A.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 2020 21 5 1835 10.3390/ijms21051835 32155866
    [Google Scholar]
  14. Roep B.O. Thomaidou S. van Tienhoven R. Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021 17 3 150 161 10.1038/s41574‑020‑00443‑4 33293704
    [Google Scholar]
  15. Martin A. Mick G.J. Choat H.M. Lunsford A.A. Tse H.M. McGwin G.G. Jr McCormick K.L. A randomized trial of oral gamma aminobutyric acid (GABA) or the combination of GABA with glutamic acid decarboxylase (GAD) on pancreatic islet endocrine function in children with newly diagnosed type 1 diabetes. Nat. Commun. 2022 13 1 7928 10.1038/s41467‑022‑35544‑3 36566274
    [Google Scholar]
  16. Choat H.M. Martin A. Mick G.J. Heath K.E. Tse H.M. McGwin G. Jr McCormick K.L. Effect of gamma aminobutyric acid (GABA) or GABA with glutamic acid decarboxylase (GAD) on the progression of type 1 diabetes mellitus in children: Trial design and methodology. Contemp. Clin. Trials 2019 82 93 100 10.1016/j.cct.2019.06.007 31229619
    [Google Scholar]
  17. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  18. Marušić M. Paić M. Knobloch M. Liberati Pršo A.M. NAFLD, insulin resistance, and diabetes mellitus type 2. Can. J. Gastroenterol. Hepatol. 2021 2021 1 9 10.1155/2021/6613827 33681089
    [Google Scholar]
  19. Tsalamandris S. Antonopoulos A.S. Oikonomou E. Papamikroulis G.A. Vogiatzi G. Papaioannou S. Deftereos S. Tousoulis D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019 14 1 50 59 10.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  20. Chai S. Yao B. Xu L. Wang D. Sun J. Yuan N. Zhang X. Ji L. The effect of diabetes self-management education on psychological status and blood glucose in newly diagnosed patients with diabetes type 2. Patient Educ. Couns. 2018 101 8 1427 1432 10.1016/j.pec.2018.03.020 29622281
    [Google Scholar]
  21. Stevens N.E. Cowin A.J. Kopecki Z. Skin barrier and autoimmunity—mechanisms and novel therapeutic approaches for autoimmune blistering diseases of the skin. Front. Immunol. 2019 10 1089 10.3389/fimmu.2019.01089 31156638
    [Google Scholar]
  22. Napolitano M. Megna M. Monfrecola G. Insulin resistance and skin diseases. J. Sci. World. 2015 2015 1 479354 10.1155/2015/479354 25977937
    [Google Scholar]
  23. Horton W.B. Boler P.L. Subauste A.R. Diabetes mellitus and the skin: Recognition and management of cutaneous manifestations. South. Med. J. 2016 109 10 636 646 10.14423/SMJ.0000000000000541 27706502
    [Google Scholar]
  24. Criado P.R. Lorenzini D. Miot H.A. Bueno-Filho R. Carneiro F.R.O. Ianhez M. New small molecules in dermatology: For the autoimmunity, inflammation and beyond. Inflamm. Res. 2023 72 6 1257 1274 10.1007/s00011‑023‑01744‑w 37212867
    [Google Scholar]
  25. Gradel A.K.J. Porsgaard T. Lykkesfeldt J. Seested T. Gram-Nielsen S. Kristensen N.R. Refsgaard H.H.F. Factors affecting the absorption of subcutaneously administered insulin: Effect on variability. J. Diabetes Res. 2018 2018 1 17 10.1155/2018/1205121 30116732
    [Google Scholar]
  26. Khalid S.N. Khan Z.A. Ali M.H. Almas T. Khedro T. Raj Nagarajan V. A blistering new era for bullous pemphigoid: A scoping review of current therapies, ongoing clinical trials, and future directions. Ann. Med. Surg. 2021 70 102799 10.1016/j.amsu.2021.102799 34540212
    [Google Scholar]
  27. Baechle J.J. Chen N. Makhijani P. Winer S. Furman D. Winer D.A. Chronic inflammation and the hallmarks of aging. Mol. Metab. 2023 74 101755 10.1016/j.molmet.2023.101755 37329949
    [Google Scholar]
  28. Ludwig R.J. Vanhoorelbeke K. Leypoldt F. Kaya Z. Bieber K. McLachlan S.M. Komorowski L. Luo J. Cabral-Marques O. Hammers C.M. Lindstrom J.M. Lamprecht P. Fischer A. Riemekasten G. Tersteeg C. Sondermann P. Rapoport B. Wandinger K.P. Probst C. El Beidaq A. Schmidt E. Verkman A. Manz R.A. Nimmerjahn F. Mechanisms of autoantibody-induced pathology. Front. Immunol. 2017 8 603 10.3389/fimmu.2017.00603 28620373
    [Google Scholar]
  29. Perez M.I. Kohn S.R. Cutaneous manifestations of diabetes mellitus. J. Am. Acad. Dermatol. 1994 30 4 519 531 10.1016/S0190‑9622(94)70058‑3 8157778
    [Google Scholar]
  30. Han G. A new appraisal of dermatologic manifestations of diabetes mellitus. Cutis 2014 94 1 E21 E26 25101351
    [Google Scholar]
  31. Kim W. Hudson B. Moser B. Guo J. Rong L.L. Lu Y. Qu W. Lalla E. Lerner S. Chen Y. Yan S.S.D. D’Agati V. Naka Y. Ramasamy R. Herold K. Yan S.F. Schmidt A.M. Receptor for advanced glycation end products and its ligands: A journey from the complications of diabetes to its pathogenesis. Ann. N. Y. Acad. Sci. 2005 1043 1 553 561 10.1196/annals.1338.063 16037278
    [Google Scholar]
  32. Chisnoiu T. Mihai C.M. Pantazi A.C. Balasa A.L. Mihai L. Frecus C.E. Constantin B.M. Andrusca A. Lupu A. Chirila S. Starcea I.M. Ioniuc I. Mocanu A. Forna L. Cambrea S.C. An overview of celiac disease in childhood type 1 diabetes – A single center experience from south east Romania. Rom. J. Oral Rehabil. 2024 16 1 307 317 10.62610/RJOR.2024.1.16.28
    [Google Scholar]
  33. Ramasamy R. Vannucci S.J. Yan S.S.D. Herold K. Yan S.F. Schmidt A.M. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005 15 7 16R 28R 10.1093/glycob/cwi053 15764591
    [Google Scholar]
  34. Vesely M.D. Getting under the skin: Targeting cutaneous autoimmune disease. Yale J. Biol. Med. 2020 93 1 197 206 32226348
    [Google Scholar]
  35. Lalla E. Lamster I.B. Stern D.M. Schmidt A.M. Receptor for advanced glycation end products, inflammation, and accelerated periodontal disease in diabetes: Mechanisms and insights into therapeutic modalities. Ann. Periodontol. 2001 6 1 113 118 10.1902/annals.2001.6.1.113 11887453
    [Google Scholar]
  36. Desai N. Allen J. Ali I. Venning V. Wojnarowska F. Autoantibodies to basement membrane proteins BP180 and BP230 are commonly detected in normal subjects by immunoblotting. Australas. J. Dermatol. 2008 49 3 137 141 10.1111/j.1440‑0960.2008.00452.x 18638220
    [Google Scholar]
  37. Yan S.F. Yan S.D. Herold K. Ramsamy R. Schmidt A.M. Receptor for advanced glycation end products and the cardiovascular complications of diabetes and beyond: Lessons from AGEing. Endocrinol. Metab. Clin. North Am. 2006 35 3 511 524, viii 10.1016/j.ecl.2006.06.003 16959583
    [Google Scholar]
  38. Chang W.L. Lee W.R. Kuo Y.C. Huang Y.H. Vitiligo: An autoimmune skin disease and its immunomodulatory therapeutic intervention. Front. Cell Dev. Biol. 2021 9 797026 10.3389/fcell.2021.797026 34970551
    [Google Scholar]
  39. Sugimoto K. Yasujima M. Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des. 2008 14 10 953 961 10.2174/138161208784139774 18473845
    [Google Scholar]
  40. Thornalley P.J. Glycation in diabetic neuropathy: Characteristics, consequences, causes, and therapeutic options. Int. Rev. Neurobiol. 2002 50 37 57 10.1016/S0074‑7742(02)50072‑6 12198817
    [Google Scholar]
  41. Vlassara H. Striker G.E. Advanced glycation endproducts in diabetes and diabetic complications. Endocrinol. Metab. Clin. North Am. 2013 42 4 697 719 10.1016/j.ecl.2013.07.005 24286947
    [Google Scholar]
  42. Legiawati L. The role of oxidative stress, inflammation, and advanced glycation end product in skin manifestations of diabetes mellitus. Curr. Diabetes Rev. 2022 18 3 200921196637 10.2174/1573399817666210920102318 34544349
    [Google Scholar]
  43. Zhou M. Zhang Y. Shi L. Li L. Zhang D. Gong Z. Wu Q. Activation and modulation of the AGEs-RAGE axis: Implications for inflammatory pathologies and therapeutic interventions – A review. Pharmacol. Res. 2024 206 107282 10.1016/j.phrs.2024.107282 38914383
    [Google Scholar]
  44. Greenbaum C.J. Serti E. Lambert K. Weiner L.J. Kanaparthi S. Lord S. Gitelman S.E. Wilson D.M. Gaglia J.L. Griffin K.J. Russell W.E. Raskin P. Moran A. Willi S.M. Tsalikian E. DiMeglio L.A. Herold K.C. Moore W.V. Goland R. Harris M. Craig M.E. Schatz D.A. Baidal D.A. Rodriguez H. Utzschneider K.M. Nel H.J. Soppe C.L. Boyle K.D. Cerosaletti K. Keyes-Elstein L. Long S.A. Thomas R. McNamara J.G. Buckner J.H. Sanda S. IL-6 receptor blockade does not slow β cell loss in new-onset type 1 diabetes. JCI Insight 2021 6 21 150074 10.1172/jci.insight.150074 34747368
    [Google Scholar]
  45. Heinz A. Elastic fibers during aging and disease. Ageing Res. Rev. 2021 66 101255 10.1016/j.arr.2021.101255 33434682
    [Google Scholar]
  46. Krishnamurthy B. Lacorcia M. Kay T.W.H. Thomas H.E. Mannering S.I. Monitoring immunomodulation strategies in type 1 diabetes. Front. Immunol. 2023 14 1206874 10.3389/fimmu.2023.1206874 37346035
    [Google Scholar]
  47. Neves D. Advanced glycation end-products: A common pathway in diabetes and age-related erectile dysfunction. Free Radic. Res. 2013 47 suppl 1 49 69 10.3109/10715762.2013.821701 23822116
    [Google Scholar]
  48. Aranda-Rivera A.K. Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri. J. In Oxygen 2022 2 437 478 10.3390/oxygen2040030
    [Google Scholar]
  49. Giorgi C. Marchi S. Simoes I.C.M. Ren Z. Morciano G. Perrone M. Patalas-Krawczyk P. Borchard S. Jędrak P. Pierzynowska K. Szymański J. Wang D.Q. Portincasa P. Węgrzyn G. Zischka H. Dobrzyn P. Bonora M. Duszynski J. Rimessi A. Karkucinska-Wieckowska A. Dobrzyn A. Szabadkai G. Zavan B. Oliveira P.J. Sardao V.A. Pinton P. Wieckowski M.R. Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 2018 340 209 344 10.1016/bs.ircmb.2018.05.006 30072092
    [Google Scholar]
  50. Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp. Gerontol. 2011 46 4 217 224 10.1016/j.exger.2010.11.007 21111800
    [Google Scholar]
  51. Yamagishi S. Advanced glycation end products and receptor-oxidative stress system in diabetic vascular complications. Ther. Apher. Dial. 2009 13 6 534 539 10.1111/j.1744‑9987.2009.00775.x 19954478
    [Google Scholar]
  52. Yamagishi S. Matsui T. Nakamura K. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr. Drug Targets 2007 8 10 1138 1143 10.2174/138945007782151298 17979674
    [Google Scholar]
  53. Yamagishi S. Matsui T. Nakamura K. Blockade of the advanced glycation end products (AGEs) and their receptor (RAGE) system is a possible mechanism for sustained beneficial effects of multifactorial intervention on mortality in type 2 diabetes. Med. Hypotheses 2008 71 5 749 751 10.1016/j.mehy.2008.05.039 18710793
    [Google Scholar]
  54. Hu H. Jiang H. Ren H. Hu X. Wang X. Han C. AGEs and chronic subclinical inflammation in diabetes: Disorders of immune system. Diabetes Metab. Res. Rev. 2015 31 2 127 137 10.1002/dmrr.2560 24846076
    [Google Scholar]
  55. Alikhani Z. Alikhani M. Boyd C.M. Nagao K. Trackman P.C. Graves D.T. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J. Biol. Chem. 2005 280 13 12087 12095 10.1074/jbc.M406313200 15590648
    [Google Scholar]
  56. David P. Singh S. Ankar R. A comprehensive overview of skin complications in diabetes and their prevention. Cureus 2023 15 5 38961 10.7759/cureus.38961 37313065
    [Google Scholar]
  57. Adeshara K.A. Bangar N.S. Doshi P.R. Diwan A. Tupe R.S. Action of metformin therapy against advanced glycation, oxidative stress and inflammation in type 2 diabetes patients: 3 months follow-up study. Diabetes Metab. Syndr. 2020 14 5 1449 1458 10.1016/j.dsx.2020.07.036 32769032
    [Google Scholar]
  58. Adeshara K.A. Bangar N. Diwan A.G. Tupe R.S. Plasma glycation adducts and various RAGE isoforms are intricately associated with oxidative stress and inflammatory markers in type 2 diabetes patients with vascular complications. Diabetes Metab. Syndr. 2022 16 3 102441 10.1016/j.dsx.2022.102441 35247657
    [Google Scholar]
  59. Hu H. Jiang H. Zhu L. Wu X. Han C. Accumulation of advanced glycation endproducts and subclinical inflammation in deep tissues of adult patients with and without diabetes. Can. J. Diabetes 2018 42 5 525 532.e4 10.1016/j.jcjd.2018.01.003 29803627
    [Google Scholar]
  60. Yan S.F. Ramasamy R. Schmidt A.M. Mechanisms of Disease: Advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat. Clin. Pract. Endocrinol. Metab. 2008 4 5 285 293 10.1038/ncpendmet0786 18332897
    [Google Scholar]
  61. Ramasamy R. Yan S. D’Agati V. Schmidt A. Receptor for advanced glycation endproducts (RAGE): A formidable force in the pathogenesis of the cardiovascular complications of diabetes & aging. Curr. Mol. Med. 2007 7 8 699 710 10.2174/156652407783220732 18331228
    [Google Scholar]
  62. Yan S.F. Ramasamy R. Naka Y. Schmidt A.M. Glycation, inflammation, and RAGE. Circ. Res. 2003 93 12 1159 1169 10.1161/01.RES.0000103862.26506.3D 14670831
    [Google Scholar]
  63. Teissier T. Boulanger E. Cox L.S. Interconnections between inflammageing and immunosenescence during ageing. Cells 2022 11 3 359 10.3390/cells11030359 35159168
    [Google Scholar]
  64. Akirav E.M. Henegariu O. Preston-Hurlburt P. Schmidt A.M. Clynes R. Herold K.C. The receptor for advanced glycation end products (RAGE) affects T cell differentiation in OVA induced asthma. PLoS One 2014 9 4 95678 10.1371/journal.pone.0095678 24759895
    [Google Scholar]
  65. Chen Y. Yan S.S. Colgan J. Zhang H.P. Luban J. Schmidt A.M. Stern D. Herold K.C. Blockade of late stages of autoimmune diabetes by inhibition of the receptor for advanced glycation end products. J. Immunol. 2004 173 2 1399 1405 10.4049/jimmunol.173.2.1399 15240736
    [Google Scholar]
  66. Boyraz B. Peker T. The role of advanced glycation end-product levels measured by skin autofluorescence in the development of mitral annular calcification. J. Cardiovasc. Dev. Dis. 2023 10 9 406 10.3390/jcdd10090406 37754835
    [Google Scholar]
  67. Nguyen A.V. Soulika A.M. The dynamics of the skin’s immune system. Int. J. Mol. Sci. 2019 20 8 1811 10.3390/ijms20081811 31013709
    [Google Scholar]
  68. Virella M.F.L. Virella G. The role of immune and inflammatory processes in the development of macrovascular disease in diabetes. Front. Biosci. 2003 8 6 1141 10.2741/1141 12957881
    [Google Scholar]
  69. Varo N. Libby P. Nuzzo R. Italiano J. Doria A. Schönbeck U. Elevated release of sCD40L from platelets of diabetic patients by thrombin, glucose and advanced glycation end products. Diab. Vasc. Dis. Res. 2005 2 2 81 87 10.3132/dvdr.2005.014 16308911
    [Google Scholar]
  70. Durning S.P. Preston-Hurlburt P. Clark P.R. Xu D. Herold K.C. The receptor for advanced glycation endproducts drives T cell survival and inflammation in type 1 diabetes mellitus. J. Immunol. 2016 197 8 3076 3085 10.4049/jimmunol.1600197 27655844
    [Google Scholar]
  71. Liu C.T. Chen K.M. Lee S.H. Tsai L.J. Effect of supplemental l-arginine on the function of T lymphocytes and the formation of advanced glycosylated end products in rats with streptozotocin-induced diabetes. Nutrition 2005 21 5 615 623 10.1016/j.nut.2004.09.020 15850969
    [Google Scholar]
  72. Ramasamy R. Yan S.F. Schmidt A.M. Advanced glycation endproducts: From precursors to RAGE: Round and round we go. Amino Acids 2012 42 4 1151 1161 10.1007/s00726‑010‑0773‑2 20957395
    [Google Scholar]
  73. Yamagishi S. Maeda S. Matsui T. Ueda S. Fukami K. Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochim. Biophys. Acta, Gen. Subj. 2012 1820 5 663 671 10.1016/j.bbagen.2011.03.014 21440603
    [Google Scholar]
  74. Twarda-Clapa A. Olczak A. Białkowska A.M. Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells 2022 11 8 1312 10.3390/cells11081312 35455991
    [Google Scholar]
  75. Perrone A. Giovino A. Benny J. Martinelli F. Advanced glycation end products (AGEs): Biochemistry, signaling, analytical methods, and epigenetic effects. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/3818196 32256950
    [Google Scholar]
  76. Scheijen J.L.J.M. van de Waarenburg M.P.H. Stehouwer C.D.A. Schalkwijk C.G. Measurement of pentosidine in human plasma protein by a single-column high-performance liquid chromatography method with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009 877 7 610 614 10.1016/j.jchromb.2009.01.022 19188098
    [Google Scholar]
  77. Stylos E. Chatziathanasiadou M.V. Syriopoulou A. Tzakos A.G. Liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) based bioavailability determination of the major classes of phytochemicals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1047 15 38 10.1016/j.jchromb.2016.12.022 28049605
    [Google Scholar]
  78. Zgutka K. Tkacz M. Tomasiak P. Tarnowski M. A role for advanced glycation end products in molecular ageing. Int. J. Mol. Sci. 2023 24 12 9881 10.3390/ijms24129881
    [Google Scholar]
  79. Papachristou S. Pafili K. Trypsianis G. Papazoglou D. Vadikolias Κ. Papanas N. Skin advanced glycation end products as a screening tool of neuropathy in type 2 diabetes mellitus. J. Diabetes Complications 2022 36 12 108356 10.1016/j.jdiacomp.2022.108356 36395605
    [Google Scholar]
  80. Uceda A.B. Mariño L. Casasnovas R. Adrover M. An overview on glycation: Molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys. Rev. 2024 16 2 189 218 10.1007/s12551‑024‑01188‑4 38737201
    [Google Scholar]
  81. Mácsai E. Skin autofluorescence measurement in the clinical practice of diabetology and nephrology. Orv. Hetil. 2012 153 42 1651 1657 10.1556/OH.2012.29453 23063897
    [Google Scholar]
  82. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009 32 7 S62 S67 10.2337/dc09‑S062
    [Google Scholar]
  83. Noordzij M.J. Mulder D.J. Oomen P.H.N. Brouwer T. Jager J. Castro Cabezas M. Lefrandt J.D. Smit A.J. Skin autofluorescence and risk of micro- and macrovascular complications in patients with type 2 diabetes mellitus—a multi-centre study. Diabet. Med. 2012 29 12 1556 1561 10.1111/dme.12005 22937960
    [Google Scholar]
  84. Chilelli N.C. Burlina S. Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: A “glycoxidation-centric” point of view. Nutr. Metab. Cardiovasc. Dis. 2013 23 10 913 919 10.1016/j.numecd.2013.04.004 23786818
    [Google Scholar]
  85. Gkogkolou P. Böhm M. Advanced glycation end products. Dermatoendocrinol 2012 4 3 259 270 10.4161/derm.22028 23467327
    [Google Scholar]
  86. Yamagishi S. Takeuchi M. Inagaki Y. Nakamura K. Imaizumi T. Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int. J. Clin. Pharmacol. Res. 2003 23 4 129 134 15224502
    [Google Scholar]
  87. Sell D.R. Nemet I. Liang Z. Monnier V.M. Evidence of glucuronidation of the glycation product LW-1: Tentative structure and implications for the long-term complications of diabetes. Glycoconj. J. 2018 35 2 177 190 10.1007/s10719‑017‑9810‑7 29305779
    [Google Scholar]
  88. Chen C. Zhang J.Q. Li L. Guo M. He Y. Dong Y. Meng H. Yi F. Advanced glycation end products in the skin: Molecular mechanisms, methods of measurement, and inhibitory pathways. Front. Med. 2022 9 837222 10.3389/fmed.2022.837222 35646963
    [Google Scholar]
  89. Du C. Whiddett R.O. Buckle I. Chen C. Forbes J.M. Fotheringham A.K. Advanced glycation end products and inflammation in type 1 diabetes development. Cells 2022 11 21 3503 10.3390/cells11213503 36359899
    [Google Scholar]
  90. Monnier V.M. Genuth S. Sell D.R. The pecking order of skin advanced glycation endproducts (AGEs) as long-term markers of glycemic damage and risk factors for micro- and subclinical macrovascular disease progression in type 1 diabetes. Glycoconj. J. 2016 33 4 569 579 10.1007/s10719‑016‑9702‑2 27342131
    [Google Scholar]
  91. Monnier V.M. Sun W. Gao X. Sell D.R. Cleary P.A. Lachin J.M. Genuth S. Skin collagen advanced glycation endproducts (AGEs) and the long-term progression of sub- clinical cardiovascular disease in type 1 diabetes. Cardiovasc. Diabetol. 2015 14 1 118 10.1186/s12933‑015‑0266‑4 26341632
    [Google Scholar]
  92. Abduljabbar T.N. Sharp B.L. Reid H.J. Barzegar-Befroeid N. Petö T. Lengyel I. Determination of Zn, Cu and Fe in human patients’ serum using micro-sampling ICP-MS and sample dilution. Talanta 2019 204 663 669 10.1016/j.talanta.2019.05.098 31357350
    [Google Scholar]
  93. Filipoiu D.C. Bungau S.G. Endres L. Negru P.A. Bungau A.F. Pasca B. Radu A.F. Tarce A.G. Bogdan M.A. Behl T. Nechifor A.C. Hassan S.S. Tit D.M. Characterization of the toxicological impact of heavy metals on human health in conjunction with modern analytical methods. Toxics 2022 10 12 716 10.3390/toxics10120716 36548549
    [Google Scholar]
  94. Clases D. Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences—Part 1: Fundamentals, stand-alone and hyphenated techniques. Anal. Bioanal. Chem. 2022 414 25 7337 7361 10.1007/s00216‑022‑04259‑1 36028724
    [Google Scholar]
  95. Zhang R. Li L. Sultanbawa Y. Xu Z.P. X-ray fluorescence imaging of metals and metalloids in biological systems. Am. J. Nucl. Med. Mol. Imaging 2018 8 3 169 188 30042869
    [Google Scholar]
  96. Wygant B.R. Lambert T.N. Thin film electrodes for anodic stripping voltammetry: A mini-review. Front Chem. 2022 9 809535 10.3389/fchem.2021.809535 35186893
    [Google Scholar]
  97. Tikhonova I.V. Grinevich A.A. Tankanag A.V. Safronova V.G. Skin microhemodynamics and mechanisms of its regulation in type 2 diabetes mellitus. Biophysics 2022 67 4 647 659 10.1134/S0006350922040200 36281313
    [Google Scholar]
  98. Raziyeva K. Kim Y. Zharkinbekov Z. Kassymbek K. Jimi S. Saparov A. Immunology of acute and chronic wound healing. Biomolecules 2021 11 5 700 10.3390/biom11050700 34066746
    [Google Scholar]
  99. Sampson M.J. Winterbone M.S. Hughes J.C. Dozio N. Hughes D.A. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 2006 29 2 283 289 10.2337/diacare.29.02.06.dc05‑1715 16443874
    [Google Scholar]
  100. Chen B. Yu P. Chan W.N. Xie F. Zhang Y. Liang L. Leung K.T. Lo K.W. Yu J. Tse G.M.K. Kang W. To K.F. Cellular zinc metabolism and zinc signaling: From biological functions to diseases and therapeutic targets. Signal Transduct. Target. Ther. 2024 9 1 6 10.1038/s41392‑023‑01679‑y 38169461
    [Google Scholar]
  101. Luo J. Wu W. Zhang P. Chen X. Feng Y. Ma N. Yang H. Wang Y. Li M. Xie B. Guo P. Liew Z. Deziel N.C. Vasiliou V. Shi X. Wang S. Zhang Y. Zinc levels and birth weight in pregnant women with gestational diabetes mellitus: A matched cohort study in China. J. Clin. Endocrinol. Metab. 2020 105 7 e2337 e2345 10.1210/clinem/dgaa171 32285111
    [Google Scholar]
  102. Fan J. Zhang T. Yu Y. Zhang B. Is serum zinc status related to gestational diabetes mellitus? A meta-analysis. Matern. Child Nutr. 2021 17 4 13239 10.1111/mcn.13239 34350703
    [Google Scholar]
  103. SantaCruz-Calvo S. Bharath L. Pugh G. SantaCruz-Calvo L. Lenin R.R. Lutshumba J. Liu R. Bachstetter A.D. Zhu B. Nikolajczyk B.S. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat. Rev. Endocrinol. 2022 18 1 23 42 10.1038/s41574‑021‑00575‑1 34703027
    [Google Scholar]
  104. Guo W. Rathi S. Marquez J. Smith H. Kuruvilla A. Tonnesen M.G. Salvemini J.N. Prevalence of diabetes mellitus in bullous pemphigoid patients in the absence of dipeptidyl peptidase-4 inhibitors: A systematic review and meta-analysis. Arch. Dermatol. Res. 2023 315 8 2207 2213 10.1007/s00403‑023‑02562‑0 36867222
    [Google Scholar]
  105. Zhang P. Yang C.L. Du T. Liu Y.D. Ge M.R. Li H. Liu R.T. Wang C.C. Dou Y.C. Duan R.S. Diabetes mellitus exacerbates experimental autoimmune myasthenia gravis via modulating both adaptive and innate immunity. J. Neuroinflammation 2021 18 1 244 10.1186/s12974‑021‑02298‑6 34702288
    [Google Scholar]
  106. Zhang W. Liang H. Relationships between maternal selected metals (Cu, Mg, Zn and Fe), thyroid function and blood glucose levels during pregnancy. Biol. Trace Elem. Res. 2023 201 8 3603 3612 10.1007/s12011‑022‑03455‑5 36418636
    [Google Scholar]
  107. Popoviciu M.S. Kaka N. Sethi Y. Patel N. Chopra H. Cavalu S. Type 1 diabetes mellitus and autoimmune diseases: A critical review of the association and the application of personalized medicine. J. Pers. Med. 2023 13 3 422 10.3390/jpm13030422 36983604
    [Google Scholar]
  108. Trigwell S.M. Radford P.M. Page S.R. Loweth A.C. James R F L. Morgan N.G. Todd I. Islet glutamic acid decarboxylase modified by reactive oxygen species is recognized by antibodies from patients with type 1 diabetes mellitus. Clin. Exp. Immunol. 2008 126 2 242 249 10.1046/j.1365‑2249.2001.01653.x 11703367
    [Google Scholar]
  109. Wlaschek M. Singh K. Sindrilaru A. Crisan D. Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic. Biol. Med. 2019 133 262 275 10.1016/j.freeradbiomed.2018.09.036 30261274
    [Google Scholar]
  110. Garza-Campos A. Prieto-Correa J.R. Domínguez-Rosales J.A. Hernández-Nazará Z.H. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J. Diabetes 2023 14 7 977 994 10.4239/wjd.v14.i7.977 37547586
    [Google Scholar]
  111. Bu X. Wang L. Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review). Int. J. Mol. Med. 2024 55 3 39 10.3892/ijmm.2024.5480 39749705
    [Google Scholar]
  112. Crinò A. Cavallo M.G. Corbi S. Mesturino C.A. Ferrazzoli F. Coppolino G. Bizzarri C. Cervoni M. Monetini L. Pozzilli P. Intradermal skin test with diabetes specific antigens in patients with type 1 diabetes. Clin. Exp. Immunol. 2008 123 3 382 386 10.1046/j.1365‑2249.2001.01480.x 11298123
    [Google Scholar]
  113. Sajithlal G.B. Chithra P. Chandrakasan G. The role of metal-catalyzed oxidation in the formation of advanced glycation end products: An in vitro study on collagen. Free Radic. Biol. Med. 1998 25 3 265 269 10.1016/S0891‑5849(98)00035‑5 9680171
    [Google Scholar]
  114. Chao K.C. Chen S.H. Chang C.C. Lee Y.C. Wang C.M. Chang J.S. Effects of ferric citrate supplementation on advanced glycation end products in a rat model of streptozotocin/nicotinamide-induced diabetes. Mol. Nutr. Food Res. 2017 61 5 1600753 10.1002/mnfr.201600753 27862990
    [Google Scholar]
  115. Li W. Chen Q. Peng C. Yang D. Liu S. Lv Y. Jiang L. Xu S. Huang L. Roles of the receptor for advanced glycation end products and its ligands in the pathogenesis of Alzheimer’s disease. Int. J. Mol. Sci. 2025 5;26 1 403
    [Google Scholar]
  116. Agte V.V. Nagmote R.V. Tarwadi K.V. Comparative in vitro uptake of zinc by erythrocytes of normal vs Type 2 diabetic individuals and the associated factors. Diabetes Nutr. Metab. 2004 17 6 343 349 15887628
    [Google Scholar]
  117. He X. Gao X. Xie W. Research progress in skin aging, metabolism, and related products. Int. J. Mol. Sci. 2023 24 21 15930 10.3390/ijms242115930 37958920
    [Google Scholar]
  118. Liu K.L. Chen P.Y. Wang C.M. Chen W.Y. Chen C.W. Owaga E. Chang J.S. Dose-related effects of ferric citrate supplementation on endoplasmic reticular stress responses and insulin signalling pathways in streptozotocin–nicotinamide-induced diabetes. Food Funct. 2016 7 1 194 201 10.1039/C5FO01252J 26611621
    [Google Scholar]
  119. Radziszewski M. Galus R. Łuszczyński K. Winiarski S. Wąsowski D. Malejczyk J. Włodarski P. Ścieżyńska A. The RAGE pathway in skin pathology development: A comprehensive review of its role and therapeutic potential. Int. J. Mol. Sci. 2024 25 24 13570 10.3390/ijms252413570 39769332
    [Google Scholar]
  120. White D.L. Collinson A. Red meat, dietary heme iron, and risk of type 2 diabetes: The involvement of advanced lipoxidation endproducts. Adv. Nutr. 2013 4 4 403 411 10.3945/an.113.003681 23858089
    [Google Scholar]
  121. Kim Y. Keogh J. Clifton P. A review of potential metabolic etiologies of the observed association between red meat consumption and development of type 2 diabetes mellitus. Metabolism 2015 64 7 768 779 10.1016/j.metabol.2015.03.008 25838035
    [Google Scholar]
  122. Huo S. Wang Q. Shi W. Peng L. Jiang Y. Zhu M. Guo J. Peng D. Wang M. Men L. Huang B. Lv J. Lin L. ATF3/SPI1/SLC31A1 signaling promotes cuproptosis induced by advanced glycosylation end products in diabetic myocardial injury. Int. J. Mol. Sci. 2023 24 2 1667 10.3390/ijms24021667 36675183
    [Google Scholar]
  123. Singh D. Rai V. K Agrawal D. Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 2023 7 1 5 16 10.26502/fccm.92920302 36776717
    [Google Scholar]
  124. Eaton J.W. Qian M. Interactions of copper with glycated proteins: Possible involvement in the etiology of diabetic neuropathy. Mol. Cell. Biochem. 2002 234/235 1 135 142 10.1023/A:1015988817587 12162426
    [Google Scholar]
  125. Singh R. Barden A. Mori T. Beilin L. Advanced glycation end-products: A review. Diabetologia 2001 44 2 129 146 10.1007/s001250051591 11270668
    [Google Scholar]
  126. Blair M.J. Jones J.D. Woessner A.E. Quinn K.P. Skin structure–function relationships and the wound healing response to intrinsic aging. Adv. Wound Care 2020 9 3 127 143 10.1089/wound.2019.1021 31993254
    [Google Scholar]
  127. Stitt A.W. Jenkins A.J. Cooper M.E. Advanced glycation end products and diabetic complications. Expert Opin. Investig. Drugs 2002 11 9 1205 1223 10.1517/13543784.11.9.1205 12225243
    [Google Scholar]
  128. Calderon Moreno R. Navas-Acien A. Escolar E. Nathan D.M. Newman J. Schmedtje J.F. Jr Diaz D. Lamas G.A. Fonseca V. Potential role of metal chelation to prevent the cardiovascular complications of diabetes. J. Clin. Endocrinol. Metab. 2019 104 7 2931 2941 10.1210/jc.2018‑01484 30869793
    [Google Scholar]
  129. Flora S.J.S. Pachauri V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health 2010 7 7 2745 2788 10.3390/ijerph7072745 20717537
    [Google Scholar]
  130. Jomova K. Makova M. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Rhodes C.J. Valko M. Essential metals in health and disease. Chem. Biol. Interact. 2022 367 110173 10.1016/j.cbi.2022.110173 36152810
    [Google Scholar]
  131. Bhatti J.S. Sehrawat A. Mishra J. Sidhu I.S. Navik U. Khullar N. Kumar S. Bhatti G.K. Reddy P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022 184 114 134 10.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  132. Simcox J.A. McClain D.A. Iron and diabetes risk. Cell Metab. 2013 17 3 329 341 10.1016/j.cmet.2013.02.007 23473030
    [Google Scholar]
  133. Roohani N. Hurrell R. Kelishadi R. Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013 18 2 144 157 23914218
    [Google Scholar]
  134. Yang J. Luo J. Tian X. Zhao Y. Li Y. Wu X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants 2024 13 4 394 10.3390/antiox13040394 38671842
    [Google Scholar]
  135. Wang L. Jiang Y. Zhao C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp. Dermatol. 2024 33 4 15065 10.1111/exd.15065 38563644
    [Google Scholar]
  136. Ramadoss T. Weimer D.S. Mayrovitz H.N. Topical iron chelator therapy: Current status and future prospects. Cureus 2023 15 10 47720 10.7759/cureus.47720 38022031
    [Google Scholar]
  137. Kolnagou A. Kleanthous M. Kontoghiorghes G.J. Benefits and risks in polypathology and polypharmacotherapy challenges in the era of the transition of thalassaemia from a fatal to a chronic or curable disease. FBE 2022 14 3 18 10.31083/j.fbe1403018
    [Google Scholar]
  138. Omoto A. Kawahito Y. Prudovsky I. Tubouchi Y. Kimura M. Ishino H. Wada M. Yoshida M. Kohno M. Yoshimura R. Yoshikawa T. Sano H. Copper chelation with tetrathiomolybdate suppresses adjuvant-induced arthritis and inflammation-associated cachexia in rats. Arthritis Res. Ther. 2005 7 6 R1174 R1182 10.1186/ar1801 16277669
    [Google Scholar]
  139. Lin P.H. Sermersheim M. Li H. Lee P.H.U. Steinberg S.M. Ma J. Zinc in wound healing modulation. Nutrients 2017 10 1 16 10.3390/nu10010016 29295546
    [Google Scholar]
  140. Helsel M.E. Franz K.J. Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Trans. 2015 44 19 8760 8770 10.1039/C5DT00634A 25797044
    [Google Scholar]
  141. Shi S. Ou X. Liu C. Li R. Zheng Q. Hu L. Nanotechnology-enhanced pharmacotherapy for intervertebral disc degeneration treatment. Int. J. Nanomedicine 2024 19 14043 14058 10.2147/IJN.S500364 39742093
    [Google Scholar]
  142. Smith S.W. The role of chelation in the treatment of other metal poisonings. J. Med. Toxicol. 2013 9 4 355 369 10.1007/s13181‑013‑0343‑6 24113858
    [Google Scholar]
  143. Reddy V.P. Aryal P. Darkwah E.K. Advanced glycation end products in health and disease. Microorganisms 2022 10 9 1848 10.3390/microorganisms10091848 36144449
    [Google Scholar]
  144. Di Paola A. Tortora C. Argenziano M. Marrapodi M.M. Rossi F. Emerging roles of the iron chelators in inflammation. Int. J. Mol. Sci. 2022 23 14 7977 10.3390/ijms23147977 35887336
    [Google Scholar]
  145. Wang R.C. Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers 2023 15 15 3837 10.3390/cancers15153837 37568653
    [Google Scholar]
  146. Lekshmi R.K. Rajesh R. Mini S. Ethyl acetate fraction of Cissus quadrangularis stem ameliorates hyperglycaemia-mediated oxidative stress and suppresses inflammatory response in nicotinamide/streptozotocin induced type 2 diabetic rats. Phytomedicine 2015 22 10 952 960 10.1016/j.phymed.2015.06.014 26321745
    [Google Scholar]
  147. Rout D. Chandra Dash U. Kanhar S. Swain S.K. Sahoo A.K. The modulatory role of prime identified compounds in the bioactive fraction of Homalium zeylanicum in high-fat diet fed-streptozotocin-induced type 2 diabetic rats. J. Ethnopharmacol. 2020 260 113099 10.1016/j.jep.2020.113099 32535241
    [Google Scholar]
  148. Wang X. Zhao X. Lian T. Wei J. Yue W. Zhang S. Chen Q. Skin autofluorescence and the complexity of complications in patients with type 2 diabetes mellitus: A cross-sectional study. BMC Endocr. Disord. 2021 21 1 58 10.1186/s12902‑021‑00725‑6 33794864
    [Google Scholar]
  149. Cadet J. Davies K.J.A. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 2017 107 2 12 10.1016/j.freeradbiomed.2017.03.030 28363603
    [Google Scholar]
  150. Boyko E.J. Zelnick L.R. Braffett B.H. Pop-Busui R. Cowie C.C. Lorenzi G.M. Gubitosi-Klug R. Zinman B. de Boer I.H. Risk of foot ulcer and lower-extremity amputation among participants in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2022 45 2 357 364 10.2337/dc21‑1816 35007329
    [Google Scholar]
  151. Younessi P. Yoonessi A. Advanced glycation end-products and their receptor-mediated roles: Inflammation and oxidative stress. Iran. J. Med. Sci. 2011 36 3 154 166 23358382
    [Google Scholar]
  152. Yazdanpanah S. Rabiee M. Tahriri M. Abdolrahim M. Rajab A. Jazayeri H.E. Tayebi L. Evaluation of glycated albumin (GA) and GA/HbA1c ratio for diagnosis of diabetes and glycemic control: A comprehensive review. Crit. Rev. Clin. Lab. Sci. 2017 54 4 219 232 10.1080/10408363.2017.1299684 28393586
    [Google Scholar]
  153. Kota S. Jammula S. Kota S. Meher L. Modi K. Necrobiosis lipoidica diabeticorum: A case-based review of literature. Indian J. Endocrinol. Metab. 2012 16 4 614 620 10.4103/2230‑8210.98023 22837927
    [Google Scholar]
  154. Huijberts M.S.P. Schaper N.C. Schalkwijk C.G. Advanced glycation end products and diabetic foot disease. Diabetes Metab. Res. Rev. 2008 24 S1 S19 S24 10.1002/dmrr.861 18442180
    [Google Scholar]
  155. Peppa M. Stavroulakis P. Raptis S.A. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen. 2009 17 4 461 472 10.1111/j.1524‑475X.2009.00518.x 19614910
    [Google Scholar]
  156. Baltzis D. Eleftheriadou I. Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights. Adv. Ther. 2014 31 8 817 836 10.1007/s12325‑014‑0140‑x 25069580
    [Google Scholar]
  157. Wada R. Yagihashi S. Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann. N. Y. Acad. Sci. 2005 1043 1 598 604 10.1196/annals.1338.067 16037282
    [Google Scholar]
  158. Peppa M. Raptis S.A. Glycoxidation and wound healing in diabetes: An interesting relationship. Curr. Diabetes Rev. 2011 7 6 416 425 10.2174/157339911797579188 21846325
    [Google Scholar]
  159. Peppa M. Vlassara H. Advanced glycation end products and diabetic complications: A General overview. Hormones 2005 4 1 28 37 10.14310/horm.2002.11140 16574629
    [Google Scholar]
  160. Forbes J.M. Cooper M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013 93 1 137 188 10.1152/physrev.00045.2011 23303908
    [Google Scholar]
  161. Kang Q. Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020 37 101799 10.1016/j.redox.2020.101799 33248932
    [Google Scholar]
  162. Singh H. Agrawal D.K. Therapeutic potential of targeting the receptor for advanced glycation end products (RAGE) by small molecule inhibitors. Drug Dev. Res. 2022 83 6 1257 1269 10.1002/ddr.21971 35781678
    [Google Scholar]
  163. Le Bagge S. Fotheringham A.K. Leung S.S. Forbes J.M. Targeting the receptor for advanced glycation end products (RAGE) in type 1 diabetes. Med. Res. Rev. 2020 40 4 1200 1219 10.1002/med.21654 32112452
    [Google Scholar]
  164. Shen S. Ji C. Wei K. Cellular senescence and regulated cell death of tubular epithelial cells in diabetic kidney disease. Front. Endocrinol. 2022 13 924299 10.3389/fendo.2022.924299 35837297
    [Google Scholar]
  165. Moura J. Madureira P. Leal E.C. Fonseca A.C. Carvalho E. Immune aging in diabetes and its implications in wound healing. Clin. Immunol. 2019 200 43 54 10.1016/j.clim.2019.02.002 30735729
    [Google Scholar]
  166. Kirtschig G. Middleton P. Bennett C. Murrell D.F. Wojnarowska F. Khumalo N.P. Interventions for bullous pemphigoid. Cochrane Database Syst. Rev. 2010 2010 10 CD002292 20927731
    [Google Scholar]
  167. Uehara H. Itoigawa Y. Morikawa D. Koga A. Tsurukami H. Maruyama Y. Ishijima M. The effect of vitamin C and N -acetylcysteine on tendon-to-bone healing in a rodent model of rotator cuff repair. Am. J. Sports Med. 2023 51 6 1596 1607 10.1177/03635465231160772 37017249
    [Google Scholar]
  168. Sadowska-Bartosz I. Bartosz G. Prevention of protein glycation by natural compounds. Molecules 2015 20 2 3309 3334 10.3390/molecules20023309 25690291
    [Google Scholar]
  169. Primous N.R. Elvin P.T. Carter K.V. Andrade H.L. La Fontaine J. Shibuya N. Biguetti C.C. Bioengineered skin for diabetic foot ulcers: A scoping review. J. Clin. Med. 2024 13 5 1221 10.3390/jcm13051221 38592047
    [Google Scholar]
  170. Asif M. Egan J. Vasan S. Jyothirmayi G.N. Masurekar M.R. Lopez S. Williams C. Torres R.L. Wagle D. Ulrich P. Cerami A. Brines M. Regan T.J. An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. Proc. Natl. Acad. Sci. USA 2000 97 6 2809 2813 10.1073/pnas.040558497 10706607
    [Google Scholar]
  171. Toh W.H. Lee H.E. Chen C.B. Targeting type 2 inflammation in bullous pemphigoid: Current and emerging therapeutic approaches. Front. Med. 2023 10 1196946 10.3389/fmed.2023.1196946 37614956
    [Google Scholar]
  172. Hudson B.I. Lippman M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018 69 349 364 10.1146/annurev‑med‑041316‑085215.
    [Google Scholar]
  173. Kurul F. Turkmen H. Cetin A.E. Topkaya S.N. Nanomedicine: How nanomaterials are transforming drug delivery, bio-imaging, and diagnosis. Next Nanotechnology 2025 7 100129 10.1016/j.nxnano.2024.100129
    [Google Scholar]
  174. Mahajan N. Soker S. Murphy S.V. Regenerative medicine approaches for skin wound healing: From allografts to engineered skin substitutes. Curr. Transplant. Rep. 2024 11 4 207 221 10.1007/s40472‑024‑00453‑5
    [Google Scholar]
  175. Colitti M. Stefanon B. Gabai G. Gelain M.E. Bonsembiante F. Oxidative stress and nutraceuticals in the modulation of the immune function: current knowledge in animals of veterinary interest. Antioxidants 2019 8 1 28
    [Google Scholar]
  176. Gagliardi L. Le Jeunne C. Corticosteroid therapy and diabetes. Presse Med. 2012 41 4 393 399 10.1016/j.lpm.2012.01.008 22361026
    [Google Scholar]
  177. Sugandh F.N.U. Chandio M. Raveena F.N.U. Kumar L. Karishma F.N.U. Khuwaja S. Memon U.A. Bai K. Kashif M. Varrassi G. Khatri M. Kumar S. Advances in the management of diabetes mellitus: A focus on personalized medicine. Cureus 2023 15 8 43697 10.7759/cureus.43697 37724233
    [Google Scholar]
  178. Elena C. Chiara M. Angelica B. Chiara M.A. Laura N. Chiara C. Claudio C. Antonella F. Nicola G. Hyperglycemia and diabetes induced by glucocorticoids in nondiabetic and diabetic patients: Revision of literature and personal considerations. Curr. Pharm. Biotechnol. 2019 19 15 1210 1220 10.2174/1389201020666190102145305 30605054
    [Google Scholar]
  179. Holmer A. Singh S. Overall and comparative safety of biologic and immunosuppressive therapy in inflammatory bowel diseases. Expert Rev. Clin. Immunol. 2019 15 9 969 979 10.1080/1744666X.2019.1646127 31322018
    [Google Scholar]
  180. Su J. Song Y. Zhu Z. Huang X. Fan J. Qiao J. Mao F. Cell–cell communication: New insights and clinical implications. Signal Transduct. Target. Ther. 2024 9 1 196 10.1038/s41392‑024‑01888‑z 39107318
    [Google Scholar]
  181. Taguchi K. Fukami K. RAGE signaling regulates the progression of diabetic complications. Front. Pharmacol. 2023 14 1128872 10.3389/fphar.2023.1128872 37007029
    [Google Scholar]
  182. Stirban A. Gawlowski T. Roden M. Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms. Mol. Metab. 2014 3 2 94 108 10.1016/j.molmet.2013.11.006 24634815
    [Google Scholar]
  183. Bongarzone S. Savickas V. Luzi F. Gee A.D. Targeting the receptor for advanced glycation endproducts (RAGE): A medicinal chemistry perspective. J. Med. Chem. 2017 60 17 7213 7232 10.1021/acs.jmedchem.7b00058 28482155
    [Google Scholar]
  184. Pimenta C. Bettiol V. Alencar-Silva T. Franco O.L. Pogue R. Carvalho J.L. Felipe M.S.S. Advanced therapies and regulatory framework in different areas of the globe: Past, present, and future. Clin. Ther. 2021 43 5 e103 e138 10.1016/j.clinthera.2021.02.006 33892966
    [Google Scholar]
  185. Hsu C.C. Lee C.H. Wahlqvist M.L. Huang H.L. Chang H.Y. Chen L. Shih S.F. Shin S.J. Tsai W.C. Chen T. Huang C.T. Cheng J.S. Poverty increases type 2 diabetes incidence and inequality of care despite universal health coverage. Diabetes Care 2012 35 11 2286 2292 10.2337/dc11‑2052 22912425
    [Google Scholar]
  186. Bialas C. Bechtsis D. Aivazidou E. Achillas C. Aidonis D. Digitalization of the healthcare supply chain through the adoption of enterprise resource planning (ERP) systems in hospitals: an empirical study on influencing factors and cost performance. Sustainability 2023 15 4 3163
    [Google Scholar]
  187. Mak I.W. Evaniew N. Ghert M. Lost in translation: Animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 2014 6 2 114 118 24489990
    [Google Scholar]
  188. Christensen R.E. Jafferany M. Psychiatric and psychologic aspects of chronic skin diseases. Clin. Dermatol. 2023 41 1 75 81 10.1016/j.clindermatol.2023.03.006 36878453
    [Google Scholar]
  189. Marques L. Costa B. Pereira M. Silva A. Santos J. Saldanha L. Silva I. Magalhães P. Schmidt S. Vale N. Advancing precision medicine: A review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. Pharmaceutics 2024 16 3 332 10.3390/pharmaceutics16030332 38543226
    [Google Scholar]
  190. Vasan S. Foiles P. Founds H. Therapeutic potential of breakers of advanced glycation end product–protein crosslinks. Arch. Biochem. Biophys. 2003 419 1 89 96 10.1016/j.abb.2003.08.016 14568012
    [Google Scholar]
  191. Song Q. Liu J. Dong L. Wang X. Zhang X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed. Pharmacother. 2021 140 111750 10.1016/j.biopha.2021.111750 34051615
    [Google Scholar]
  192. Kim C.S. Park S. Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J. Exerc. Nutrition Biochem. 2017 21 3 55 61 10.20463/jenb.2017.0027 29036767
    [Google Scholar]
  193. Bakris G. Bank A. Kass D. Neutel J. Preston R. Oparil S. Advanced glycation end-product cross-link breakersA novel approach to cardiovascular pathologies related to the aging process. Am. J. Hypertens. 2004 17 12 S23 S30 10.1016/j.amjhyper.2004.08.022 15607432
    [Google Scholar]
  194. Rojas A. Lindner C. Schneider I. Gonzalez I. Uribarri J. The RAGE axis: A relevant inflammatory hub in human diseases. Biomolecules 2024 14 4 4112
    [Google Scholar]
  195. Ezhilarasu H. Vishalli D. Dheen S.T. Bay B.H. Srinivasan D.K. Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials 2020 10 6 1234 10.3390/nano10061234 32630377
    [Google Scholar]
  196. Yang P. Feng J. Peng Q. Liu X. Fan Z. Advanced glycation end products: Potential mechanism and therapeutic target in cardiovascular complications under diabetes. Oxid. Med. Cell. Longev. 2019 2019 1 12 10.1155/2019/9570616 31885827
    [Google Scholar]
  197. Vâță D. Stanciu D.E. Temelie-Olinici D. Porumb-Andrese E. Tarcău B.M. Grecu V.B. Gheucă-Solovăstru L. Cutaneous manifestations associated with diabetes mellitus—a retrospective study. Diseases 2023 11 3 106 10.3390/diseases11030106 37606477
    [Google Scholar]
  198. Vlassara H. Striker G. Glycotoxins in the diet promote diabetes and diabetic complications. Curr. Diab. Rep. 2007 7 3 235 241 10.1007/s11892‑007‑0037‑z 17547841
    [Google Scholar]
  199. Schmidt A.M. Weidman E. Lalla E. Du Yan S. Hori O. Cao R. Brett J.G. Lamster I.B. Advanced glycation endproducts (AGEs) induce oxidant stress in the gingiva: A potential mechanism underlying accelerated periodontal disease associated with diabetes. J. Periodontal Res. 1996 31 7 508 515 10.1111/j.1600‑0765.1996.tb01417.x 8915955
    [Google Scholar]
  200. Sanajou D. Ghorbani Haghjo A. Argani H. Aslani S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur. J. Pharmacol. 2018 833 158 164 10.1016/j.ejphar.2018.06.001 29883668
    [Google Scholar]
  201. Zhang W. Zhao T. Zhao Y. Gui D. Xu Y. Advanced glycation end products in Chinese medicine mediated aging diseases: A review. Curr. Vasc. Pharmacol. 2020 18 4 322 333 10.2174/1570161117666190507112157 31060489
    [Google Scholar]
  202. Li J. Koonyosying P. Korsieporn W. Paradee N. Hutachok N. Xu H. Ma Y. Chuljerm H. Srichairatanakool S. Deferiprone–resveratrol hybrid attenuates iron accumulation, oxidative stress, and antioxidant defenses in iron-loaded human Huh7 hepatic cells. Front. Mol. Biosci. 2024 11 1364261 10.3389/fmolb.2024.1364261 38572444
    [Google Scholar]
  203. Feng D. Zhao Y. Li W. Li X. Wan J. Wang F. Copper neurotoxicity: Induction of cognitive dysfunction: A review. Medicine 2023 102 48 36375 10.1097/MD.0000000000036375 38050287
    [Google Scholar]
  204. Escolar E. Lamas G.A. Mark D.B. Boineau R. Goertz C. Rosenberg Y. Nahin R.L. Ouyang P. Rozema T. Magaziner A. Nahas R. Lewis E.F. Lindblad L. Lee K.L. The effect of an EDTA-based chelation regimen on patients with diabetes mellitus and prior myocardial infarction in the trial to assess chelation therapy (TACT). Circ. Cardiovasc. Qual. Outcomes 2014 7 1 15 24 10.1161/CIRCOUTCOMES.113.000663 24254885
    [Google Scholar]
  205. Pugliese M. Biondi V. Gugliandolo E. Licata P. Peritore A.F. Crupi R. Passantino A. D-penicillamine: The state of the art in humans and in dogs from a pharmacological and regulatory perspective. Antibiotics 2021 10 6 648 10.3390/antibiotics10060648 34071639
    [Google Scholar]
  206. Hou F.F. Boyce J. Chertow G.M. Kay J. Owen W.F. Jr Aminoguanidine inhibits advanced glycation end products formation on beta2-microglobulin. J. Am. Soc. Nephrol. 1998 9 2 277 283 10.1681/ASN.V92277 9527404
    [Google Scholar]
  207. Sparvero L.J. Asafu-Adjei D. Kang R. Tang D. Amin N. Im J. Rutledge R. Lin B. Amoscato A.A. Zeh H.J. Lotze M.T. RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med. 2009 7 1 17 10.1186/1479‑5876‑7‑17 19292913
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673372197250911050753
Loading
/content/journals/cmc/10.2174/0109298673372197250911050753
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test