Skip to content
2000
image of Next-generation Approaches in Targeting Polycystic Ovarian Syndrome: Innovative Strategies

Abstract

Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects millions of women worldwide and is characterized by ovarian dysfunction, hyperandrogenism, and metabolic abnormalities. The traditional diagnostic and therapeutic approaches often fail to address the multifaceted nature of PCOS. Recent advancements in next-generation sequencing (NGS), bioinformatics, and precision medicine have paved the way for innovative research and therapeutic strategies that promise to revolutionize PCOS management. This review focuses on exploring the genetic and molecular mechanisms of PCOS using innovative methodologies, such as genome-wide association studies (GWAS), transcriptomics, and computational approaches. Integrating big data analytics and machine learning algorithms enhances the predictive accuracy of PCOS diagnoses and treatment outcomes. In addition, the emergence of personalized medicine has enabled tailored therapeutic interventions based on individual genetic profiles and phenotypic expression. Furthermore, we explored the development of novel pharmacological agents and combinational therapies to enhance the understanding of PCOS pathophysiology. These approaches also focus on reducing inflammation, improving insulin sensitivity, and optimizing hormonal balance to achieve optimal health outcomes. The potential of digital health tools, including mobile applications and wearable technologies, to support self-monitoring and patient engagement in PCOS management is also highlighted. In conclusion, the integration of next-generation technologies and innovative research is necessary to transform the field of PCOS diagnosis and treatment, offering hope for more effective and individualized care. These underscore the importance of continued investment in advanced research methodologies and the adoption of personalized therapeutic strategies to address the complexities of PCOS.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673368951250404170052
2025-05-12
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673368951250404170052/BMS-CMC-2024-896.html?itemId=/content/journals/cmc/10.2174/0109298673368951250404170052&mimeType=html&fmt=ahah

References

  1. Azziz R. Carmina E. Chen Z. Dunaif A. Laven J.S.E. Legro R.S. Lizneva D. Natterson-Horowtiz B. Teede H.J. Yildiz B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016 2 1 16057 10.1038/nrdp.2016.57 27510637
    [Google Scholar]
  2. Sarawad S.S. Polycystic ovary syndrome (PCOS): A comprehensive review. Int. J. Adv. Nurs. Manag. 2023 11 4 264 265 10.52711/2454‑2652.2023.00059
    [Google Scholar]
  3. Hoeger K.M. Dokras A. Piltonen T. Update on PCOS: Consequences, challenges, and guiding treatment. J. Clin. Endocrinol. Metab. 2021 106 3 e1071 e1083 10.1210/clinem/dgaa839 33211867
    [Google Scholar]
  4. Bharathi R.V. Swetha S. Neerajaa J. Madhavica J.V. Janani D.M. Rekha S.N. Sanya R. Usha B. An epidemiological survey: Effect of predisposing factors for PCOS in Indian urban and rural population. Middle East Fertil. Soc. J. 2017 22 4 313 316 10.1016/j.mefs.2017.05.007
    [Google Scholar]
  5. Dobbie L.J. Pittam B. Zhao S.S. Alam U. Hydes T.J. Barber T.M. Cuthbertson D.J. Childhood, adolescent, and adulthood adiposity are associated with risk of PCOS: A Mendelian randomization study with meta-analysis. Hum. Reprod. 2023 38 6 1168 1182 10.1093/humrep/dead053 37015099
    [Google Scholar]
  6. Bharali M.D. Rajendran R. Goswami J. Singal K. Rajendran V. Prevalence of polycystic ovarian syndrome in india: A systematic review and meta-analysis. Cureus 2022 14 12 e32351 10.7759/cureus.32351 36628015
    [Google Scholar]
  7. Ding T. Hardiman P.J. Petersen I. Wang F.F. Qu F. Baio G. The prevalence of polycystic ovary syndrome in reproductive-aged women of different ethnicity: A systematic review and meta-analysis. Oncotarget 2017 8 56 96351 96358 10.18632/oncotarget.19180 29221211
    [Google Scholar]
  8. Kirby J. Polycystic ovary syndrome In: Acneiform Eruptions in Dermatology; Zeichner, J. Ed.; Springer, New York, NY, 2013 149 154 10.1007/978‑1‑4614‑8344‑1_21
    [Google Scholar]
  9. Johra T.H. Akther N. Rabeya S. Khan M.A.H.K. Amanullah M. Observing the use of insulin sensitizers for ovulation induction among PCOS women. Schol. J. Appl. Med. Sci. 2023 11 1 236 241 10.36347/sjams.2023.v11i01.036
    [Google Scholar]
  10. Dason E.S. Koshkina O. Chan C. Sobel M. Diagnosis and management of polycystic ovarian syndrome. CMAJ 2024 196 3 E85 E94 10.1503/cmaj.231251 38286488
    [Google Scholar]
  11. Inan C. Karadağ C. Correlation between ovarian morphology and biochemical and hormonal parameters in polycystic ovary syndrome. Pak. J. Med. Sci. 2016 32 3 742 745 10.12669/pjms.323.10082 27375725
    [Google Scholar]
  12. Revathi R. Julius A. A biological effect of sex hormone binding globulin and testosterone in polycystic ovary syndrome (PCOS) Obese Women. Res. J. Pharm. Tech. 2017 10 7 2143 2145 10.5958/0974‑360X.2017.00377.8
    [Google Scholar]
  13. Ajmal N. Khan S.Z. Shaikh R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019 3 100060 10.1016/j.eurox.2019.100060 31403134
    [Google Scholar]
  14. Mukherjee P. Sanyal S. Chadha S. Mukherjee S. The impact of polycystic ovary syndrome (PCOS) on the risk of developing ovarian cancer and thyroid disorders: A comprehensive review. Endocr. Metab. Disord. 2024 24 5 562 572
    [Google Scholar]
  15. Deswal R. Nanda S. Dang A.S. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of polycystic ovary syndrome. Syst. Biol. Reprod. Med. 2019 65 5 400 408 10.1080/19396368.2019.1595217 30958034
    [Google Scholar]
  16. Witchel S.F. Plant T.M. Intertwined reproductive endocrinology: Puberty and polycystic ovary syndrome. Curr. Opin. Endocr. Metab. Res. 2020 14 127 136 10.1016/j.coemr.2020.07.004 33102929
    [Google Scholar]
  17. Lobo R.A. Carmina E. The importance of diagnosing the polycystic ovary syndrome. Ann. Intern. Med. 2000 132 12 989 993 10.7326/0003‑4819‑132‑12‑200006200‑00010 10858183
    [Google Scholar]
  18. Seow K.M. Chang Y.W. Chen K.H. Juan C.C. Huang C.Y. Lin L.T. Tsui K.H. Chen Y.J. Lee W.L. Wang P.H. Molecular mechanisms of laparoscopic ovarian drilling and its therapeutic effects in polycystic ovary syndrome. Int. J. Mol. Sci. 2020 21 21 8147 10.3390/ijms21218147 33142702
    [Google Scholar]
  19. Arentz S. Smith C.A. Abbott J. Fahey P. Cheema B.S. Bensoussan A. Combined lifestyle and herbal medicine in overweight women with polycystic ovary syndrome (PCOS): A randomized controlled trial. Phytother. Res. 2017 31 9 1330 1340 10.1002/ptr.5858 28685911
    [Google Scholar]
  20. Joshi M. Shankar R. Pathak K. Yadav R. Polycystic ovarian syndrome: A review covering phytoconstituents for its outstrip management. Pharmacolog. Res. - Mod. Chin. Med. 2021 1 100011 10.1016/j.prmcm.2021.100011
    [Google Scholar]
  21. Sahin T.K. Ayasun R. Rizzo A. Guven D.C. Prognostic value of neutrophil-to-eosinophil ratio (NER) in cancer: A systematic review and meta-analysis. Cancers (Basel) 2024 16 21 3689 10.3390/cancers16213689 39518127
    [Google Scholar]
  22. Guven D.C. Erul E. Kaygusuz Y. Akagunduz B. Kilickap S. De Luca R. Rizzo A. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data. Support. Care Cancer 2023 31 11 624 10.1007/s00520‑023‑08083‑w 37819422
    [Google Scholar]
  23. Yao X. Wang X. Bioinformatics searching of diagnostic markers and immune infiltration in polycystic ovary syndrome. Front. Genet. 2022 13 937309 10.3389/fgene.2022.937309 36118901
    [Google Scholar]
  24. Barrera F.J. Brown E.D.L. Rojo A. Obeso J. Plata H. Lincango E.P. Terry N. Rodríguez-Gutiérrez R. Hall J.E. Shekhar S. Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: A systematic review. Front. Endocrinol. (Lausanne) 2023 14 1106625 10.3389/fendo.2023.1106625 37790605
    [Google Scholar]
  25. Moral P. Mustafi D. Sahana S.K. PODBoost: An explainable AI model for polycystic ovarian syndrome detection using grey wolf-based feature selection approach. Neural Comput. Appl. 2024 36 30 18627 18644 10.1007/s00521‑024‑10171‑9
    [Google Scholar]
  26. Khanna V.V. Chadaga K. Sampathila N. Prabhu S. Bhandage V. Hegde G.K. A distinctive explainable machine learning framework for detection of polycystic ovary syndrome. Appl. Sys. Innova. 2023 6 2 32 10.3390/asi6020032
    [Google Scholar]
  27. Adla Y.A.A. Raydan D.G. Charaf M-Z.J. Saad R.A. Nasreddine J. Diab M.O. Automated Detection of Polycystic Ovary Syndrome Using Machine Learning Techniques. 2021 Sixth International Conference on Advances in Biomedical Engineering Alaska, 2021, pp. 208–212. 10.1109/ICABME53305.2021.9604905
    [Google Scholar]
  28. Subha R. Nayana B.R. Radhakrishnan R. Sumalatha P. Computerized diagnosis of polycystic ovary syndrome using machine learning and swarm intelligence techniques. Res. Squa. 2023 2 27767 10.21203/rs.3.rs‑2027767/v2
    [Google Scholar]
  29. Tsaliki K.C. AI-driven hormonal profiling: A game-changer in polycystic ovary syndrome prevention. J. Res. Appl. Sci. Enginee. Tech. 2024 12 364 371 10.22214/ijraset.2024.61001
    [Google Scholar]
  30. Prabhu B.N. Kanchamreddy S.H. Sharma A.R. Bhat S.K. Bhat P.V. Kabekkodu S.P. Satyamoorthy K. Rai P.S. Conceptualization of functional single nucleotide polymorphisms of polycystic ovarian syndrome genes: An in silico approach. J. Endocrinol. Invest. 2021 44 8 1783 1793 10.1007/s40618‑021‑01498‑4 33506367
    [Google Scholar]
  31. Sarkar C. Maitra A. Deciphering the cis-regulatory elements of co-expressed genes in PCOS by in silico analysis. Gene 2008 408 1-2 72 84 10.1016/j.gene.2007.10.026 18055135
    [Google Scholar]
  32. Muccee F. Bijou O. Harakeh S. Adawiyah R. Sayyed R.Z. Haghshenas L. Alshehri D. Ansari M.J. Ghazanfar S. In-silico investigation of effects of single-nucleotide polymorphisms in pcos-associated cyp11a1 gene on mutated proteins. Genes (Basel) 2022 13 7 1231 10.3390/genes13071231 35886014
    [Google Scholar]
  33. Dhar S. Bhattacharjee P. Clinical-exome sequencing unveils the genetic landscape of polycystic ovarian syndrome (PCOS) focusing on lean and obese phenotypes: Implications for cost-effective diagnosis and personalized treatment. Sci. Rep. 2024 14 1 24468 10.1038/s41598‑024‑75719‑0 39424910
    [Google Scholar]
  34. Patil K. Joseph S. Shah J. Mukherjee S. An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology. J. Assist. Reprod. Genet. 2022 39 2 427 440 10.1007/s10815‑022‑02396‑1 35032287
    [Google Scholar]
  35. Butler A.E. Ramachandran V. Hayat S. Dargham S.R. Cunningham T.K. Benurwar M. Sathyapalan T. Najafi-Shoushtari S.H. Atkin S.L. Expression of microRNA in follicular fluid in women with and without PCOS. Sci. Rep. 2019 9 1 16306 10.1038/s41598‑019‑52856‑5 31705013
    [Google Scholar]
  36. Tiwari A. Modi S.J. Girme A. Hingorani L. Network pharmacology-based strategic prediction and target identification of apocarotenoids and carotenoids from standardized Kashmir saffron (Crocus sativus L.) extract against polycystic ovary syndrome. Medicine (Baltimore) 2023 102 32 e34514 10.1097/MD.0000000000034514 37565925
    [Google Scholar]
  37. Begum R.F. Mohan S. Systematic exploration of network pharmacology, in silico modeling and pharmacokinetic profiling for vitamin E in polycystic ovarian syndrome. Futur. Sci. OA 2024 10 1 FS0952
    [Google Scholar]
  38. Rushendran R. Chitra V. Antimigraine activity of Asarinin by OPRM1 pathway with multifaceted impacts through network analysis. Sci. Rep. 2024 14 1 20207 10.1038/s41598‑024‑70933‑2 39215033
    [Google Scholar]
  39. Femi-Olabisi J.F. Ishola A.A. Olujimi F.O. Effect of Parquetina nigrescens (Afzel.) Leaves on Letrozole-Induced PCOS in Rats: A Molecular Insight into its phytoconstituents. Appl. Biochem. Biotechnol. 2023 195 8 4744 4774 10.1007/s12010‑023‑04537‑3 37171758
    [Google Scholar]
  40. Joshi S. Srivastava R. Tracing the pathways and mechanisms involved in medicinal uses of flaxseed with computational methods and bioinformatics tools. Front Chem. 2024 11 1276052 10.3389/fchem.2023.1276052 38283897
    [Google Scholar]
  41. Moka M.K. Computational investigation of four isoquinoline alkaloids against polycystic ovarian syndrome. J. Biomol. Struct. Dyn. 2023 42 2 1 13 37315995
    [Google Scholar]
  42. Pavithra L. Ilango K. Identification of phytoconstituents for combating polycystic ovarian syndrome through in silico techniques. Indian J. Biochem. Biophys. 2023 60 2 99 107
    [Google Scholar]
  43. Begum R.F. Mohan S. Insights into vitamin E with combined oral contraceptive on insr gene in pcos by integrating in silico and in vivo approaches. Appl. Biochem. Biotechnol. 2024 196 6 2990 3009 10.1007/s12010‑023‑04710‑8 37610513
    [Google Scholar]
  44. Zou J. Li Y. Liao N. Liu J. Zhang Q. Luo M. Xiao J. Chen Y. Wang M. Chen K. Zeng J. Mo Z. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis. J. Ovarian Res. 2022 15 1 30 10.1186/s13048‑022‑00962‑w 35227296
    [Google Scholar]
  45. Zou L. Feng Q. Xia W. Zhu C. Bioinformatics analysis of the common targets of miR-223-3p, miR-122-5p, and miR-93-5p in polycystic ovarian syndrome. Front. Genet. 2023 14 1097706 10.3389/fgene.2023.1097706 36873932
    [Google Scholar]
  46. Liu Q. Zhu Z. Kraft P. Deng Q. Stener-Victorin E. Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: A large-scale genome-wide cross-trait analysis. BMC Med. 2022 20 1 66 10.1186/s12916‑022‑02238‑y 35144605
    [Google Scholar]
  47. Alur V. Vastrad B. Raju V. Vastrad C. Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. Middle East Fertil. Soc. J. 2024 29 1 53 10.1186/s43043‑024‑00212‑7
    [Google Scholar]
  48. Laven J.S.E. Follicle stimulating hormone receptor (FSHR) polymorphisms and polycystic ovary syndrome (PCOS). Front. Endocrinol. (Lausanne) 2019 10 23 10.3389/fendo.2019.00023 30809190
    [Google Scholar]
  49. Homburg R. Androgen circle of polycystic ovary syndrome. Hum. Reprod. 2009 24 7 1548 1555 10.1093/humrep/dep049 19279033
    [Google Scholar]
  50. Abbott D.H. Barnett D.K. Bruns C.M. Dumesic D.A. Androgen excess fetal programming of female reproduction: A developmental aetiology for polycystic ovary syndrome? Hum. Reprod. Update 2005 11 4 357 374 10.1093/humupd/dmi013 15941725
    [Google Scholar]
  51. Maqbool M. Dar M.A. Gani I. Geer M.I. Insulin resistance and polycystic ovary syndrome: A review. J. Drug Deliv. Ther. 2019 9 1-s 433 436 10.22270/jddt.v9i1‑s.2275
    [Google Scholar]
  52. Giallauria F. Palomba S. Vigorito C. Tafuri M.G. Colao A. Lombardi G. Orio F. Androgens in polycystic ovary syndrome: The role of exercise and diet. Semin. Reprod. Med. 2009 27 306 315
    [Google Scholar]
  53. Larson M.H. Gilbert L.A. Wang X. Lim W.A. Weissman J.S. Qi L.S. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 2013 8 11 2180 2196 10.1038/nprot.2013.132 24136345
    [Google Scholar]
  54. Kazi T.A. Biswas S.R. CRISPR/dCas system as the modulator of gene expression. Prog. Mol. Biol. Transl. Sci. 2021 178 99 122 10.1016/bs.pmbts.2020.12.002 33685602
    [Google Scholar]
  55. Merviel P. James P. Bouée S. Le Guillou M. Rince C. Nachtergaele C. Kerlan V. Impact of myo-inositol treatment in women with polycystic ovary syndrome in assisted reproductive technologies. Reprod. Health 2021 18 1 13 10.1186/s12978‑021‑01073‑3 33468143
    [Google Scholar]
  56. Yifu P. A review of antioxidant N-acetylcysteine in addressing polycystic ovary syndrome. Gynecol. Endocrinol. 2024 40 1 2381498 10.1080/09513590.2024.2381498 39039898
    [Google Scholar]
  57. Maarouf T. Mohamed D. Tantawy A. Eid P.M. Effect of omega-3 fatty acids on hormonal profile and ovarian stromal blood flow in patients with polycystic ovary syndrome. Evid. Bas. Women’s Heal. J. 2019 9 4 542 548 10.21608/ebwhj.2019.64357
    [Google Scholar]
  58. Scannell N. Mantzioris E. Rao V. Pandey C. Ee C Mousa A Moran L Villani A. Use of nutraceuticals and micronutrient supplementation for the management of polycystic ovary syndrome: A scoping review. Nutrit. Soci. 2024 83 E176 10.1017/S0029665124001940
    [Google Scholar]
  59. Zhang N. Liao Y. Zhao H. Chen T. Jia F. Yu Y. Zhu S. Wang C. Zhang W. Liu X. Polycystic ovary syndrome and 25-hydroxyvitamin D: A bidirectional two-sample Mendelian randomization study. Front. Endocrinol. (Lausanne) 2023 14 1110341 10.3389/fendo.2023.1110341 36967791
    [Google Scholar]
  60. Yurtdaş G. Akdevelioğlu Y. A new approach to polycystic ovary syndrome: The gut microbiota. J. Am. Coll. Nutr. 2020 39 4 371 382 10.1080/07315724.2019.1657515 31513473
    [Google Scholar]
  61. Salehi S. Allahverdy J. Pourjafar H. Sarabandi K. Jafari S.M. Gut microbiota and polycystic ovary syndrome (PCOS): Understanding the pathogenesis and the role of probiotics as a therapeutic strategy. Probio. Antimicrob. Prot. 2024 16 5 1553 1565 10.1007/s12602‑024‑10223‑5 38421576
    [Google Scholar]
  62. Li Y. Tan Y. Xia G. Shuai J. Effects of probiotics, prebiotics, and synbiotics on polycystic ovary syndrome: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023 63 4 522 538 10.1080/10408398.2021.1951155 34287081
    [Google Scholar]
  63. Wesołowska Z. Zdun S. Walczak K. Gaweł W. Jędruszczak P. The impact of using probiotics on metabolic disorders of women with polycystic ovary syndrome. Qual. Spor. 2023 9 2 18 22 10.12775/QS.2023.09.02.002
    [Google Scholar]
  64. Rizzo A. Santoni M. Mollica V. Fiorentino M. Brandi G. Massari F. Microbiota and prostate cancer. Semin Canc. Biol. 2022 86 Pt 3 1058 1065 10.1016/j.semcancer.2021.09.007
    [Google Scholar]
  65. Ravat F.K. Goswami J.R. Nair S.M. Thummar K.N. A review of metabolic and microbial influences on women with polycystic ovarian syndrome. Steroids 2024 212 109512 10.1016/j.steroids.2024.109512 39278517
    [Google Scholar]
  66. Zeng B. Lai Z. Sun L. Zhang Z. Yang J. Li Z. Lin J. Zhang Z. Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): A pilot study. Res. Microbiol. 2019 170 1 43 52 10.1016/j.resmic.2018.09.002 30292647
    [Google Scholar]
  67. Somunkiran A. Yavuz T. Yucel O. Ozdemir I. Anti-Müllerian hormone levels during hormonal contraception in women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007 134 2 196 201 10.1016/j.ejogrb.2007.01.012 17335955
    [Google Scholar]
  68. Sova H. Unkila-Kallio L. Tiitinen A. Hippeläinen M. Perheentupa A. Tinkanen H. Puukka K. Bloigu R. Piltonen T. Tapanainen J.S. Morin-Papunen L. Hormone profiling, including anti-Müllerian hormone (AMH), for the diagnosis of polycystic ovary syndrome (PCOS) and characterization of PCOS phenotypes. Gynecol. Endocrinol. 2019 35 7 595 600 10.1080/09513590.2018.1559807 30668196
    [Google Scholar]
  69. Vosnakis C. Georgopoulos N.A. Rousso D. Mavromatidis G. Katsikis I. Roupas N.D. Mamali I. Panidis D. Diet, physical exercise and orlistat administration increase serum anti-müllerian hormone (AMH) levels in women with polycystic ovary syndrome (PCOS). Gynecol. Endocrinol. 2013 29 3 242 245 10.3109/09513590.2012.736557 23194076
    [Google Scholar]
  70. Singh R. Kaur S. Yadav S. Bhatia S. Gonadotropins as pharmacological agents in assisted reproductive technology and polycystic ovary syndrome. Trends Endocrinol. Metab. 2023 34 4 194 215 10.1016/j.tem.2023.02.002 36863888
    [Google Scholar]
  71. Palomba S. Daolio J. La Sala G.B. Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol. Metab. 2017 28 3 186 198 10.1016/j.tem.2016.11.008 27988256
    [Google Scholar]
  72. Walters K.A. Polycystic ovary syndrome: Is it androgen or estrogen receptor? Curr. Opin. Endocr. Metab. Res. 2020 12 1 7 10.1016/j.coemr.2020.01.003
    [Google Scholar]
  73. Wang K. Li Y. Chen Y. Androgen excess: A hallmark of polycystic ovary syndrome. Front. Endocrinol. (Lausanne) 2023 14 1273542 10.3389/fendo.2023.1273542 38152131
    [Google Scholar]
  74. Ojeda-Ojeda M. Murri M. Insenser M. Escobar-Morreale H. Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr. Pharm. Des. 2013 19 32 5775 5791 10.2174/1381612811319320012 23448487
    [Google Scholar]
  75. Velez L.M. Seldin M. Motta A.B. Inflammation and reproductive function in women with polycystic ovary syndrome. Biol. Reprod. 2021 104 6 1205 1217 10.1093/biolre/ioab050 33739372
    [Google Scholar]
  76. Ye Z. Zhao J. Li R. Effects of immune cells and cytokines on the endometrial immune microenvironment in polycystic ovary syndrome. Gynecol. Obstet. Clini. Med. 2022 2 4 181 185 10.1016/j.gocm.2022.10.001
    [Google Scholar]
  77. Rizzo A. Santoni M. Mollica V. Logullo F. Rosellini M. Marchetti A. Faloppi L. Battelli N. Massari F. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study. Expert Opin. Drug Metab. Toxicol. 2021 17 12 1455 1466 10.1080/17425255.2021.2029405 35029519
    [Google Scholar]
  78. Di Federico A. Mosca M. Pagani R. Carloni R. Frega G. De Giglio A. Rizzo A. Ricci D. Tavolari S. Di Marco M. Palloni A. Brandi G. Immunotherapy in pancreatic cancer: Why do we keep failing? a focus on tumor immune microenvironment, predictive biomarkers and treatment outcomes. Cancers (Basel) 2022 14 10 2429 10.3390/cancers14102429 35626033
    [Google Scholar]
  79. Arjmand B. Alaei S. Heravani NF. Alavi-Moghadam S. Payab M. Ebrahimpour M. Aghayan H.R. Goodarzi P. Larijani B. Regenerative medicine perspectives in polycystic ovary syndrome. Adv. Exp. Med. Biol. 2021 1341 125 141 10.1007/5584_2021_623 33748932
    [Google Scholar]
  80. Karam M. Najjar H. El Sabban M. Hamade A. Najjar F. Regenerative medicine for polycystic ovary syndrome: Stem cell-based therapies and brown adipose tissue activation. Stem Cell Rev. Rep. 2023 19 4 853 865 10.1007/s12015‑023‑10505‑5 36633783
    [Google Scholar]
  81. Yang S. Ding S. Jiang X. Sun B. Xu Q. Establishment and adipocyte differentiation of polycystic ovary syndrome-derived induced pluripotent stem cells. Cell Prolif. 2016 49 3 352 361 10.1111/cpr.12258 27108524
    [Google Scholar]
  82. Young H.E. Fresh isolate adult telomerase positive stem cells: An addition to embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and/or mesenchymal stem cells (MSCs) for regenerative medicine. GSC Adv. Res. Revi. 2023 16 1 066 081 10.30574/gscarr.2023.16.1.0301
    [Google Scholar]
  83. Sun Y. Gao S. Ye C. Zhao W. Gut microbiota dysbiosis in polycystic ovary syndrome: Mechanisms of progression and clinical applications. Front. Cell. Infect. Microbiol. 2023 13 1142041 10.3389/fcimb.2023.1142041 36909735
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673368951250404170052
Loading
/content/journals/cmc/10.2174/0109298673368951250404170052
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test