Skip to content
2000
image of The Role of Beta-Lactam Antibiotics in Reactive Oxygen Species Generation and Therapeutic Implications

Abstract

Reactive oxygen species (ROS) play a pivotal role in cellular damage and the signaling processes, with their production significantly influenced by antimicrobial agents such as β−lactam antibiotics. This review explores the dual role of β−lactam antibiotics and comparable agents, where relevant in antimicrobial therapy, and their significant impact on cellular oxidative stress through the production of ROS. These antibiotics not only disrupt bacterial cell wall synthesis by binding to DD−transpeptidase domains but also induce the formation of ROS, leading to protein damage chemical modifications into quinone-like products. This process generates advanced oxidation protein products (AOPPs) that influence gene expression related to protein repair. Furthermore, β−lactam antibiotics uniquely expedite the degradation of cellular proteins, affecting the solute carrier family and leading to transcriptional reprogramming. Despite their efficacy in combating bacterial infections, the production of ROS by these antibiotics also poses risks, including oxidative damage and potential antibiotic resistance. Understanding these mechanisms provides insights into optimizing therapeutic strategies and mitigating adverse effects associated with β-lactam and comparable agents, where relevant.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367879250820164456
2025-10-02
2025-11-05
Loading full text...

Full text loading...

References

  1. Lam P.L. Wong R.S.M. Lam K.H. Hung L.K. Wong M.M. Yung L.H. Ho Y.W. Wong W.Y. Hau D.K.P. Gambari R. Chui C.H. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Biol. Interact. 2020 320 109023 10.1016/j.cbi.2020.109023 32097615
    [Google Scholar]
  2. de Sousa Coelho F. Mainardi J.L. The multiple benefits of second-generation β-lactamase inhibitors in treatment of multidrug-resistant bacteria. Infect. Dis. Now. 2021 51 6 510 517 10.1016/j.idnow.2020.11.007 33870896
    [Google Scholar]
  3. Drlica K. Zhao X. Bacterial death from treatment with fluoroquinolones and other lethal stressors. Expert. Rev. Anti. Infect. Ther. 2021 19 5 601 618 10.1080/14787210.2021.1840353 33081547
    [Google Scholar]
  4. Basu S. Banik B.K. Beta-lactams as clinically active medicines. Beta-Lactams: Novel Synthetic Pathways and Applications Springer International Publishing 2017 285 309 10.1007/978‑3‑319‑55621‑5_9
    [Google Scholar]
  5. Kohanski M.A. Dwyer D.J. Hayete B. Lawrence C.A. Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007 130 5 797 810 10.1016/j.cell.2007.06.049 17803904
    [Google Scholar]
  6. Krishnamoorthy R. Athinarayanan J. Periyasamy V.S. Alshuniaber M.A. Alshammari G. Hakeem M.J. Ahmed M.A. Alshatwi A.A. Antibacterial mechanisms of zinc oxide nanoparticle against bacterial food pathogens resistant to beta-lactam antibiotics. Molecules. 2022 27 8 2489 10.3390/molecules27082489 35458685
    [Google Scholar]
  7. Foti J.J. Devadoss B. Winkler J.A. Collins J.J. Walker G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science. 2012 336 6079 315 319 10.1126/science.1219192 22517853
    [Google Scholar]
  8. Gideon M. Transformative natural product-drug combinations: Advancing techniques to enhance efficacy against drug-resistant pathogens. INNOSC. Theranos. Pharm. Sci. 2025 8 2 87 10.36922/itps.4068
    [Google Scholar]
  9. Basu S. Samanta H.S. Ganguly J. Green synthesis and swelling behavior of Ag-nanocomposite semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft. Mater. 2018 16 1 7 19 10.1080/1539445X.2017.1368559
    [Google Scholar]
  10. Turner J. Muraoka A. Bedenbaugh M. Childress B. Pernot L. Wiencek M. Peterson Y.K. The Chemical relationship among beta-lactam antibiotics and potential impacts on reactivity and decomposition. Front. Microbiol. 2022 13 807955 10.3389/fmicb.2022.807955 35401470
    [Google Scholar]
  11. Kumari S. Deshmukh R. β-lactam antibiotics to tame down molecular pathways of Alzheimer’s disease. Eur. J. Pharmacol. 2021 895 173877 10.1016/j.ejphar.2021.173877 33453224
    [Google Scholar]
  12. Basu S. Banik B.K. Natural spices in medicinal chemistry: Properties and benefits. Green Approaches in Medicinal Chemistry for Sustainable Drug Design Elsevier 2020 739 758 10.1016/B978‑0‑12‑817592‑7.00022‑8
    [Google Scholar]
  13. Lima L.M. Silva B.N.M. Barbosa G. Barreiro E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020 208 112829 10.1016/j.ejmech.2020.112829 33002736
    [Google Scholar]
  14. Di Meo S. Reed T.T. Venditti P. Victor V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016 2016 1 1245049 10.1155/2016/1245049 27478531
    [Google Scholar]
  15. Mourenza Á. Gil J.A. Mateos L.M. Letek M. Oxidative stress-generating antimicrobials, a novel strategy to overcome antibacterial resistance. Antioxidants. 2020 9 5 361 10.3390/antiox9050361 32357394
    [Google Scholar]
  16. Basu S. Ghosh M. Bhunia R.K. Ganguly J. Banik B.K. Polysaccharides from Dolichos biflorus Linn and Trachyspermum ammi Linn seeds: Isolation, characterization and remarkable antimicrobial activity. Chem. Cent. J. 2017 11 1 118 10.1186/s13065‑017‑0349‑2 29159657
    [Google Scholar]
  17. Mandal M. Sarkar M. Khan A. Biswas M. Masi A. Rakwal R. Agrawal G.K. Srivastava A. Sarkar A. Reactive Oxygen Species (ROS) and reactive nitrogen species (RNS) in plants– maintenance of structural individuality and functional blend. Adv. Redox. Res. 2022 5 100039 10.1016/j.arres.2022.100039
    [Google Scholar]
  18. Morris J.J. Rose A.L. Lu Z. Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox. Biol. 2022 52 102285 10.1016/j.redox.2022.102285 35364435
    [Google Scholar]
  19. Basu S. Maji P. Ganguly J. Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract. J. Exp. Nanosci. 2016 11 8 660 668 10.1080/17458080.2015.1112042
    [Google Scholar]
  20. Basu S. Mandal S. Maiti T. Ganguly J. in vivo anti-inflammatory effect of purified aqueous and methanol extract of Trachyspermum ammi (Linn.) and Dolichos biflorus Linn. on albino rats. Asian. J. Org. Med. Chem. 2017 2 4 156 159 10.14233/ajomc.2017.AJOMC‑P82
    [Google Scholar]
  21. Lalchhandama K. Reappraising Fleming’s snot and mould. Sci. Vis. 2020 20 1 29 42 10.33493/scivis.20.01.03
    [Google Scholar]
  22. Mora-Gamboa M.P.C. Rincón-Gamboa S.M. Ardila-Leal L.D. Poutou-Piñales R.A. Pedroza-Rodríguez A.M. Quevedo-Hidalgo B.E. Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: Use of laccases. Molecules. 2022 27 14 4436 10.3390/molecules27144436 35889311
    [Google Scholar]
  23. Berríos-Cárcamo P. Quezada M. Quintanilla M.E. Morales P. Ezquer M. Herrera-Marschitz M. Israel Y. Ezquer F. Oxidative stress and neuroinflammation as a pivot in drug abuse. A focus on the therapeutic potential of antioxidant and anti-inflammatory agents and biomolecules. Antioxidants. 2020 9 9 830 10.3390/antiox9090830 32899889
    [Google Scholar]
  24. Juan C.A. Pérez de la Lastra J.M. Plou F.J. Pérez-Lebeña E. Reinbothe S. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int. J. Mol. Sci. 2021 22 9 4642 10.3390/ijms22094642 33924958
    [Google Scholar]
  25. King A.M. Reid-Yu S.A. Wang W. King D.T. De Pascale G. Strynadka N.C. Walsh T.R. Coombes B.K. Wright G.D. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014 510 7506 503 506 10.1038/nature13445 24965651
    [Google Scholar]
  26. Sae-khow K. Charoensappakit A. Chiewchengchol D. Leelahavanichkul A. High-Dose intravenous ascorbate in sepsis, a pro-oxidant enhanced microbicidal activity and the effect on neutrophil functions. Biomedicines. 2022 11 1 51 10.3390/biomedicines11010051 36672559
    [Google Scholar]
  27. Batra A. Roemhild R. Rousseau E. Franzenburg S. Niemann S. Schulenburg H. High potency of sequential therapy with only β-lactam antibiotics. eLife. 2021 10 e68876 10.7554/eLife.68876 34318749
    [Google Scholar]
  28. Ferraboschi P. Ciceri S. Grisenti P. Applications of lysozyme, an innate immune defense factor, as an alternative antibiotic. Antibiotics. 2021 10 12 1534 10.3390/antibiotics10121534 34943746
    [Google Scholar]
  29. Lin X. Kück U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl. Microbiol. Biotechnol. 2022 106 24 8007 8020 10.1007/s00253‑022‑12272‑8 36401643
    [Google Scholar]
  30. Martín J.F. Transport systems, intracellular traffic of intermediates and secretion of β-lactam antibiotics in fungi. Fungal. Biol. Biotechnol. 2020 7 1 6 10.1186/s40694‑020‑00096‑y 32351700
    [Google Scholar]
  31. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens. 2021 10 10 1310 10.3390/pathogens10101310 34684258
    [Google Scholar]
  32. Hussain H.I. Aqib A.I. Seleem M.N. Shabbir M.A. Hao H. Iqbal Z. Kulyar M.F.A. Zaheer T. Li K. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb. Pathog. 2021 158 105040 10.1016/j.micpath.2021.105040 34119627
    [Google Scholar]
  33. Basu S. Ganguly J. A comparative bioefficacy of aqueous and methanolic extract of trachyspermum ammi towards the antioxidant potentiality and electrochemical behaviour. Asian. J. Organic. Med. Chemistry. 2016 1 1 17 21 10.14233/ajomc.2016.AJOMC‑P9
    [Google Scholar]
  34. Basu S. Maji P. Ganguly J. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis. Appl. Nanosci. 2016 6 1 1 5 10.1007/s13204‑015‑0407‑9
    [Google Scholar]
  35. Smaga I. Fierro D. Mesa J. Filip M. Knackstedt L.A. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neurosci. Biobehav. Rev. 2020 115 116 130 10.1016/j.neubiorev.2020.05.016 32485268
    [Google Scholar]
  36. Hou Q. Kolodkin-Gal I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS. Microbiol. Ecol. 2020 96 9 fiaa142 10.1093/femsec/fiaa142 32672816
    [Google Scholar]
  37. Fang F.C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2004 2 10 820 832 10.1038/nrmicro1004 15378046
    [Google Scholar]
  38. Guillouzo A. Guguen-Guillouzo C. Antibiotics-induced oxidative stress. Curr. Opin. Toxicol. 2020 20-21 23 28 10.1016/j.cotox.2020.03.004
    [Google Scholar]
  39. Li R. Chen X. Zhou C. Dai Q.Q. Yang L. Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur. J. Med. Chem. 2022 242 114677 10.1016/j.ejmech.2022.114677 35988449
    [Google Scholar]
  40. Kim D. Kim S. Kwon Y. Kim Y. Park H. Kwak K. Lee H. Lee J.H. Jang K.M. Kim D. Lee S.H. Kang L.W. Structural insights for β-Lactam antibiotics. Biomol. Ther. (Seoul). 2023 31 2 141 147 10.4062/biomolther.2023.008 36788654
    [Google Scholar]
  41. Andrés C. Pérez de la Lastra J. Juan C. Plou F. Pérez-Lebeña E. The role of reactive species on innate immunity. Vaccines. 2022 10 10 1735 10.3390/vaccines10101735 36298601
    [Google Scholar]
  42. Ernst L. Steinfeld B. Barayeu U. Klintzsch T. Kurth M. Grimm D. Dick T.P. Rebelein J.G. Bischofs I.B. Keppler F. Methane formation driven by reactive oxygen species across all living organisms. Nature. 2022 603 7901 482 487 10.1038/s41586‑022‑04511‑9 35264795
    [Google Scholar]
  43. Ghoneum A. Abdulfattah A.Y. Warren B.O. Shu J. Said N. Redox homeostasis and metabolism in cancer: A complex mechanism and potential targeted therapeutics. Int. J. Mol. Sci. 2020 21 9 3100 10.3390/ijms21093100 32354000
    [Google Scholar]
  44. Qi W. Jonker M.J. Teichmann L. Wortel M. ter Kuile B.H. The influence of oxygen and oxidative stress on de novo acquisition of antibiotic resistance in E. coli and Lactobacillus lactis. BMC. Microbiol. 2023 23 1 279 10.1186/s12866‑023‑03031‑4
    [Google Scholar]
  45. Bush K. Bradford P.A. Epidemiology of β-Lactamase-producing pathogens. Clin. Microbiol. Rev. 2020 33 2 e00047-19 10.1128/CMR.00047‑19 32102899
    [Google Scholar]
  46. Messasma Z. Aggoun D. Houchi S. Ourari A. Ouennoughi Y. Keffous F. Mahdadi R. Biological activities, DFT calculations and docking of imines tetradentates ligands, derived from salicylaldehydic compounds as metallo-beta-lactamase inhibitors. J. Mol. Struct. 2021 1228 129463 10.1016/j.molstruc.2020.129463
    [Google Scholar]
  47. Léger L. Budin-Verneuil A. Cacaci M. Benachour A. Hartke A. Verneuil N. β-Lactam exposure triggers reactive oxygen species formation in enterococcus faecalis via the respiratory chain component DMK. Cell. Rep. 2019 29 8 2184 2191.e3 10.1016/j.celrep.2019.10.080 31747593
    [Google Scholar]
  48. Dwyer D.J. Belenky P.A. Yang J.H. MacDonald I.C. Martell J.D. Takahashi N. Chan C.T.Y. Lobritz M.A. Braff D. Schwarz E.G. Ye J.D. Pati M. Vercruysse M. Ralifo P.S. Allison K.R. Khalil A.S. Ting A.Y. Walker G.C. Collins J.J. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 2014 111 20 E2100 E2109 10.1073/pnas.1401876111 24803433
    [Google Scholar]
  49. Alfei S. Schito A.M. β-Lactam antibiotics and β-Lactamase enzymes inhibitors, part 2: our limited resources. Pharmaceuticals. 2022 15 4 476 10.3390/ph15040476 35455473
    [Google Scholar]
  50. Ye D. Sun J. Jiang R. Chang J. Liu Y. Wu X. Li L. Luo Y. Wang J. Guo K. Yang Z. β-lactam antibiotics induce metabolic perturbations linked to ROS generation leads to bacterial impairment. Front. Microbiol. 2024 15 1514825 10.3389/fmicb.2024.1514825 39712889
    [Google Scholar]
  51. De Simeis D. Serra S. Actinomycetes: A never-ending source of bioactive compounds—an overview on antibiotics production. Antibiotics. 2021 10 5 483 10.3390/antibiotics10050483 33922100
    [Google Scholar]
  52. De Rosa M. Verdino A. Soriente A. Marabotti A. The odd couple(S): An overview of beta-lactam antibiotics bearing more than one pharmacophoric group. Int. J. Mol. Sci. 2021 22 2 617 10.3390/ijms22020617 33435500
    [Google Scholar]
  53. Narendrakumar L. Chakraborty M. Kumari S. Paul D. Das B. β-Lactam potentiators to re-sensitize resistant pathogens: Discovery, development, clinical use and the way forward. Front. Microbiol. 2023 13 1092556 10.3389/fmicb.2022.1092556 36970185
    [Google Scholar]
  54. Bhatwalkar S.B. Mondal R. Krishna S.B.N. Adam J.K. Govender P. Anupam R. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Front. Microbiol. 2021 12 613077 10.3389/fmicb.2021.613077 34394014
    [Google Scholar]
  55. Barreto E.F. Webb A.J. Pais G.M. Rule A.D. Jannetto P.J. Scheetz M.H. Setting the beta-lactam therapeutic range for critically ill patients: Is there a floor or even a ceiling? Crit. Care. Explor. 2021 3 6 e0446 10.1097/CCE.0000000000000446 34136822
    [Google Scholar]
  56. Baquero F. Levin B.R. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat. Rev. Microbiol. 2021 19 2 123 132 10.1038/s41579‑020‑00443‑1 33024310
    [Google Scholar]
  57. Murugaiyan J. Kumar P.A. Rao G.S. Iskandar K. Hawser S. Hays J.P. Mohsen Y. Adukkadukkam S. Awuah W.A. Jose R.A.M. Sylvia N. Nansubuga E.P. Tilocca B. Roncada P. Roson-Calero N. Moreno-Morales J. Amin R. Kumar B.K. Kumar A. Toufik A.R. Zaw T.N. Akinwotu O.O. Satyaseela M.P. van Dongen M.B.M. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics. 2022 11 2 200 10.3390/antibiotics11020200 35203804
    [Google Scholar]
  58. Koeberle S.C. Kipp A.P. Stuppner H. Koeberle A. Ferroptosis-modulating small molecules for targeting drug-resistant cancer: Challenges and opportunities in manipulating redox signaling. Med. Res. Rev. 2023 43 3 614 682 10.1002/med.21933 36658724
    [Google Scholar]
  59. Lobritz M.A. Andrews I.W. Braff D. Porter C.B.M. Gutierrez A. Furuta Y. Cortes L.B.G. Ferrante T. Bening S.C. Wong F. Gruber C. Bakerlee C.W. Lambert G. Walker G.C. Dwyer D.J. Collins J.J. Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality. Cell. Chem. Biol. 2022 29 2 276 286.e4 10.1016/j.chembiol.2021.12.010 34990601
    [Google Scholar]
  60. Chaïbi K. Jaureguy F. Do Rego H. Ruiz P. Mory C. El Helali N. Mrabet S. Mizrahi A. Zahar J.R. Pilmis B. What to do with the new antibiotics? Antibiotics. 2023 12 4 654 10.3390/antibiotics12040654 37107016
    [Google Scholar]
  61. Vrancianu C.O. Gheorghe I. Dobre E.G. Barbu I.C. Cristian R.E. Popa M. Lee S.H. Limban C. Vlad I.M. Chifiriuc M.C. Emerging strategies to combat β-lactamase producing ESKAPE pathogens. Int. J. Mol. Sci. 2020 21 22 8527 10.3390/ijms21228527 33198306
    [Google Scholar]
  62. Alexander H.K. Maclean R.C. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc. Natl. Acad. Sci. USA. 2023 117 19455 10.5061/dryad.12jm63xtb
    [Google Scholar]
  63. Fodor A. Abate B.A. Deák P. Fodor L. Gyenge E. Klein M.G. Koncz Z. Muvevi J. Ötvös L. Székely G. Vozik D. Makrai L. Multidrug resistance (MDR) and collateral sensitivity in bacteria, with special attention to genetic and evolutionary aspects and to the perspectives of antimicrobial peptides: A review. Pathogens. 2020 9 7 522 10.3390/pathogens9070522 32610480
    [Google Scholar]
  64. Adator E.H. Walker M. Narvaez-Bravo C. Zaheer R. Goji N. Cook S.R. Tymensen L. Hannon S.J. Church D. Booker C.W. Amoako K. Nadon C.A. Read R. McAllister T.A. Whole genome sequencing differentiates presumptive extended spectrum beta-lactamase producing Escherichia coli along segments of the one health continuum. Microorganisms. 2020 8 3 448 10.3390/microorganisms8030448 32235751
    [Google Scholar]
  65. Shin J.H. Choe D. Ransegnola B. Hong H.R. Onyekwere I. Cross T. Shi Q. Cho B.K. Westblade L.F. Brito I.L. Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO. Rep. 2021 22 2 e51790 10.15252/embr.202051790 33463026
    [Google Scholar]
  66. Egorov A.M. Ulyashova M.M. Rubtsova M.Y. Inhibitors of β-Lactamases. New life of β-lactam antibiotics. Biochemistry. (Mosc). 2020 85 11 1292 1309 10.1134/S0006297920110024 33280574
    [Google Scholar]
  67. Arce-Rodríguez A Pankratz D Preusse M Nikel PI Häussler S Dual effect: High NADH levels contribute to efflux-mediated antibiotic resistance but drive lethality mediated by reactive oxygen species. mBio. 2022 13 1 e0243421 10.1128/mbio.02434‑21
    [Google Scholar]
  68. Ahmed Y. Zhong J. Yuan Z. Guo J. Roles of reactive oxygen species in antibiotic resistant bacteria inactivation and micropollutant degradation in Fenton and photo-Fenton processes. J. Hazard. Mater. 2022 430 128408 10.1016/j.jhazmat.2022.128408 35150997
    [Google Scholar]
  69. Mukhopadhyay D. Khan N. Kamal N. Varjani S. Singh S. Sindhu R. Gupta P. Bhargava P.C. Degradation of β-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system. Bioresour. Technol. 2022 361 127605 10.1016/j.biortech.2022.127605 35835423
    [Google Scholar]
  70. Fan P. Ma Z. Partow A.J. Kim M. Shoemaker G.M. Tan R. Tong Z. Nelson C.D. Jang Y. Jeong K.C. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors. Int. J. Biol. Macromol. 2022 195 506 514 10.1016/j.ijbiomac.2021.12.035 34920071
    [Google Scholar]
  71. Kwiatkowski P. Łopusiewicz Ł. Pruss A. Kostek M. Sienkiewicz M. Bonikowski R. Wojciechowska-Koszko I. Dołęgowska B. Antibacterial activity of selected essential oil compounds alone and in combination with β-lactam antibiotics against MRSA strains. Int. J. Mol. Sci. 2020 21 19 7106 10.3390/ijms21197106 32993130
    [Google Scholar]
  72. Gallique M. Wei K. Maisuria V.B. Okshevsky M. McKay G. Nguyen D. Tufenkji N. Cranberry-derived proanthocyanidins potentiate β-lactam antibiotics against resistant bacteria. Appl. Environ. Microbiol. 2021 87 10 e00127-21 10.1128/AEM.00127‑21 33712420
    [Google Scholar]
  73. Paprocka P. Durnaś B. Mańkowska A. Skłodowski K. Król G. Zakrzewska M. Czarnowski M. Kot P. Fortunka K. Góźdź S. Savage P.B. Bucki R. New β-Lactam antibiotics and ceragenins: A study to assess their potential in treatment of infections caused by multidrug-resistant strains of Pseudomonas aeruginosa. Infect. Drug. Resist. 2021 14 5681 5698 10.2147/IDR.S338827 34992394
    [Google Scholar]
  74. Yap J.K.Y. Tan S.Y.Y. Tang S.Q. Thien V.K. Chan E.W.L. Synergistic antibacterial activity between 1,4-naphthoquinone and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Microb. Drug. Resist. 2021 27 2 234 240 10.1089/mdr.2020.0178 32589487
    [Google Scholar]
  75. Maiti T Mandal S Basu S Mandal A Mandal S Banerjee P. In vivo evaluation of anti-inflammatory and antioxidant potential of aqueous extract of Astraeus hygrometricus on albino rats. Eur. J. Pharm. Med. Res. 2015 2 2 358 361
    [Google Scholar]
  76. Suárez-Rivero J.M. Pastor-Maldonado C.J. Povea-Cabello S. Álvarez-Córdoba M. Villalón-García I. Talaverón-Rey M. Suárez-Carrillo A. Munuera-Cabeza M. Sánchez-Alcázar J.A. Mitochondria and antibiotics: For good or for evil? Biomolecules. 2021 11 7 1050 10.3390/biom11071050 34356674
    [Google Scholar]
  77. Gholap S.P. Yao C. Green O. Babjak M. Jakubec P. Malatinský T. Ihssen J. Wick L. Spitz U. Shabat D. Chemiluminescence detection of hydrogen sulfide release by β-lactamase-catalyzed β-lactam biodegradation: Unprecedented pathway for monitoring β-lactam antibiotic bacterial resistance. Bioconjug. Chem. 2021 32 5 991 1000 10.1021/acs.bioconjchem.1c00149 33896185
    [Google Scholar]
  78. Nagulapalli Venkata K.C. Ellebrecht M. Tripathi S.K. Efforts towards the inhibitor design for New Delhi metallo-beta-lactamase (NDM-1). Eur. J. Med. Chem. 2021 225 113747 10.1016/j.ejmech.2021.113747 34391033
    [Google Scholar]
  79. Iqbal Z. Sun J. Yang H. Ji J. He L. Zhai L. Ji J. Zhou P. Tang D. Mu Y. Wang L. Yang Z. Recent developments to cope the antibacterial resistance via β-lactamase inhibition. Molecules. 2022 27 12 3832 10.3390/molecules27123832 35744953
    [Google Scholar]
  80. Wang Z. Li H. Zhou W. Lee J. Liu Z. An Z. Xu D. Mo H. Hu L. Zhou X. Ferrous sulfate-loaded hydrogel cures Staphylococcus aureus infection via facilitating a ferroptosis-like bacterial cell death in a mouse keratitis model. Biomaterials. 2022 290 121842 10.1016/j.biomaterials.2022.121842 36206665
    [Google Scholar]
  81. Ramond E. Jamet A. Ding X. Euphrasie D. Bouvier C. Lallemant L. He X. Arbibe L. Coureuil M. Charbit A. Reactive oxygen species-dependent innate immune mechanisms control methicillin-resistant staphylococcus aureus virulence in the drosophila larval model. MBio. 2021 12 3 e00276-21 10.1128/mBio.00276‑21 34126772
    [Google Scholar]
  82. Garza-Cervantes J.A. Meza-Bustillos J.F. Resendiz-Hernández H. Suárez-Cantú I.A. Ortega-Rivera O.A. Salinas E. Escárcega-González C.E. Morones-Ramírez J.R. Re-sensitizing ampicillin and kanamycin-resistant E. coli and S. aureus using synergistic metal micronutrients-antibiotic combinations. Front. Bioeng. Biotechnol. 2020 8 612 10.3389/fbioe.2020.00612 32671033
    [Google Scholar]
  83. Lv B. Huang X. Lijia C. Ma Y. Bian M. Li Z. Duan J. Zhou F. Yang B. Qie X. Song Y. Wood T.K. Fu X. Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proc. Natl. Acad. Sci. USA. 2023 120 12 e2217254120 10.1073/pnas.2217254120 36917671
    [Google Scholar]
  84. Wong F. Stokes J.M. Bening S.C. Vidoudez C. Trauger S.A. Collins J.J. Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic conditions. Mol. Cell. 2022 82 18 3499 3512.e10 10.1016/j.molcel.2022.07.009 35973427
    [Google Scholar]
  85. Clarke R.S. Ha K.P. Edwards A.M. RexAB promotes the survival of staphylococcus aureus exposed to multiple classes of antibiotics. Antimicrob. Agents. Chemother. 2021 65 10 e00594-21 10.1128/AAC.00594‑21 34310219
    [Google Scholar]
  86. Martins D. McKay G.A. English A.M. Nguyen D. Sublethal paraquat confers multidrug tolerance in Pseudomonas aeruginosa by inducing superoxide dismutase activity and lowering envelope permeability. Front. Microbiol. 2020 11 576708 10.3389/fmicb.2020.576708 33101252
    [Google Scholar]
  87. Giddings L.A. Newman D.J. Extremophilic fungi from marine environments: Underexplored sources of antitumor, anti-infective and other biologically active agents. Mar. Drugs. 2022 20 1 62 10.3390/md20010062 35049917
    [Google Scholar]
  88. Kabic J. Fortunato G. Vaz-Moreira I. Kekic D. Jovicevic M. Pesovic J. Ranin L. Opavski N. Manaia C.M. Gajic I. Dissemination of metallo-β-lactamase-producing Pseudomonas aeruginosa in Serbian Hospital Settings: Expansion of ST235 and ST654 clones. Int. J. Mol. Sci. 2023 24 2 1519 10.3390/ijms24021519 36675030
    [Google Scholar]
  89. Shirani M Akbari-Adergani B Rashidi Nodeh H Shahabuddin S. Ultrasonication-facilitated synthesis of functionalized graphene oxide for ultrasound-assisted magnetic dispersive solid-phase extraction of amoxicillin, ampicillin, and penicillin G n.d. Mikrochim. Acta. 2023 187 11 634 10.1007/s00604‑020‑04605‑z
    [Google Scholar]
  90. Ibrahim M. Ahmad F. Yaqub B. Ramzan A. Imran A. Afzaal M. Current trends of antimicrobials used in food animals and aquaculture. Antibiotics and Antimicrobial Resistance Genes in the Environment Elsevier 2019 10.1016/B978‑0‑12‑818882‑8.00004‑8
    [Google Scholar]
  91. Christensen S.B. Drugs that changed society: History and current status of the early antibiotics: Salvarsan, sulfonamides, and β-lactams. Molecules. 2021 26 19 6057 10.3390/molecules26196057 34641601
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367879250820164456
Loading
/content/journals/cmc/10.2174/0109298673367879250820164456
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test