Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Aims

We aimed to develop a reliable prognostic tool related to glucagon-like peptide-1 (GLP-1) for guiding treatment of pancreatic cancer (PC).

Background

The treatment strategies for PC being greatly advanced the prognosis of cancer still remains unfavorable.

Objective

To develop a RiskScore model for evaluating PC prognosis.

Methods

The bulk RNA-seq data of PC patients were obtained from the UCSCXena and GEO database, and the GSE156405 cohort was used for single-cell RNA-seq (scRNA-seq) analysis in the “Seurat” package. Firstly, the gene expression and mutation in the PC samples were analyzed to perform differentially expressed genes (DEGs) analysis using the “limma” package. The “survival” package was employed to conduct un/multivariate Cox regression and Kaplan-Meier (KM) survival analysis. Secondly, a RiskScore model was developed and assessed using the “glmnet” and “timeROC” packages. Next, the CIBERSORT algorithm and the ssGSEA method were applied for immune infiltration analysis and calculation of the immune cell scores, respectively. Finally, pathway enrichment analysis was conducted using gene set enrichment analysis (GSEA).

Results

Most GLP-1 signaling genes were overexpressed in the PC samples with multiple mutation types. LASSO analysis selected 3 GLP-1 genes for the development of a RiskScore model with a high classification accuracy (AUC >0.6). Notably, high-risk patients showed a significantly shorter survival time in both training and validation sets. In addition, as an independent factor, the RiskScore was further used to establish a nomogram model for the survival prediction of PC in clinical practice. The tumor microenvironment (TME) analysis revealed that low-risk patients with more abundant immune and stroma components had higher levels of anti-tumor immune cell infiltration (such as activated B and T cells), while the proliferation pathways (E2F targets, G2M checkpoint) were significantly activated in the high-risk groups. The genes in the RiskScore model may affect the survival of PC patients through modulating the activities of NK cells and macrophages.

Conclusion

We demonstrated that the GLP-1 signaling affected PC development and developed a reliable RiskSocre model for the prognosis assessment in PC. Our findings are expected to improve PC diagnosis and treatment in clinical practice.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673367232250102015441
2025-02-12
2025-11-07
Loading full text...

Full text loading...

References

  1. YeeN.S. Immunotherapeutic approaches in Pancreatic adenocarcinoma: Current status and future perspectives.Curr. Mol. Pharmacol.20169323124110.2174/187446720866615071612081026177643
    [Google Scholar]
  2. LiuW. LuY. ZhangD. ShiL. ZuG. YanH. SunD. MicroRNA-708 inhibits the proliferation and chemoresistance of pancreatic cancer cells.Biocell2020441738010.32604/biocell.2020.08613
    [Google Scholar]
  3. PourshamsA. SepanlouS.G. IkutaK.S. BisignanoC. SafiriS. RoshandelG. SharifM. KhatibianM. FitzmauriceC. NixonM.R. AbbasiN. AfaridehM. AhmadianE. AkinyemijuT. AlahdabF. AlamT. AlipourV. AllenC.A. AnberN.H. Ansari-MoghaddamA. ArablooJ. BadawiA. BagherzadehM. BelaynehY.M. BiadgoB. BijaniA. BiondiA. BjørgeT. BorzìA.M. BosettiC. BrikoA.N. BrikoN.I. CarrerasG. CarvalhoF. ChoiJ-Y.J. ChuD-T. DangA.K. DaryaniA. DavitoiuD.V. DemozG.T. DesaiR. DeyS. DoH.T. DoH.P. EftekhariA. EsteghamatiA. FarzadfarF. FernandesE. FilipI. FischerF. ForoutanM. GadM.M. GallusS. GetaB. GoriniG. Hafezi-NejadN. HarveyJ.D. HasankhaniM. HasanzadehA. HassanipourS. HayS.I. HidruH.D. HoangC.L. HostiucS. HousehM. IlesanmiO.S. IlicM.D. IrvaniS.S.N. Jafari BalalamiN. JamesS.L. JoukarF. KasaeianA. KassaT.D. KengneA.P. KhalilovR. KhanE.A. KhaterA. Khosravi ShadmaniF. KocarnikJ.M. KomakiH. KoyanagiA. KumarV. La VecchiaC. LopukhovP.D. ManafiF. ManafiN. MandaA-L. Mansour-GhanaeiF. MehtaD. MehtaV. MeierT. MelesH.G. MengistuG. MiazgowskiT. MohamadnejadM. Mohammadian-HafshejaniA. Mohammadoo-KhorasaniM. MohammedS. MohebiF. MokdadA.H. MonastaL. MoossaviM. MoradzadehR. NaikG. NegoiI. NguyenC.T. NguyenL.H. NguyenT.H. OlagunjuA.T. OlagunjuT.O. PenniniA. RabieeM. RabieeN. RadfarA. RahimiM. RathG.K. RawafD.L. RawafS. ReinerR.C.Jr RezaeiN. RezapourA. SaadA.M. SaadatagahS. SahebkarA. SalimzadehH. SamyA.M. SanabriaJ. SarveazadA. SawhneyM. SekerijaM. ShabalkinP. ShaikhM.A. SharmaR. SheikhbahaeiS. ShirkoohiR. Siddappa MalleshappaS.K. SisayM. SoreideK. SoshnikovS. SotoudehmaneshR. StarodubovV.I. SubartM.L. Tabarés-SeisdedosR. TadesseD.B.B. TrainiE. TranB.X. TranK.B. UllahI. VacanteM. Vahedian-AzimiA. VaravikovaE. WestermanR. WondafrashD.D.Z. XuR. YonemotoN. ZadnikV. ZhangZ-J. MalekzadehR. NaghaviM. GBD 2017 Pancreatic Cancer Collaborators The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet Gastroenterol. Hepatol.201941293494710.1016/S2468‑1253(19)30347‑431648972
    [Google Scholar]
  4. DuanH. LiL. HeS. Advances and prospects in the treatment of pancreatic cancer.Int. J. Nanomedicine2023183973398810.2147/IJN.S41349637489138
    [Google Scholar]
  5. WangD. ShiY. WangZ. ZhangJ. WangL. MaH. ShiS. LianX. HuangH. WangX. LianC. Meiotic nuclear divisions 1 suppresses the proliferation and invasion of pancreatic cancer cells via regulating H2A.X variant histone.Biocell202448111112210.32604/biocell.2023.046903
    [Google Scholar]
  6. BlackfordA.L. CantoM.I. KleinA.P. HrubanR.H. GogginsM. Recent trends in the incidence and survival of stage 1A pancreatic cancer: A surveillance, epidemiology, and end results analysis.J. Natl. Cancer Inst.2020112111162116910.1093/jnci/djaa00431958122
    [Google Scholar]
  7. BlairA.B. YinL.D. PuN. YuJ. GrootV.P. RozichN.S. JavedA.A. ZhengL. CameronJ.L. BurkhartR.A. WeissM.J. WolfgangC.L. HeJ. Recurrence in patients achieving pathological complete response after neoadjuvant treatment for advanced pancreatic cancer.Ann. Surg.2021274116216910.1097/SLA.000000000000357032304375
    [Google Scholar]
  8. LambertA. SchwarzL. BorbathI. HenryA. Van LaethemJ.L. MalkaD. DucreuxM. ConroyT. An update on treatment options for pancreatic adenocarcinoma.Ther. Adv. Med. Oncol.201911175883591987556810.1177/175883591987556831598142
    [Google Scholar]
  9. SahinT.K. AyasunR. RizzoA. GuvenD.C. Prognostic value of neutrophil-to-eosinophil ratio (NER) in cancer: A systematic review and meta-analysis.Cancers20241621368910.3390/cancers1621368939518127
    [Google Scholar]
  10. Di FedericoA. MoscaM. PaganiR. CarloniR. FregaG. De GiglioA. RizzoA. RicciD. TavolariS. Di MarcoM. PalloniA. BrandiG. Immunotherapy in pancreatic cancer: Why do we keep failing? A focus on tumor immune microenvironment, predictive biomarkers and treatment outcomes.Cancers20221410242910.3390/cancers1410242935626033
    [Google Scholar]
  11. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  12. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  13. De LucaR. GianottiL. PedrazzoliP. BrunettiO. RizzoA. SandiniM. PaiellaS. PecorelliN. PuglieseL. PietrabissaA. ZerbiA. SalviaR. BoggiU. CasiratiA. FalconiM. CaccialanzaR. Immunonutrition and prehabilitation in pancreatic cancer surgery: A new concept in the era of ERAS® and neoadjuvant treatment.Eur. J. Surg. Oncol.202349354254910.1016/j.ejso.2022.12.00636577556
    [Google Scholar]
  14. WolfgangC.L. HermanJ.M. LaheruD.A. KleinA.P. ErdekM.A. FishmanE.K. HrubanR.H. Recent progress in pancreatic cancer.CA Cancer J. Clin.201363531834810.3322/caac.2119023856911
    [Google Scholar]
  15. PushalkarS. HundeyinM. DaleyD. ZambirinisC.P. KurzE. MishraA. MohanN. AykutB. UsykM. TorresL.E. WerbaG. ZhangK. GuoY. LiQ. AkkadN. LallS. WadowskiB. GutierrezJ. Kochen RossiJ.A. HerzogJ.W. DiskinB. Torres-HernandezA. LeinwandJ. WangW. TaunkP.S. SavadkarS. JanalM. SaxenaA. LiX. CohenD. SartorR.B. SaxenaD. MillerG. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression.Cancer Discov.20188440341610.1158/2159‑8290.CD‑17‑113429567829
    [Google Scholar]
  16. CarrerA. TrefelyS. ZhaoS. CampbellS.L. NorgardR.J. SchultzK.C. SidoliS. ParrisJ.L.D. AffrontiH.C. SivanandS. EgolfS. SelaY. TrizzinoM. GardiniA. GarciaB.A. SnyderN.W. StangerB.Z. WellenK.E. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis.Cancer Discov.20199341643510.1158/2159‑8290.CD‑18‑056730626590
    [Google Scholar]
  17. JerlhagE. The therapeutic potential of glucagon-like peptide-1 for persons with addictions based on findings from preclinical and clinical studies.Front. Pharmacol.202314106303310.3389/fphar.2023.106303337063267
    [Google Scholar]
  18. KabahiziA. WallaceB. LieuL. ChauD. DongY. HwangE.S. WilliamsK.W. Glucagon-like peptide-1 (GLP-1) signalling in the brain: From neural circuits and metabolism to therapeutics.Br. J. Pharmacol.2022179460062410.1111/bph.1568234519026
    [Google Scholar]
  19. MüllerT.D. FinanB. BloomS.R. D’AlessioD. DruckerD.J. FlattP.R. FritscheA. GribbleF. GrillH.J. HabenerJ.F. HolstJ.J. LanghansW. MeierJ.J. NauckM.A. Perez-TilveD. PocaiA. ReimannF. SandovalD.A. SchwartzT.W. SeeleyR.J. StemmerK. Tang-ChristensenM. WoodsS.C. DiMarchiR.D. TschöpM.H. Glucagon-like peptide 1 (GLP-1).Mol. Metab.2019307213010.1016/j.molmet.2019.09.01031767182
    [Google Scholar]
  20. YangF. ZengF. LuoX. LeiY. LiJ. LuS. HuangX. LanY. LiuR. GLP-1 Receptor: A New Target for Sepsis.Front. Pharmacol.20211270690810.3389/fphar.2021.70690834335269
    [Google Scholar]
  21. XueS. WasserfallC.H. ParkerM. BruskoT.M. McGrailS. McGrailK. MooreM. Campbell-ThompsonM. SchatzD.A. AtkinsonM.A. HallerM.J. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency.Ann. N. Y. Acad. Sci.20081150115215610.1196/annals.1447.04919120286
    [Google Scholar]
  22. ZhuC. LaiY. LiuC. TengL. ZhuY. LinX. FuX. LaiQ. LiuS. ZhouX. FangY. Comprehensively prognostic and immunological analyses of GLP-1 signaling-related genes in pan-cancer and validation in colorectal cancer.Front. Pharmacol.202415138724310.3389/fphar.2024.138724339104385
    [Google Scholar]
  23. ZulibiyaA. Single-cell RNA sequencing reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.2023186611625
    [Google Scholar]
  24. ZhouJ. GuoL. WangY. LiL. GuoY. DuanL. JiaoM. XiP. WangP. Development and validation of a risk prognostic model based on the H. pylori infection phenotype for stomach adenocarcinoma.Heliyon20241017e3688210.1016/j.heliyon.2024.e3688239281596
    [Google Scholar]
  25. NiuX. WangB. A network medical framework based on inflammatory genes to identify drug candidates for abdominal aortic aneurysms.Curr. Mol. Pharmacol.2024171e17052321699837198994
    [Google Scholar]
  26. SongZ. Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.2023186693701
    [Google Scholar]
  27. WangQ. QiaoW. ZhangH. LiuB. LiJ. ZangC. MeiT. ZhengJ. ZhangY. Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma.Front. Immunol.202213101963810.3389/fimmu.2022.101963836505501
    [Google Scholar]
  28. ChuY. YaoY. HuQ. SongQ. Riskscore model based on oxidative stress–related genes may facilitate the prognosis evaluation for patients with colon cancer.Clin. Transl. Gastroenterol.2023146e0058210.14309/ctg.000000000000058236927989
    [Google Scholar]
  29. LiangW. LuoQ. ZhangZ. YangK. YangA. ChiQ. HuH. An integrated bioinformatics analysis and experimental study identified key biomarkers CD300A or CXCL1, pathways and immune infiltration in diabetic nephropathy mice.Biocell20224681989200210.32604/biocell.2022.019300
    [Google Scholar]
  30. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  31. DuX. Angiogenic gene PTK2 is a potential biomarker of gestational diabetes mellitus and is significantly associated with breast cancer immune infiltration.Oncologie2022244769787
    [Google Scholar]
  32. RuB. WongC.N. TongY. ZhongJ.Y. ZhongS.S.W. WuW.C. ChuK.C. WongC.Y. LauC.Y. ChenI. ChanN.W. ZhangJ. TISIDB: An integrated repository portal for tumor–immune system interactions.Bioinformatics201935204200420210.1093/bioinformatics/btz21030903160
    [Google Scholar]
  33. JagerL.E. Hazards in the plating industry.Occup. Health Rev.19661823105982584
    [Google Scholar]
  34. McGuiganA. KellyP. TurkingtonR.C. JonesC. ColemanH.G. McCainR.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes.World J. Gastroenterol.201824434846486110.3748/wjg.v24.i43.484630487695
    [Google Scholar]
  35. EsoY. SenoH. Current status of treatment with immune checkpoint inhibitors for gastrointestinal, hepatobiliary, and pancreatic cancers.Therap. Adv. Gastroenterol.202013175628482094877310.1177/175628482094877332913444
    [Google Scholar]
  36. NauckM.A. QuastD.R. WefersJ. MeierJ.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – State-of-the-art.Mol. Metab.20214610110210.1016/j.molmet.2020.10110233068776
    [Google Scholar]
  37. NewsomeP.N. BuchholtzK. CusiK. LinderM. OkanoueT. RatziuV. SanyalA.J. SejlingA.S. HarrisonS.A. NN9931-4296 Investigators A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis.N. Engl. J. Med.2021384121113112410.1056/NEJMoa202839533185364
    [Google Scholar]
  38. LiJ. JinC. ZouC. QiaoX. MaP. HuD. LiW. JinJ. JinX. FanP. GNG12 regulates PD-L1 expression by activating NF-κB signaling in pancreatic ductal adenocarcinoma.FEBS Open Bio202010227828710.1002/2211‑5463.1278431898405
    [Google Scholar]
  39. WongT.H. ChiuW.Z. BreedveldG.J. LiK.W. VerkerkA.J.M.H. HondiusD. HukemaR.K. SeelaarH. FrickP. SeverijnenL.A. LammersG.J. LebbinkJ.H.G. van DuinenS.G. KamphorstW. RozemullerA.J. BakkerE.B. NeumannM. WillemsenR. BonifatiV. SmitA.B. van SwietenJ. Netherlands Brain Bank International Parkinsonism Genetics Network PRKAR1B mutation associated with a new neurodegenerative disorder with unique pathology.Brain201413751361137310.1093/brain/awu06724722252
    [Google Scholar]
  40. BeristainA.G. MolyneuxS.D. JoshiP.A. PomroyN.C. Di GrappaM.A. ChangM.C. KirschnerL.S. PrivéG.G. PujanaM.A. KhokhaR. PKA signaling drives mammary tumorigenesis through Src.Oncogene20153491160117310.1038/onc.2014.4124662820
    [Google Scholar]
  41. ZhaoA. LiD. MaoX. YangM. DengW. HuW. ChenC. YangG. LiL. GNG2 acts as a tumor suppressor in breast cancer through stimulating MRAS signaling.Cell Death Dis.202213326010.1038/s41419‑022‑04690‑335322009
    [Google Scholar]
  42. YajimaI. KumasakaM.Y. YamanoshitaO. ZouC. LiX. OhgamiN. KatoM. GNG2 inhibits invasion of human malignant melanoma cells with decreased FAK activity.Am. J. Cancer Res.20144218218824660107
    [Google Scholar]
  43. SivoriS. PendeD. QuatriniL. PietraG. Della ChiesaM. VaccaP. TuminoN. MorettaF. MingariM.C. LocatelliF. MorettaL. NK cells and ILCs in tumor immunotherapy.Mol. Aspects Med.20218010087010.1016/j.mam.2020.10087032800530
    [Google Scholar]
  44. WangS. LiuW. LyD. XuH. QuL. ZhangL. Tumor-infiltrating B cells: Their role and application in anti- tumor immunity in lung cancer.Cell. Mol. Immunol.201916161810.1038/s41423‑018‑0027‑x29628498
    [Google Scholar]
  45. GermainC. GnjaticS. TamzalitF. KnockaertS. RemarkR. GocJ. LepelleyA. BechtE. KatsahianS. BizouardG. ValidireP. DamotteD. AlifanoM. MagdeleinatP. CremerI. TeillaudJ.L. FridmanW.H. Sautès-FridmanC. Dieu-NosjeanM.C. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer.Am. J. Respir. Crit. Care Med.2014189783284410.1164/rccm.201309‑1611OC24484236
    [Google Scholar]
  46. MataM. GerkenC. NguyenP. KrenciuteG. SpencerD.M. GottschalkS. Inducible activation of MyD88 and CD40 in CAR T cells results in controllable and potent antitumor activity in preclinical solid tumor models.Cancer Discov.20177111306131910.1158/2159‑8290.CD‑17‑026328801306
    [Google Scholar]
  47. PaluckaA.K. CoussensL.M. The basis of oncoimmunology.Cell201616461233124710.1016/j.cell.2016.01.04926967289
    [Google Scholar]
  48. ManoharM. KandikattuH.K. Upparahalli VenkateshaiahS. YadavalliC.S. MishraA. Eosinophils in the pathogenesis of pancreatic disorders.Semin. Immunopathol.202143341142210.1007/s00281‑021‑00853‑033783592
    [Google Scholar]
  49. ZhangY. LiuT. DengZ. FangW. ZhangX. ZhangS. WangM. LuoS. MengZ. LiuJ. SukhovaG.K. LiD. McKenzieA.N.J. LibbyP. ShiG.P. GuoJ. Group 2 innate lymphoid cells protect mice from abdominal aortic aneurysm formation via IL5 and eosinophils.Adv. Sci.2023107220695810.1002/advs.20220695836592421
    [Google Scholar]
  50. OshiM. PatelA. LeL. TokumaruY. YanL. MatsuyamaR. EndoI. TakabeK. G2M checkpoint pathway alone is associated with drug response and survival among cell proliferation-related pathways in pancreatic cancer.Am. J. Cancer Res.20211163070308434249445
    [Google Scholar]
  51. NeoptolemosJ.P. StockenD.D. FriessH. BassiC. DunnJ.A. HickeyH. BegerH. Fernandez-CruzL. DervenisC. LacaineF. FalconiM. PederzoliP. PapA. SpoonerD. KerrD.J. BüchlerM.W. European Study Group for Pancreatic Cancer A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer.N. Engl. J. Med.2004350121200121010.1056/NEJMoa03229515028824
    [Google Scholar]
  52. KhanT. SeddonA. DalgleishA. KhelwattyS. IoannouN. MudanS. ModjtahediH. Synergistic activity of agents targeting growth factor receptors, CDKs and downstream signaling molecules in a panel of pancreatic cancer cell lines and the identification of antagonistic combinations: Implications for future clinical trials in pancreatic cancer.Oncol. Rep.20204462581259410.3892/or.2020.782233125153
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673367232250102015441
Loading
/content/journals/cmc/10.2174/0109298673367232250102015441
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test