Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects millions of women worldwide and is characterized by ovarian dysfunction, hyperandrogenism, and metabolic abnormalities. The traditional diagnostic and therapeutic approaches often fail to address the multifaceted nature of PCOS. Recent advancements in next-generation sequencing (NGS), bioinformatics, and precision medicine have paved the way for innovative research and therapeutic strategies that promise to revolutionize PCOS management. This review focuses on exploring the genetic and molecular mechanisms of PCOS using innovative methodologies, such as genome-wide association studies (GWAS), transcriptomics, and computational approaches. Integrating big data analytics and machine learning algorithms enhances the predictive accuracy of PCOS diagnoses and treatment outcomes. In addition, the emergence of personalized medicine has enabled tailored therapeutic interventions based on individual genetic profiles and phenotypic expression. Furthermore, we explored the development of novel pharmacological agents and combinational therapies to enhance the understanding of PCOS pathophysiology. These approaches also focus on reducing inflammation, improving insulin sensitivity, and optimizing hormonal balance to achieve optimal health outcomes. The potential of digital health tools, including mobile applications and wearable technologies, to support self-monitoring and patient engagement in PCOS management is also highlighted. In conclusion, the integration of next-generation technologies and innovative research is necessary to transform the field of PCOS diagnosis and treatment, offering hope for more effective and individualized care. These underscore the importance of continued investment in advanced research methodologies and the adoption of personalized therapeutic strategies to address the complexities of PCOS.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673368951250404170052
2025-05-12
2026-02-22
Loading full text...

Full text loading...

/deliver/fulltext/cmc/33/1/CMC-33-1-05.html?itemId=/content/journals/cmc/10.2174/0109298673368951250404170052&mimeType=html&fmt=ahah

References

  1. AzzizR. CarminaE. ChenZ. DunaifA. LavenJ.S.E. LegroR.S. LiznevaD. Natterson-HorowtizB. TeedeH.J. YildizB.O. Polycystic ovary syndrome.Nat. Rev. Dis. Primers2016211605710.1038/nrdp.2016.5727510637
    [Google Scholar]
  2. SarawadS.S. Polycystic ovary syndrome (PCOS): A comprehensive review.Int. J. Adv. Nurs. Manag.202311426426510.52711/2454‑2652.2023.00059
    [Google Scholar]
  3. HoegerK.M. DokrasA. PiltonenT. Update on PCOS: Consequences, challenges, and guiding treatment.J. Clin. Endocrinol. Metab.20211063e1071e108310.1210/clinem/dgaa83933211867
    [Google Scholar]
  4. BharathiR.V. SwethaS. NeerajaaJ. MadhavicaJ.V. JananiD.M. RekhaS.N. SanyaR. UshaB. An epidemiological survey: Effect of predisposing factors for PCOS in Indian urban and rural population.Middle East Fertil. Soc. J.201722431331610.1016/j.mefs.2017.05.007
    [Google Scholar]
  5. DobbieL.J. PittamB. ZhaoS.S. AlamU. HydesT.J. BarberT.M. CuthbertsonD.J. Childhood, adolescent, and adulthood adiposity are associated with risk of PCOS: A Mendelian randomization study with meta-analysis.Hum. Reprod.20233861168118210.1093/humrep/dead05337015099
    [Google Scholar]
  6. BharaliM.D. RajendranR. GoswamiJ. SingalK. RajendranV. Prevalence of polycystic ovarian syndrome in india: A systematic review and meta-analysis.Cureus20221412e3235110.7759/cureus.3235136628015
    [Google Scholar]
  7. DingT. HardimanP.J. PetersenI. WangF.F. QuF. BaioG. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: A systematic review and meta-analysis.Oncotarget2017856963519635810.18632/oncotarget.1918029221211
    [Google Scholar]
  8. KirbyJ. Polycystic ovary syndrome.Acneiform Eruptions in Dermatology ZeichnerJ. Springer, New York, NY201314915410.1007/978‑1‑4614‑8344‑1_21
    [Google Scholar]
  9. JohraT.H. AktherN. RabeyaS. KhanM.A.H.K. AmanullahM. Observing the use of insulin sensitizers for ovulation induction among PCOS women.Schol. J. Appl. Med. Sci.202311123624110.36347/sjams.2023.v11i01.036
    [Google Scholar]
  10. DasonE.S. KoshkinaO. ChanC. SobelM. Diagnosis and management of polycystic ovarian syndrome.CMAJ20241963E85E9410.1503/cmaj.23125138286488
    [Google Scholar]
  11. InanC. KaradağC. Correlation between ovarian morphology and biochemical and hormonal parameters in polycystic ovary syndrome.Pak. J. Med. Sci.201632374274510.12669/pjms.323.1008227375725
    [Google Scholar]
  12. RevathiR. JuliusA. A biological effect of sex hormone binding globulin and testosterone in polycystic ovary syndrome (PCOS) Obese Women.Res. J. Pharm. Tech.20171072143214510.5958/0974‑360X.2017.00377.8
    [Google Scholar]
  13. AjmalN. KhanS.Z. ShaikhR. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article.Eur. J. Obstet. Gynecol. Reprod. Biol. X2019310006010.1016/j.eurox.2019.10006031403134
    [Google Scholar]
  14. MukherjeeP. SanyalS. ChadhaS. MukherjeeS. The impact of polycystic ovary syndrome (PCOS) on the risk of developing ovarian cancer and thyroid disorders: A comprehensive review.Endocr. Metab. Disord.2024245562572
    [Google Scholar]
  15. DeswalR. NandaS. DangA.S. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of polycystic ovary syndrome.Syst. Biol. Reprod. Med.201965540040810.1080/19396368.2019.159521730958034
    [Google Scholar]
  16. WitchelS.F. PlantT.M. Intertwined reproductive endocrinology: Puberty and polycystic ovary syndrome.Curr. Opin. Endocr. Metab. Res.20201412713610.1016/j.coemr.2020.07.00433102929
    [Google Scholar]
  17. LoboR.A. CarminaE. The importance of diagnosing the polycystic ovary syndrome.Ann. Intern. Med.20001321298999310.7326/0003‑4819‑132‑12‑200006200‑0001010858183
    [Google Scholar]
  18. SeowK.M. ChangY.W. ChenK.H. JuanC.C. HuangC.Y. LinL.T. TsuiK.H. ChenY.J. LeeW.L. WangP.H. Molecular mechanisms of laparoscopic ovarian drilling and its therapeutic effects in polycystic ovary syndrome.Int. J. Mol. Sci.20202121814710.3390/ijms2121814733142702
    [Google Scholar]
  19. ArentzS. SmithC.A. AbbottJ. FaheyP. CheemaB.S. BensoussanA. Combined lifestyle and herbal medicine in overweight women with polycystic ovary syndrome (PCOS): A randomized controlled trial.Phytother. Res.20173191330134010.1002/ptr.585828685911
    [Google Scholar]
  20. JoshiM. ShankarR. PathakK. YadavR. Polycystic ovarian syndrome: A review covering phytoconstituents for its outstrip management.Pharmacolog. Res. - Mod. Chin. Med.2021110001110.1016/j.prmcm.2021.100011
    [Google Scholar]
  21. SahinT.K. AyasunR. RizzoA. GuvenD.C. Prognostic value of neutrophil-to-eosinophil ratio (NER) in cancer: A systematic review and meta-analysis.Cancers (Basel)20241621368910.3390/cancers1621368939518127
    [Google Scholar]
  22. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  23. YaoX. WangX. Bioinformatics searching of diagnostic markers and immune infiltration in polycystic ovary syndrome.Front. Genet.20221393730910.3389/fgene.2022.93730936118901
    [Google Scholar]
  24. BarreraF.J. BrownE.D.L. RojoA. ObesoJ. PlataH. LincangoE.P. TerryN. Rodríguez-GutiérrezR. HallJ.E. ShekharS. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: A systematic review.Front. Endocrinol. (Lausanne)202314110662510.3389/fendo.2023.110662537790605
    [Google Scholar]
  25. MoralP. MustafiD. SahanaS.K. PODBoost: An explainable AI model for polycystic ovarian syndrome detection using grey wolf-based feature selection approach.Neural Comput. Appl.20243630186271864410.1007/s00521‑024‑10171‑9
    [Google Scholar]
  26. KhannaV.V. ChadagaK. SampathilaN. PrabhuS. BhandageV. HegdeG.K. A distinctive explainable machine learning framework for detection of polycystic ovary syndrome.Appl. Sys. Innova.2023623210.3390/asi6020032
    [Google Scholar]
  27. AdlaY.A.A. RaydanD.G. CharafM-Z.J. SaadR.A. NasreddineJ. DiabM.O. Automated Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques.2021 Sixth International Conference on Advances in Biomedical EngineeringAlaska, 2021, pp. 208–212.10.1109/ICABME53305.2021.9604905
    [Google Scholar]
  28. SubhaR. NayanaB.R. RadhakrishnanR. SumalathaP. Computerized diagnosis of polycystic ovary syndrome using machine learning and swarm intelligence techniques.Res. Squa.202322776710.21203/rs.3.rs‑2027767/v2
    [Google Scholar]
  29. TsalikiK.C. AI-driven hormonal profiling: A game-changer in polycystic ovary syndrome prevention.J. Res. Appl. Sci. Enginee. Tech.20241236437110.22214/ijraset.2024.61001
    [Google Scholar]
  30. PrabhuB.N. KanchamreddyS.H. SharmaA.R. BhatS.K. BhatP.V. KabekkoduS.P. SatyamoorthyK. RaiP.S. Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: An in silico approach.J. Endocrinol. Invest.20214481783179310.1007/s40618‑021‑01498‑433506367
    [Google Scholar]
  31. SarkarC. MaitraA. Deciphering the cis-regulatory elements of co-expressed genes in PCOS by in silico analysis.Gene20084081-2728410.1016/j.gene.2007.10.02618055135
    [Google Scholar]
  32. MucceeF. BijouO. HarakehS. AdawiyahR. SayyedR.Z. HaghshenasL. AlshehriD. AnsariM.J. GhazanfarS. In-silico investigation of effects of single-nucleotide polymorphisms in pcos-associated cyp11a1 gene on mutated proteins.Genes (Basel)2022137123110.3390/genes1307123135886014
    [Google Scholar]
  33. DharS. BhattacharjeeP. Clinical-exome sequencing unveils the genetic landscape of polycystic ovarian syndrome (PCOS) focusing on lean and obese phenotypes: Implications for cost-effective diagnosis and personalized treatment.Sci. Rep.20241412446810.1038/s41598‑024‑75719‑039424910
    [Google Scholar]
  34. PatilK. JosephS. ShahJ. MukherjeeS. An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology.J. Assist. Reprod. Genet.202239242744010.1007/s10815‑022‑02396‑135032287
    [Google Scholar]
  35. ButlerA.E. RamachandranV. HayatS. DarghamS.R. CunninghamT.K. BenurwarM. SathyapalanT. Najafi-ShoushtariS.H. AtkinS.L. Expression of microRNA in follicular fluid in women with and without PCOS.Sci. Rep.2019911630610.1038/s41598‑019‑52856‑531705013
    [Google Scholar]
  36. TiwariA. ModiS.J. GirmeA. HingoraniL. Network pharmacology-based strategic prediction and target identification of apocarotenoids and carotenoids from standardized Kashmir saffron (Crocus sativus L.) extract against polycystic ovary syndrome.Medicine (Baltimore)202310232e3451410.1097/MD.000000000003451437565925
    [Google Scholar]
  37. BegumR.F. MohanS. Systematic exploration of network pharmacology, in silico modeling and pharmacokinetic profiling for vitamin E in polycystic ovarian syndrome.Futur. Sci. OA2024101FS0952
    [Google Scholar]
  38. RushendranR. ChitraV. Antimigraine activity of Asarinin by OPRM1 pathway with multifaceted impacts through network analysis.Sci. Rep.20241412020710.1038/s41598‑024‑70933‑239215033
    [Google Scholar]
  39. Femi-OlabisiJ.F. IsholaA.A. OlujimiF.O. Effect of Parquetina nigrescens (Afzel.) Leaves on Letrozole-Induced PCOS in Rats: A Molecular Insight into its phytoconstituents.Appl. Biochem. Biotechnol.202319584744477410.1007/s12010‑023‑04537‑337171758
    [Google Scholar]
  40. JoshiS. SrivastavaR. Tracing the pathways and mechanisms involved in medicinal uses of flaxseed with computational methods and bioinformatics tools.Front Chem.202411127605210.3389/fchem.2023.127605238283897
    [Google Scholar]
  41. MokaM.K. Computational investigation of four isoquinoline alkaloids against polycystic ovarian syndrome.J. Biomol. Struct. Dyn.202342211337315995
    [Google Scholar]
  42. PavithraL. IlangoK. Identification of phytoconstituents for combating polycystic ovarian syndrome through in silico techniques.Indian J. Biochem. Biophys.202360299107
    [Google Scholar]
  43. BegumR.F. MohanS. Insights into vitamin E with combined oral contraceptive on insr gene in pcos by integrating in silico and in vivo approaches.Appl. Biochem. Biotechnol.202419662990300910.1007/s12010‑023‑04710‑837610513
    [Google Scholar]
  44. ZouJ. LiY. LiaoN. LiuJ. ZhangQ. LuoM. XiaoJ. ChenY. WangM. ChenK. ZengJ. MoZ. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis.J. Ovarian Res.20221513010.1186/s13048‑022‑00962‑w35227296
    [Google Scholar]
  45. ZouL. FengQ. XiaW. ZhuC. Bioinformatics analysis of the common targets of miR-223-3p, miR-122-5p, and miR-93-5p in polycystic ovarian syndrome.Front. Genet.202314109770610.3389/fgene.2023.109770636873932
    [Google Scholar]
  46. LiuQ. ZhuZ. KraftP. DengQ. Stener-VictorinE. JiangX. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: A large-scale genome-wide cross-trait analysis.BMC Med.20222016610.1186/s12916‑022‑02238‑y35144605
    [Google Scholar]
  47. AlurV. VastradB. RajuV. VastradC. KotturshettiS. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data.Middle East Fertil. Soc. J.20242915310.1186/s43043‑024‑00212‑7
    [Google Scholar]
  48. LavenJ.S.E. Follicle stimulating hormone receptor (FSHR) polymorphisms and polycystic ovary syndrome (PCOS).Front. Endocrinol. (Lausanne)2019102310.3389/fendo.2019.0002330809190
    [Google Scholar]
  49. HomburgR. Androgen circle of polycystic ovary syndrome.Hum. Reprod.20092471548155510.1093/humrep/dep04919279033
    [Google Scholar]
  50. AbbottD.H. BarnettD.K. BrunsC.M. DumesicD.A. Androgen excess fetal programming of female reproduction: A developmental aetiology for polycystic ovary syndrome?Hum. Reprod. Update200511435737410.1093/humupd/dmi01315941725
    [Google Scholar]
  51. MaqboolM. DarM.A. GaniI. GeerM.I. Insulin resistance and polycystic ovary syndrome: A review.J. Drug Deliv. Ther.201991-s43343610.22270/jddt.v9i1‑s.2275
    [Google Scholar]
  52. GiallauriaF. PalombaS. VigoritoC. TafuriM.G. ColaoA. LombardiG. OrioF. Androgens in polycystic ovary syndrome: The role of exercise and diet.Semin. Reprod. Med.200927306315
    [Google Scholar]
  53. LarsonM.H. GilbertL.A. WangX. LimW.A. WeissmanJ.S. QiL.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.Nat. Protoc.20138112180219610.1038/nprot.2013.13224136345
    [Google Scholar]
  54. KaziT.A. BiswasS.R. CRISPR/dCas system as the modulator of gene expression.Prog. Mol. Biol. Transl. Sci.20211789912210.1016/bs.pmbts.2020.12.00233685602
    [Google Scholar]
  55. MervielP. JamesP. BouéeS. Le GuillouM. RinceC. NachtergaeleC. KerlanV. Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies.Reprod. Health20211811310.1186/s12978‑021‑01073‑333468143
    [Google Scholar]
  56. YifuP. A review of antioxidant N-acetylcysteine in addressing polycystic ovary syndrome.Gynecol. Endocrinol.2024401238149810.1080/09513590.2024.238149839039898
    [Google Scholar]
  57. MaaroufT. MohamedD. TantawyA. EidP.M. Effect of omega-3 fatty acids on hormonal profile and ovarian stromal blood flow in patients with polycystic ovary syndrome.Evid. Bas. Women’s Heal. J.20199454254810.21608/ebwhj.2019.64357
    [Google Scholar]
  58. ScannellN. MantziorisE. RaoV. PandeyC. EeC MousaA MoranL VillaniA. Use of nutraceuticals and micronutrient supplementation for the management of polycystic ovary syndrome: A scoping review.Nutrit. Soci.202483E17610.1017/S0029665124001940
    [Google Scholar]
  59. ZhangN. LiaoY. ZhaoH. ChenT. JiaF. YuY. ZhuS. WangC. ZhangW. LiuX. Polycystic ovary syndrome and 25-hydroxyvitamin D: A bidirectional two-sample Mendelian randomization study.Front. Endocrinol. (Lausanne)202314111034110.3389/fendo.2023.111034136967791
    [Google Scholar]
  60. YurtdaşG. AkdevelioğluY. A new approach to polycystic ovary syndrome: The gut microbiota.J. Am. Coll. Nutr.202039437138210.1080/07315724.2019.165751531513473
    [Google Scholar]
  61. SalehiS. AllahverdyJ. PourjafarH. SarabandiK. JafariS.M. Gut microbiota and polycystic ovary syndrome (PCOS): Understanding the pathogenesis and the role of probiotics as a therapeutic strategy.Probio. Antimicrob. Prot.20241651553156510.1007/s12602‑024‑10223‑538421576
    [Google Scholar]
  62. LiY. TanY. XiaG. ShuaiJ. Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: A systematic review and meta-analysis.Crit. Rev. Food Sci. Nutr.202363452253810.1080/10408398.2021.195115534287081
    [Google Scholar]
  63. WesołowskaZ. ZdunS. WalczakK. GawełW. JędruszczakP. The impact of using probiotics on metabolic disorders of women with polycystic ovary syndrome.Qual. Spor.202392182210.12775/QS.2023.09.02.002
    [Google Scholar]
  64. RizzoA. SantoniM. MollicaV. FiorentinoM. BrandiG. MassariF. Microbiota and prostate cancer. Semin Canc. Biol.202286Pt 31058106510.1016/j.semcancer.2021.09.007
    [Google Scholar]
  65. RavatF.K. GoswamiJ.R. NairS.M. ThummarK.N. A review of metabolic and microbial influences on women with polycystic ovarian syndrome.Steroids202421210951210.1016/j.steroids.2024.10951239278517
    [Google Scholar]
  66. ZengB. LaiZ. SunL. ZhangZ. YangJ. LiZ. LinJ. ZhangZ. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): A pilot study.Res. Microbiol.20191701435210.1016/j.resmic.2018.09.00230292647
    [Google Scholar]
  67. SomunkiranA. YavuzT. YucelO. OzdemirI. Anti-Müllerian hormone levels during hormonal contraception in women with polycystic ovary syndrome.Eur. J. Obstet. Gynecol. Reprod. Biol.2007134219620110.1016/j.ejogrb.2007.01.01217335955
    [Google Scholar]
  68. SovaH. Unkila-KallioL. TiitinenA. HippeläinenM. PerheentupaA. TinkanenH. PuukkaK. BloiguR. PiltonenT. TapanainenJ.S. Morin-PapunenL. Hormone profiling, including anti-Müllerian hormone (AMH), for the diagnosis of polycystic ovary syndrome (PCOS) and characterization of PCOS phenotypes.Gynecol. Endocrinol.201935759560010.1080/09513590.2018.155980730668196
    [Google Scholar]
  69. VosnakisC. GeorgopoulosN.A. RoussoD. MavromatidisG. KatsikisI. RoupasN.D. MamaliI. PanidisD. Diet, physical exercise and orlistat administration increase serum anti-müllerian hormone (AMH) levels in women with polycystic ovary syndrome (PCOS).Gynecol. Endocrinol.201329324224510.3109/09513590.2012.73655723194076
    [Google Scholar]
  70. SinghR. KaurS. YadavS. BhatiaS. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome.Trends Endocrinol. Metab.202334419421510.1016/j.tem.2023.02.00236863888
    [Google Scholar]
  71. PalombaS. DaolioJ. La SalaG.B. Oocyte competence in women with polycystic ovary syndrome.Trends Endocrinol. Metab.201728318619810.1016/j.tem.2016.11.00827988256
    [Google Scholar]
  72. WaltersK.A. Polycystic ovary syndrome: Is it androgen or estrogen receptor?Curr. Opin. Endocr. Metab. Res.2020121710.1016/j.coemr.2020.01.003
    [Google Scholar]
  73. WangK. LiY. ChenY. Androgen excess: A hallmark of polycystic ovary syndrome.Front. Endocrinol. (Lausanne)202314127354210.3389/fendo.2023.127354238152131
    [Google Scholar]
  74. Ojeda-OjedaM. MurriM. InsenserM. Escobar-MorrealeH. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS).Curr. Pharm. Des.201319325775579110.2174/138161281131932001223448487
    [Google Scholar]
  75. VelezL.M. SeldinM. MottaA.B. Inflammation and reproductive function in women with polycystic ovary syndrome.Biol. Reprod.202110461205121710.1093/biolre/ioab05033739372
    [Google Scholar]
  76. YeZ. ZhaoJ. LiR. Effects of immune cells and cytokines on the endometrial immune microenvironment in polycystic ovary syndrome.Gynecol. Obstet. Clini. Med.20222418118510.1016/j.gocm.2022.10.001
    [Google Scholar]
  77. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  78. Di FedericoA. MoscaM. PaganiR. CarloniR. FregaG. De GiglioA. RizzoA. RicciD. TavolariS. Di MarcoM. PalloniA. BrandiG. Immunotherapy in pancreatic cancer: Why do we keep failing? a focus on tumor immune microenvironment, predictive biomarkers and treatment outcomes.Cancers (Basel)20221410242910.3390/cancers1410242935626033
    [Google Scholar]
  79. ArjmandB. AlaeiS. HeravaniNF. Alavi-MoghadamS. PayabM. EbrahimpourM. AghayanH.R. GoodarziP. LarijaniB. Regenerative medicine perspectives in polycystic ovary syndrome.Adv. Exp. Med. Biol.2021134112514110.1007/5584_2021_62333748932
    [Google Scholar]
  80. KaramM. NajjarH. El SabbanM. HamadeA. NajjarF. Regenerative medicine for polycystic ovary syndrome: Stem cell-based therapies and brown adipose tissue activation.Stem Cell Rev. Rep.202319485386510.1007/s12015‑023‑10505‑536633783
    [Google Scholar]
  81. YangS. DingS. JiangX. SunB. XuQ. Establishment and adipocyte differentiation of polycystic ovary syndrome-derived induced pluripotent stem cells.Cell Prolif.201649335236110.1111/cpr.1225827108524
    [Google Scholar]
  82. YoungH.E. Fresh isolate adult telomerase positive stem cells: An addition to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and/or mesenchymal stem cells (MSCs) for regenerative medicine.GSC Adv. Res. Revi.202316106608110.30574/gscarr.2023.16.1.0301
    [Google Scholar]
  83. SunY. GaoS. YeC. ZhaoW. Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications.Front. Cell. Infect. Microbiol.202313114204110.3389/fcimb.2023.114204136909735
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673368951250404170052
Loading
/content/journals/cmc/10.2174/0109298673368951250404170052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test