Skip to content
2000
image of Synthesis and Antiproliferative Activity against Melanoma Cells of New Heterocyclic Hybrids Based on Pyridine and Pyrimidine Scaffolds

Abstract

Background

Over 85% of biologically active compounds are heterocycles or contain heterocyclic groups, underscoring their vital importance in contemporary drug development. Among them, nitrogen-containing derivatives, such as pyridines and pyrimidines, are considered privileged structures in approved drugs or are extensively studied due to their promising therapeutic effects.

Objective

In the current work, we would like to verify the hypothesis that incorporating heterocyclic pharmacophores into derivatives of pyrimidine-2(1)-thione (PMT), 2-pyridone (P), pyridine-2(1)-thione (PT), dihydropyrimidine-2(1)-thione (DHPMT), dihydropyridin-2(1)-one (DHP), and dihydropyridine-2(1)-thione (DHPT) rings enhances antitumor activity.

Methods

A range of novel pyridine- and pyrimidine-based compounds were synthesized and assessed for their anticancer properties against the melanoma A375 cell line. The two most potent compounds ( and ) were then chosen for further evaluation of their effects on non-cancerous human dermal fibroblasts, cancer cell apoptosis, cell cycle phase distribution, and tubulin polymerization. Furthermore, analyses were performed to assess the pharmacokinetics, toxicity, drug-likeness, and molecular target of the selected compounds.

Results

Among the 33 compounds tested, pyridine analogs and demonstrated the strongest antiproliferative activity (with IC values of 1.85 ± 0.44 µM and 4.85 ± 1.67 µM, respectively) and selectivity (SI=65.08 and SI> 100, respectively) against cancer cells. Additional studies revealed that compound , which features a thiophene ring at the C-5 position and a 3,4,5-trimethoxyphenyl (TMP) group, showed the most promising cell cycle arrest and tubulin polymerization inhibition (IC=37.26 ± 10.86 µM), resulting in cancer cell apoptosis. ADMET analysis confirmed the drug- likeness of the synthesized compounds.

Conclusion

This research reinforced the significance of heterocyclic rings as valuable pharmacophores. Additionally, it highlighted the antiproliferative and antimitotic potential of modified pyridine derivatives.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673370617250330151330
2025-06-10
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673370617250330151330/BMS-CMC-2024-HT139-6061-13.html?itemId=/content/journals/cmc/10.2174/0109298673370617250330151330&mimeType=html&fmt=ahah

References

  1. Brown J.S. Amend S.R. Austin R.H. Gatenby R.A. Hammarlund E.U. Pienta K.J. Updating the definition of cancer. Mol. Cancer Res. 2023 21 11 1142 1147 10.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  2. Mattiuzzi C. Lippi G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222 10.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  3. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  4. Kuleni N. Alemu T. Frehiwot B. Recent advances in anticancer drug discovery: A review. Int. J. Pharm. Chem. Anal. 2023 10 4 229 236 10.18231/j.ijpca.2023.039
    [Google Scholar]
  5. Öziç C. Ertaş E. Baran M.F. Baran A. Ahmadian E. Eftekhari A. Khalilov R. Aliyev E. Yıldıztekin M. Synthesis and characterization of activated carbon-supported magnetic nanocomposite (MNPs-OLAC) obtained from okra leaves as a nanocarrier for targeted delivery of morin hydrate. Front. Pharmacol. 2024 15 1482130 10.3389/fphar.2024.1482130 39444608
    [Google Scholar]
  6. Montazersaheb S. Eftekhari A. Shafaroodi A. Tavakoli S. Jafari S. Baran A. Baran M.F. Jafari S. Ahmadian E. Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC). Cancer Nanotechnol. 2024 15 1 47 10.1186/s12645‑024‑00285‑z
    [Google Scholar]
  7. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  8. Prachayasittikul S. Pingaew R. Worachartcheewan A. Sinthupoom N. Prachayasittikul V. Ruchirawat S. Prachayasittikul V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem. 2017 17 10 869 901 27670581
    [Google Scholar]
  9. Albratty M. Alhazmi H.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. Arab. J. Chem. 2022 15 6 103846 10.1016/j.arabjc.2022.103846
    [Google Scholar]
  10. Dwivedi A.R. Jaiswal S. Kukkar D. Kumar R. Singh T.G. Singh M.P. Gaidhane A.M. Lakhanpal S. Prasad K.N. Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: A medicinal chemistry-based analysis. RSC Med. Chem. 2025 16 1 12 36 10.1039/D4MD00632A 39493227
    [Google Scholar]
  11. Perużyńska M. Piotrowska K. Tkacz M. Kurzawski M. Struk Ł. Borzyszkowska A. Idzik T.J. Sośnicki J.G. Droździk M. Comparative evaluation of new dihydropyrimidine and dihydropyridine derivatives perturbing mitotic spindle formation. Future Med. Chem. 2018 10 20 2395 2410 10.4155/fmc‑2018‑0094 30325216
    [Google Scholar]
  12. Perużyńska M. Borzyszkowska-Ledwig A. Sośnicki J.G. Struk Ł. Idzik T.J. Maciejewska G. Skalski Ł. Piotrowska K. Łukasik P. Droździk M. Kurzawski M. Synthesis and anticancer activity of mitotic-specific 3,4-dihydropyridine-2(1H)-thiones. Int. J. Mol. Sci. 2021 22 5 2462 10.3390/ijms22052462 33671106
    [Google Scholar]
  13. Kumar H.M.S. Herrmann L. Tsogoeva S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett. 2020 30 23 127514 10.1016/j.bmcl.2020.127514 32860980
    [Google Scholar]
  14. Kerru N. Singh P. Koorbanally N. Raj R. Kumar V. Recent advances (2015–2016) in anticancer hybrids. Eur. J. Med. Chem. 2017 142 179 212 10.1016/j.ejmech.2017.07.033 28760313
    [Google Scholar]
  15. Romagnoli R. Salvador M.K. Ortega S.S. Baraldi P.G. Oliva P. Baraldi S. Lopez-Cara L.C. Brancale A. Ferla S. Hamel E. Balzarini J. Liekens S. Mattiuzzo E. Basso G. Viola G. 2-Alkoxycarbonyl-3-arylamino-5-substituted thiophenes as a novel class of antimicrotubule agents: Design, synthesis, cell growth and tubulin polymerization inhibition. Eur. J. Med. Chem. 2018 143 683 698 10.1016/j.ejmech.2017.11.096 29220790
    [Google Scholar]
  16. Zuo D. Pang L. Shen J. Guan Q. Bai Z. Zhang H. Li Y. Lu G. Zhang W. Wu Y. 5-(Furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3- one oxime (6f), a new synthetic compound, causes human fibrosarcoma HT-1080 cell apoptosis by disrupting tubulin polymerisation and inducing G2/M arrest. Int. J. Oncol. 2017 50 6 2069 2078 10.3892/ijo.2017.3963 28440465
    [Google Scholar]
  17. Sachdeva H. Saquib M. Tanwar K. Design and development of triazole derivatives as prospective anticancer agents: A review. Anticancer. Agents Med. Chem. 2022 22 19 3269 3279 10.2174/1871520622666220412133112 35418291
    [Google Scholar]
  18. Hong Y. Zhu Y.Y. He Q. Gu S.X. Indole derivatives as tubulin polymerization inhibitors for the development of promising anticancer agents. Bioorg. Med. Chem. 2022 55 116597 10.1016/j.bmc.2021.116597 34995858
    [Google Scholar]
  19. Makowska A. Wolff L. Sączewski F. Bednarski P.J. Kornicka A. Synthesis and cytotoxic evaluation of benzoxazole/benzothiazole-2-imino-coumarin hybrids and their coumarin analogues as potential anticancer agents. Pharmazie 2019 74 11 648 657 31739830
    [Google Scholar]
  20. Haider K. Rehman S. Pathak A. Najmi A.K. Yar M.S. Advances in 2-substituted benzothiazole scaffold-based chemotherapeutic agents. Arch. Pharm. 2021 354 12 2100246 10.1002/ardp.202100246 34467567
    [Google Scholar]
  21. Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. J. Organomet. Chem. 1999 576 1-2 147 168 10.1016/S0022‑328X(98)01055‑9
    [Google Scholar]
  22. Magano J. Dunetz J.R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 2011 111 3 2177 2250 10.1021/cr100346g 21391570
    [Google Scholar]
  23. Sośnicki J.G. Struk Ł. Kurzawski M. Perużyńska M. Maciejewska G. Droździk M. Regioselective synthesis of novel 4,5-diaryl functionalized 3,4-dihydropyrimidine-2(1H)-thiones via a non-Biginelli-type approach and evaluation of their in vitro anticancer activity. Org. Biomol. Chem. 2014 12 21 3427 3440 10.1039/c4ob00094c 24752551
    [Google Scholar]
  24. Li L. Jiang S. Li X. Liu Y. Su J. Chen J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem. 2018 151 482 494 10.1016/j.ejmech.2018.04.011 29649743
    [Google Scholar]
  25. Nowak A. Zagórska-Dziok M. Perużyńska M. Cybulska K. Kucharska E. Ossowicz-Rupniewska P. Piotrowska K. Duchnik W. Kucharski Ł. Sulikowski T. Droździk M. Klimowicz A. Assessment of the anti-inflammatory, antibacterial and anti-aging properties and possible use on the skin of hydrogels containing Epilobium angustifolium L. Extracts. Front. Pharmacol. 2022 13 896706 10.3389/fphar.2022.896706 35846995
    [Google Scholar]
  26. Laisne M.C. Michallet S. Lafanechère L. Characterization of microtubule destabilizing drugs: A quantitative cell-based assay that bridges the gap between tubulin based- and cytotoxicity assays. Cancers 2021 13 20 5226 10.3390/cancers13205226 34680374
    [Google Scholar]
  27. Ramirez-Rios S. Michallet S. Peris L. Barette C. Rabat C. Feng Y. Fauvarque M.O. Andrieux A. Sadoul K. Lafanechère L. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front. Pharmacol. 2020 11 543 10.3389/fphar.2020.00543 32425788
    [Google Scholar]
  28. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  29. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  30. Sośnicki J.G. Addition of organolithium and grignard reagents to pyrimidine-2(1 H )-thione: Easy access to 4-substituted 3,4-dihydropyrimidine-2(1 h )-thiones. Phosphorus Sulfur Silicon Relat. Elem. 2009 184 8 1946 1957 10.1080/10426500903110066
    [Google Scholar]
  31. Sośnicki J.G. Idzik T. Borzyszkowska A. Wróblewski E. Maciejewska G. Struk Ł. Addition of novel benzylmagnesium “ate” complexes of BnR2MgLi type to 2-(thio)pyridones and related compounds. Tetrahedron 2017 73 5 481 493 10.1016/j.tet.2016.12.024
    [Google Scholar]
  32. Suzuki A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 2011 50 30 6722 6737 10.1002/anie.201101379
    [Google Scholar]
  33. Sośnicki J.G. Borzyszkowska-Ledwig A. Idzik T.J. Lubowicz M.M. Maciejewska G. Struk Ł. Divergent synthesis of functionalized indenopyridin-2-ones and 2-pyridones via benzyl group transfer: Two cases of aza-semipinacol-type rearrangement. Org. Lett. 2022 24 46 8498 8502 10.1021/acs.orglett.2c03361 36367325
    [Google Scholar]
  34. Sośnicki J.G. Regioselectivity, scope, and limitations of the addition of organolithium and allylmagnesium reagents to 1H-pyridine-2-thiones; Access to 3,4-, 3,6-, and 5,6-dihydropyridine-2-thiones. Tetrahedron 2007 63 48 11862 11877 10.1016/j.tet.2007.09.029
    [Google Scholar]
  35. Idzik T.J. Borzyszkowska-Ledwig A. Struk Ł. Sośnicki J.G. Magnesiate-utilized/benzyne-mediated approach to indenopyridones from 2-pyridones: An attempt to synthesize the indenopyridine core of haouamine. Org. Lett. 2019 21 23 9667 9671 10.1021/acs.orglett.9b03806 31746620
    [Google Scholar]
  36. Bowman W.R. Bridge C.F. Regioselective synthesis of N-alkyl pyridones. Synth. Commun. 1999 29 22 4051 4059 10.1080/00397919908085926
    [Google Scholar]
  37. Hoffmann-Emery F. Hilpert H. Scalone M. Waldmeier P. Efficient synthesis of novel NK1 receptor antagonists: Selective 1,4-addition of grignard reagents to 6-chloronicotinic acid derivatives. J. Org. Chem. 2006 71 5 2000 2008 10.1021/jo0523666 16496986
    [Google Scholar]
  38. Shiomi S. Sugahara E. Ishikawa H. Efficient organocatalytic construction of C4-alkyl substituted piperidines and their application to the synthesis of (+)-α-skytanthine. Chemistry 2015 21 42 14758 14763 10.1002/chem.201503117 26333476
    [Google Scholar]
  39. Jagodziński T.S. Sośnicki J.G. Wesołowska A. Reactions of β-keto thioamides with α,β-unsaturated aldehydes. Synthesis of 6-hydroxypiperidine-2-thiones and 6H-thiopyrans. Tetrahedron 2003 59 23 4183 4192 10.1016/S0040‑4020(03)00576‑3
    [Google Scholar]
  40. Peña-Morán O. Villarreal M. Álvarez-Berber L. Meneses-Acosta A. Rodríguez-López V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016 21 8 1013 10.3390/molecules21081013 27527135
    [Google Scholar]
  41. Nagender P. Kumar R.N. Reddy G.M. Swaroop D.K. Poornachandra Y. Kumar C.G. Narsaiah B. Synthesis of novel hydrazone and azole functionalized pyrazolo[3,4-b]pyridine derivatives as promising anticancer agents. Bioorg. Med. Chem. Lett. 2016 26 18 4427 4432 10.1016/j.bmcl.2016.08.006 27528432
    [Google Scholar]
  42. Perużyńska M. Birger R. Piotrowska K. Kwiecień H. Droździk M. Kurzawski M. Microtubule destabilising activity of selected 7-methoxy-2-phenylbenzo[b]furan derivative against primary and metastatic melanoma cells. Eur. J. Pharmacol. 2024 964 176308 10.1016/j.ejphar.2023.176308 38142850
    [Google Scholar]
  43. Tang H.L. Tang H.M. Mak K.H. Hu S. Wang S.S. Wong K.M. Wong C.S.T. Wu H.Y. Law H.T. Liu K. Talbot C.C. Jr Lau W.K. Montell D.J. Fung M.C. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol. Biol. Cell 2012 23 12 2240 2252 10.1091/mbc.e11‑11‑0926 22535522
    [Google Scholar]
  44. Mirzayans R. Murray D. Intratumor heterogeneity and therapy resistance: Contributions of dormancy, apoptosis reversal (anastasis) and cell fusion to disease recurrence. Int. J. Mol. Sci. 2020 21 4 1308 10.3390/ijms21041308 32075223
    [Google Scholar]
  45. Fayed E.A. Sabour R. Harras M.F. Mehany A.B.M. Design, synthesis, biological evaluation and molecular modeling of new coumarin derivatives as potent anticancer agents. Med. Chem. Res. 2019 28 8 1284 1297 10.1007/s00044‑019‑02373‑x
    [Google Scholar]
  46. Xu F. Li W. Shuai W. Yang L. Bi Y. Ma C. Yao H. Xu S. Zhu Z. Xu J. Design, synthesis and biological evaluation of pyridine-chalcone derivatives as novel microtubule-destabilizing agents. Eur. J. Med. Chem. 2019 173 1 14 10.1016/j.ejmech.2019.04.008 30981112
    [Google Scholar]
  47. Jian X.E. Yang F. Jiang C.S. You W.W. Zhao P.L. Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg. Med. Chem. Lett. 2020 30 8 127025 10.1016/j.bmcl.2020.127025 32063430
    [Google Scholar]
  48. Zwergel C. Di Bello E. Fioravanti R. Conte M. Nebbioso A. Mazzone R. Brosch G. Mercurio C. Varasi M. Altucci L. Valente S. Mai A. Novel pyridine-based hydroxamates and 2′-aminoanilides as histone deacetylase inhibitors: Biochemical profile and anticancer activity. ChemMedChem 2021 16 6 989 999 10.1002/cmdc.202000854 33220015
    [Google Scholar]
  49. Kamal A. Shaik B. Nayak V.L. Nagaraju B. Kapure J.S. Malik M.S. Shaik T.B. Prasad B. Synthesis and biological evaluation of 1,2,3-triazole linked aminocombretastatin conjugates as mitochondrial mediated apoptosis inducers. Bioorg. Med. Chem. 2014 22 19 5155 5167 10.1016/j.bmc.2014.08.008 25192811
    [Google Scholar]
  50. Zheng S. Zhong Q. Mottamal M. Zhang Q. Zhang C. LeMelle E. McFerrin H. Wang G. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J. Med. Chem. 2014 57 8 3369 3381 10.1021/jm500002k 24669888
    [Google Scholar]
  51. Dulsat J. López-Nieto B. Estrada-Tejedor R. Borrell J.I. Evaluation of free online ADMET tools for academic or small biotech environments. Molecules 2023 28 2 776 10.3390/molecules28020776 36677832
    [Google Scholar]
  52. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997 23 1-3 3 25 10.1016/S0169‑409X(96)00423‑1
    [Google Scholar]
  53. Hughes J.D. Blagg J. Price D.A. Bailey S. DeCrescenzo G.A. Devraj R.V. Ellsworth E. Fobian Y.M. Gibbs M.E. Gilles R.W. Greene N. Huang E. Krieger-Burke T. Loesel J. Wager T. Whiteley L. Zhang Y. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorg. Med. Chem. Lett. 2008 18 17 4872 4875 10.1016/j.bmcl.2008.07.071 18691886
    [Google Scholar]
  54. Gleeson M.P. Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 2008 51 4 817 834 10.1021/jm701122q 18232648
    [Google Scholar]
  55. Johnson T.W. Dress K.R. Edwards M. Using the golden triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 2009 19 19 5560 5564 10.1016/j.bmcl.2009.08.045 19720530
    [Google Scholar]
  56. Nicolov M. Cocora M. Buda V. Danciu C. Duse A.O. Watz C. Borcan F. Hydrosoluble and liposoluble vitamins: New perspectives through ADMET analysis. Medicina 2021 57 11 1204 10.3390/medicina57111204
    [Google Scholar]
  57. McLoughlin E.C. O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals 2020 13 1 8 10.3390/ph13010008 31947889
    [Google Scholar]
  58. Da C. Telang N. Hall K. Kluball E. Barelli P. Finzel K. Jia X. Gupton J.T. Mooberry S.L. Kellogg G.E. Developing novel C-4 analogues of pyrrole-based antitubulin agents: Weak but critical hydrogen bonding in the colchicine site. MedChemComm 2013 4 2 417 421 10.1039/c2md20320k 23457660
    [Google Scholar]
  59. Chen J. Liu T. Dong X. Hu Y. Recent development and SAR analysis of colchicine binding site inhibitors. Mini Rev. Med. Chem. 2009 9 10 1174 1190 10.2174/138955709789055234 19817710
    [Google Scholar]
  60. Schlesinger T. Stockfleth E. Grada A. Berman B. Tirbanibulin for actinic keratosis: Insights into the mechanism of action. Clin. Cosmet. Investig. Dermatol. 2022 15 2495 2506 10.2147/CCID.S374122 36415541
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673370617250330151330
Loading
/content/journals/cmc/10.2174/0109298673370617250330151330
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test