Skip to content
2000
image of Erbin Inhibited Angiogenesis in vitro with the Inhibition on the STAT3 Pathway in Breast Cancer Cells

Abstract

Background

Angiogenesis plays an important role in progression of tumors including breast cancer, which accounts for the vast majority of women's malignant tumors globally, to meet the excessive requirement of oxygen and nutrition for growth, metastasis, and invasion of the tumor. Therefore, targeting tumor angiogenesis has turned into a significant target for cancer therapy. Erbin has a significant effect on the initiation and progression of cancer, including breast cancer, but its role in inhibiting vascular endothelial cell proliferation and angiogenesis by breast cancer cells remains unclear.

Methods

In this study, human SKBR3 and MCF-7 breast cancer cells were used and transfected with the plasmid and siRNA for overexpression and silence of Erbin, respectively. Western blot, qRT-PCR, CLEIA, CCK-8 and Matrigel Tube Formation Assay were used for the proteins detection, mRNAs detection, detection of VEGF in the culture supernatants, detection of cell proliferation and detection of the angiogenic ability of HUVECs , respectively.

Results

It was shown that the expression of both Erbin protein and mRNA in SKBR3 cells was lower compared to that in MCF-7 cells ( < 0.05). While the expression of VEGF protein was higher in SKBR3 cells than that in MCF-7 cells ( < 0.05). Furthermore, the VEGF protein and mRNA in the cells, VEGF protein in the culture supernatant, HUVEC proliferation in the conditioned medium at 16 h and 24 h, the total length of tube formation in the conditioned medium, and pSTAT3 protein in the cells, were downregulated by transfection of Erbin gene in SKBR3 cells and upregulated (excluding HUVEC proliferation at 16 h) by transfection of Erbin siRNA in MCF-7 cells compared with their NC cells ( < 0.05).

Conclusion

It can be concluded that Erbin, with inhibiting the STAT3 pathway, suppresses the proangiogenic effects of breast cancer cells, thereby suggesting its potential as a therapeutic target for breast cancer.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673366195250331175911
2025-04-23
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673366195250331175911/BMS-CMC-2024-855.html?itemId=/content/journals/cmc/10.2174/0109298673366195250331175911&mimeType=html&fmt=ahah

References

  1. Ghose A. Stanway S. Sirohi B. Mutebi M. Adomah S. Advanced breast cancer care: The current situation and global disparities. Semin. Oncol. Nurs. 2024 40 1 151551 10.1016/j.soncn.2023.151551 38065813
    [Google Scholar]
  2. Giaquinto A.N. Sung H. Newman L.A. Freedman R.A. Smith R.A. Star J. Jemal A. Siegel R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024 74 6 477 495 10.3322/caac.21863 39352042
    [Google Scholar]
  3. Han Q. Qiu S. Hu H. Li W. Li X. Role of Caveolae family-related proteins in the development of breast cancer. Front. Mol. Biosci. 2023 10 1242426 10.3389/fmolb.2023.1242426 37828916
    [Google Scholar]
  4. Heer E. Harper A. Escandor N. Sung H. McCormack V. Fidler-Benaoudia M.M. Global burden and trends in premenopausal and postmenopausal breast cancer: A population-based study. Lancet Glob. Health 2020 8 8 e1027 e1037 10.1016/S2214‑109X(20)30215‑1 32710860
    [Google Scholar]
  5. Shiravand Y. Khodadadi F. Kashani S.M.A. Hosseini- Fard S.R. Hosseini S. Sadeghirad H. Ladwa R. O’Byrne K. Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022 29 5 3044 3060 10.3390/curroncol29050247 35621637
    [Google Scholar]
  6. Gennari A. André F. Barrios C.H. Cortés J. Azambuja D.E. DeMichele A. Dent R. Fenlon D. Gligorov J. Hurvitz S.A. Im S.A. Krug D. Kunz W.G. Loi S. Penault-Llorca F. Ricke J. Robson M. Rugo H.S. Saura C. Schmid P. Singer C.F. Spanic T. Tolaney S.M. Turner N.C. Curigliano G. Loibl S. Paluch-Shimon S. Harbeck N. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021 32 12 1475 1495 10.1016/j.annonc.2021.09.019 34678411
    [Google Scholar]
  7. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  8. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  9. Guo Z. Jing X. Sun X. Sun S. Yang Y. Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin. Med. J. 2024 137 17 2043 2051 10.1097/CM9.0000000000003231 39051171
    [Google Scholar]
  10. Lin X. Long S. Yan C. Zou X. Zhang G. Zou J. Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front. Oncol. 2023 13 1202656 10.3389/fonc.2023.1202656 37810976
    [Google Scholar]
  11. Mou J. Li C. Zheng Q. Meng X. Tang H. Research progress in tumor angiogenesis and drug resistance in breast cancer. Cancer Biol. Med. 2024 21 7 1 15 10.20892/j.issn.2095‑3941.2023.0515 38940663
    [Google Scholar]
  12. Elayat G. Selim A. Angiogenesis in breast cancer: Insights and innovations. Clin. Exp. Med. 2024 24 1 178 10.1007/s10238‑024‑01446‑5 39105831
    [Google Scholar]
  13. Chen Y. Zhou Y. Chen J. Yang J. Yuan Y. Wu W. Exosomal lncRNA SNHG12 promotes angiogenesis and breast cancer progression. Breast Cancer 2024 31 4 607 620 10.1007/s12282‑024‑01574‑6 38833118
    [Google Scholar]
  14. Bernardini S. Fauconnet S. Chabannes E. Henry P.C. Adessi G. Bittard H. Serum levels of vascular endothelial growth factor as a prognostic factor in bladder cancer. J. Urol. 2001 166 4 1275 1279 10.1016/S0022‑5347(05)65752‑7 11547057
    [Google Scholar]
  15. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 2005 94 209 231 10.1007/3‑7643‑7311‑3_15 15617481
    [Google Scholar]
  16. Harry J.A. Ormiston M.L. Novel pathways for targeting tumor angiogenesis in metastatic breast cancer. Front. Oncol. 2021 11 772305 10.3389/fonc.2021.772305 34926282
    [Google Scholar]
  17. Lorenc P. Sikorska A. Molenda S. Guzniczak N. Dams-Kozlowska H. Florczak A. Physiological and tumor-associated angiogenesis: Key factors and therapy targeting VEGF/VEGFR pathway. Biomed. Pharmacother. 2024 180 117585 10.1016/j.biopha.2024.117585 39442237
    [Google Scholar]
  18. Ardizzone A. Bova V. Casili G. Repici A. Lanza M. Giuffrida R. Colarossi C. Mare M. Cuzzocrea S. Esposito E. Paterniti I. Role of basic fibroblast growth factor in cancer: Biological activity, targeted therapies, and prognostic value. Cells 2023 12 7 1002 10.3390/cells12071002 37048074
    [Google Scholar]
  19. Xin S. Sun X. Jin L. Zhou Z. Liu X. Li W. Mei W. Zhang J. Zhang B. Yao X. Zhou L. Ye L. Identifying the potential role and prognostic value of the platelet-derived growth factor pathway in kidney renal clear cell carcinoma. J. Oncol. 2022 2022 1 20 10.1155/2022/9498010 35342405
    [Google Scholar]
  20. Lugano R. Ramachandran M. Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020 77 9 1745 1770 10.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  21. Chopra H. Hung M.K. Kwong D.L. Zhang C.F. Pow E.H.N. Insights into endothelial progenitor cells: Origin, classification, potentials, and prospects. Stem Cells Int. 2018 2018 1 24 10.1155/2018/9847015 30581475
    [Google Scholar]
  22. Asahara T. Murohara T. Sullivan A. Silver M. van der Zee R. Li T. Witzenbichler B. Schatteman G. Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997 275 5302 964 966 10.1126/science.275.5302.964 9020076
    [Google Scholar]
  23. Li T. Kang G. Wang T. Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer (Review). Oncol. Lett. 2018 16 1 687 702 10.3892/ol.2018.8733 29963134
    [Google Scholar]
  24. Garcia J. Hurwitz H.I. Sandler A.B. Miles D. Coleman R.L. Deurloo R. Chinot O.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 2020 86 102017 10.1016/j.ctrv.2020.102017 32335505
    [Google Scholar]
  25. Hendrixson M. Gladkiy Y. Thyagarajan A. Sahu R.P. Efficacy of sorafenib-based therapies for non-small cell lung cancer. Med. Sci. 2024 12 2 20 10.3390/medsci12020020 38651414
    [Google Scholar]
  26. Hua Y.C. Gao D.Z. Wang K.Y. Ding X.S. Xu W.R. Li Y.B. Shi W.W. Sun S.B. Li X.Y. Bevacizumab reduces peritumoral brain edema in lung cancer brain metastases after radiotherapy. Thorac. Cancer 2023 14 31 3133 3139 10.1111/1759‑7714.15106 37718465
    [Google Scholar]
  27. Carbone C. Moccia T. Zhu C. Paradiso G. Budillon A. Chiao P.J. Abbruzzese J.L. Melisi D. Anti-VEGF treatment-resistant pancreatic cancers secrete proinflammatory factors that contribute to malignant progression by inducing an EMT cell phenotype. Clin. Cancer Res. 2011 17 17 5822 5832 10.1158/1078‑0432.CCR‑11‑1185 21737511
    [Google Scholar]
  28. Pàez-Ribes M. Allen E. Hudock J. Takeda T. Okuyama H. Viñals F. Inoue M. Bergers G. Hanahan D. Casanovas O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009 15 3 220 231 10.1016/j.ccr.2009.01.027 19249680
    [Google Scholar]
  29. Fujii Y. Hirahara N. Kaji S. Taniura T. Hyakudomi R. Yamamoto T. Tajima Y. Bevacizumab-induced intestinal perforation in a patient with inoperable breast cancer: A case report and review of the literature. J. Med. Case Reports 2018 12 1 84 10.1186/s13256‑018‑1619‑x 29580267
    [Google Scholar]
  30. Jin J. Xie Y. Zhang J.S. Wang J.Q. Dai S.J. He W. Li S.Y. Ashby C.R. Jr Chen Z.S. He Q. Sunitinib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers. Drug Resist. Updat. 2023 67 100929 10.1016/j.drup.2023.100929 36739809
    [Google Scholar]
  31. Li Y.T. Yang S.T. Wang P.H. Previous radiation patients may not be a good candidate to consider the adding bevacizumab for rescue therapy. Taiwan. J. Obstet. Gynecol. 2023 62 1 1 3 10.1016/j.tjog.2022.09.004 36720518
    [Google Scholar]
  32. Zhang Y. Zhang Y. Pan Z. Li Q. Sun L. Li X. Gong M. Yang X. Wang Y. Li H. Xuan L. Shao Y. Li M. Zhang M. Yu Q. Li Z. Zhang X. Liu D. Zhu Y. Tan Z. Zhang Y. Liu Y. Zhang Y. Jiao L. Yang B. GDF11 promotes wound healing in diabetic mice via stimulating HIF-1ɑ-VEGF/SDF-1ɑ-mediated endothelial progenitor cell mobilization and neovascularization. Acta Pharmacol. Sin. 2023 44 5 999 1013 10.1038/s41401‑022‑01013‑2 36347996
    [Google Scholar]
  33. Bishop D. Schwarz Q. Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front. Cell Dev. Biol. 2023 11 1172114 10.3389/fcell.2023.1172114 37457293
    [Google Scholar]
  34. Yen J.H. Chio W.T. Chuang C.J. Yang H.L. Huang S.T. Improved wound healing by naringin associated with MMP and the VEGF pathway. Molecules 2022 27 5 1695 10.3390/molecules27051695 35268795
    [Google Scholar]
  35. Dumitru C.S. Raica M. Vascular endothelial growth factor family and head and neck squamous cell carcinoma. Anticancer Res. 2023 43 10 4315 4326 10.21873/anticanres.16626 37772546
    [Google Scholar]
  36. Huang C. Li H. Xu Y. Xu C. Sun H. Li Z. Ge Y. Wang H. Zhao T. Gao S. Wang X. Yang S. Sun P. Liu Z. Liu J. Chang A. Hao J. BICC1 drives pancreatic cancer progression by inducing VEGF-independent angiogenesis. Signal Transduct. Target. Ther. 2023 8 1 271 10.1038/s41392‑023‑01478‑5 37443111
    [Google Scholar]
  37. Song Y. Zeng S. Zheng G. Chen D. Li P. Yang M. Luo K. Yin J. Gu Y. Zhang Z. Jia X. Qiu N. He Z. Li H. Liu H. FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene 2021 40 4 777 790 10.1038/s41388‑020‑01562‑y 33262463
    [Google Scholar]
  38. Kang Y. Li H. Liu Y. Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J. Cancer Res. Clin. Oncol. 2024 150 5 221 10.1007/s00432‑024‑05714‑5 38687357
    [Google Scholar]
  39. Wei D. Le X. Zheng L. Wang L. Frey J.A. Gao A.C. Peng Z. Huang S. Xiong H.Q. Abbruzzese J.L. Xie K. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 2003 22 3 319 329 10.1038/sj.onc.1206122 12545153
    [Google Scholar]
  40. Wang Z. Zhao P. Tian K. Qiao Z. Dong H. Li J. Guan Z. Su H. Song Y. Ma X. TMEM9 promotes lung adenocarcinoma progression via activating the MEK/ERK/STAT3 pathway to induce VEGF expression. Cell Death Dis. 2024 15 4 295 10.1038/s41419‑024‑06669‑8 38664392
    [Google Scholar]
  41. Wang M. Wang W. Ding J. Wang J. Zhang J. Downregulation of Rab17 promotes cell proliferation and invasion in non-small cell lung cancer through STAT3/HIF-1α/VEGF signaling. Thorac. Cancer 2020 11 2 379 388 10.1111/1759‑7714.13278 31841274
    [Google Scholar]
  42. Fossey S.L. Bear M.D. Kisseberth W.C. Pennell M. London C.A. Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 2011 11 1 125 10.1186/1471‑2407‑11‑125 21481226
    [Google Scholar]
  43. Xiong A. Yang Z. Shen Y. Zhou J. Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 2014 6 2 926 957 10.3390/cancers6020926 24743778
    [Google Scholar]
  44. Alam M.M. Fermin J.M. Knackstedt M. Noonan M.J. Powell T. Goodreau L. Daniel E.K. Rong X. Moore-Medlin T. Khandelwal A.R. Nathan C.A.O. Everolimus downregulates STAT3/HIF-1α/VEGF pathway to inhibit angiogenesis and lymphangiogenesis in TP53 mutant head and neck squamous cell carcinoma (HNSCC). Oncotarget 2023 14 1 85 95 10.18632/oncotarget.28355 36745547
    [Google Scholar]
  45. Xue D. Yang Y. Liu Y. Wang P. Dai Y. Liu Q. Chen L. Shen J. Ju H. Li Y. Tan Z. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3ζ/STAT3/HIF-1α/VEGF signaling. Oncotarget 2016 7 48 79805 79813 10.18632/oncotarget.12972 27806334
    [Google Scholar]
  46. Borg J.P. Marchetto S. Bivic L.A. Ollendorff V. Jaulin-Bastard F. Saito H. Fournier E. Adélaïde J. Margolis B. Birnbaum D. ERBIN: A basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nat. Cell Biol. 2000 2 7 407 414 10.1038/35017038 10878805
    [Google Scholar]
  47. Santoni M.J. Kashyap R. Camoin L. Borg J.P. The Scribble family in cancer: Twentieth anniversary. Oncogene 2020 39 47 7019 7033 10.1038/s41388‑020‑01478‑7 32999444
    [Google Scholar]
  48. Liu D. Shi M. Duan H. Han C. Guo N. Erbin, a negative regulator in diverse signal pathways. Curr. Protein Pept. Sci. 2010 11 8 759 764 10.2174/138920310794557673 21235511
    [Google Scholar]
  49. Jang H. Stevens P. Gao T. Galperin E. The leucine-rich repeat signaling scaffolds Shoc2 and Erbin: Cellular mechanism and role in disease. FEBS J. 2021 288 3 721 739 10.1111/febs.15450 32558243
    [Google Scholar]
  50. Hu Y. Chen H. Duan C. Liu D. Qian L. Yang Z. Guo L. Song L. Yu M. Hu M. Shi M. Guo N. Deficiency of Erbin induces resistance of cervical cancer cells to anoikis in a STAT3-dependent manner. Oncogenesis 2013 2 6 e52 10.1038/oncsis.2013.18 23774064
    [Google Scholar]
  51. Valenzuela-Iglesias A. Burks H.E. Arnette C.R. Yalamanchili A. Nekrasova O. Godsel L.M. Green K.J. Desmoglein 1 regulates invadopodia by suppressing EGFR/ERK signaling in an erbin-dependent manner. Mol. Cancer Res. 2019 17 5 1195 1206 10.1158/1541‑7786.MCR‑18‑0048 30655320
    [Google Scholar]
  52. Graeser M. Gluz O. HER2+ early breast cancer: From escalation via targeted and post-neoadjuvant treatment to de-escalation. Breast Care 2023 18 6 455 463 10.1159/000534670 38125917
    [Google Scholar]
  53. Lacroix M. Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004 83 3 249 289 10.1023/B:BREA.0000014042.54925.cc 14758095
    [Google Scholar]
  54. Tao Y. Shen C. Luo S. Traoré W. Marchetto S. Santoni M.J. Xu L. Wu B. Shi C. Mei J. Bates R. Liu X. Zhao K. Xiong W.C. Borg J.P. Mei L. Role of Erbin in ErbB2-dependent breast tumor growth. Proc. Natl. Acad. Sci. USA 2014 111 42 E4429 E4438 10.1073/pnas.1407139111 25288731
    [Google Scholar]
  55. Bilder D. Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000 403 6770 676 680 10.1038/35001108 10688207
    [Google Scholar]
  56. Santoni M.J. Pontarotti P. Birnbaum D. Borg J.P. The LAP family: A phylogenetic point of view. Trends Genet. 2002 18 10 494 497 10.1016/S0168‑9525(02)02738‑5 12350333
    [Google Scholar]
  57. Huang Y.Z. Wang Q. Xiong W.C. Mei L. Erbin is a protein concentrated at postsynaptic membranes that interacts with PSD-95. J. Biol. Chem. 2001 276 22 19318 19326 10.1074/jbc.M100494200 11279080
    [Google Scholar]
  58. Liu D. Shi M. Duan C. Chen H. Hu Y. Yang Z. Duan H. Guo N. Downregulation of Erbin in Her2-overexpressing breast cancer cells promotes cell migration and induces trastuzumab resistance. Mol. Immunol. 2013 56 1-2 104 112 10.1016/j.molimm.2013.04.007 23711387
    [Google Scholar]
  59. Stevens P.D. Wen Y.A. Xiong X. Zaytseva Y.Y. Li A.T. Wang C. Stevens A.T. Farmer T.N. Gan T. Weiss H.L. Inagaki M. Marchetto S. Borg J.P. Gao T. Erbin suppresses KSR1-mediated RAS/RAF signaling and tumorigenesis in colorectal cancer. Cancer Res. 2018 78 17 4839 4852 10.1158/0008‑5472.CAN‑17‑3629 29980571
    [Google Scholar]
  60. Huang Y.Z. Zang M. Xiong W.C. Luo Z. Mei L. Erbin suppresses the MAP kinase pathway. J. Biol. Chem. 2003 278 2 1108 1114 10.1074/jbc.M205413200 12379659
    [Google Scholar]
  61. Dai F. Chang C. Lin X. Dai P. Mei L. Feng X.H. Erbin inhibits transforming growth factor beta signaling through a novel Smad-interacting domain. Mol. Cell. Biol. 2007 27 17 6183 6194 10.1128/MCB.00132‑07 17591701
    [Google Scholar]
  62. Mahmoudi G. Ehteshaminia Y. Kokhaei P. Jalali S.F. Jadidi-Niaragh F. Pagheh A.S. Enderami S.E. Kenari S.A. Hassannia H. Enhancement of targeted therapy in combination with metformin on human breast cancer cell lines. Cell Commun. Signal. 2024 22 1 10 10.1186/s12964‑023‑01446‑0 38167105
    [Google Scholar]
  63. Karcini A. Mercier N.R. Lazar I.M. Proteomic assessment of SKBR3/HER2+ breast cancer cellular response to Lapatinib and investigational Ipatasertib kinase inhibitors. Front. Pharmacol. 2024 15 1413818 10.3389/fphar.2024.1413818 39268460
    [Google Scholar]
  64. Kokot A. Gadakh S. Saha I. Gajda E. Łaźniewski M. Rakshit S. Sengupta K. Mollah A.F. Denkiewicz M. Górczak K. Claesen J. Burzykowski T. Plewczynski D. Unveiling the molecular mechanism of trastuzumab resistance in SKBR3 and BT474 cell lines for HER2 positive breast cancer. Curr. Issues Mol. Biol. 2024 46 3 2713 2740 10.3390/cimb46030171 38534787
    [Google Scholar]
  65. Hu W. Wang L. Luo J. Zhang J. Li N. The potent novel CDK4/6 inhibitor TQB3616 in hormone receptor positive breast cancer: Preclinical characterization with in vitro and human tumor xenograft models. Breast Cancer 2023 15 899 912 10.2147/BCTT.S434973 38090281
    [Google Scholar]
  66. Yang W.C. Wei M.F. Lee Y.H. Huang C.S. Kuo S.H. Radiosensitizing effects of CDK4/6 inhibitors in hormone receptor-positive and HER2-negative breast cancer mediated downregulation of DNA repair mechanism and NF-κB-signaling pathway. Transl. Oncol. 2024 49 102092 10.1016/j.tranon.2024.102092 39153367
    [Google Scholar]
  67. Al-Zeheimi N. Adham S.A. Modeling Neoadjuvant chemotherapy resistance in vitro increased NRP-1 and HER2 expression and converted MCF7 breast cancer subtype. Br. J. Pharmacol. 2020 177 9 2024 2041 10.1111/bph.14966 31883395
    [Google Scholar]
  68. Baek J.Y. Kwak J.E. Ahn M.R. Eriocitrin inhibits angiogenesis by targeting vegfr2-mediated PI3K/AKT/mTOR signaling pathways. Nutrients 2024 16 7 1091 10.3390/nu16071091 38613124
    [Google Scholar]
  69. Ji E. Leijsten L. Witte-Bouma J. Rouchon A. Maggio D.N. Banfi A. Osch V.G.J.V.M. Farrell E. Lolli A. In vitro mineralisation of tissue-engineered cartilage reduces endothelial cell migration, proliferation and tube formation. Cells 2023 12 8 1202 10.3390/cells12081202 37190110
    [Google Scholar]
  70. Liu W. Zou M. Chen M. Zhang Z. Mao Y. Yang Y. Liu Y. Shi Q. Wang X. Zhang F. Hypoxic environment promotes angiogenesis and bone bridge formation by activating Notch/RBPJ signaling pathway in HUVECs. Genomics 2024 116 3 110838 10.1016/j.ygeno.2024.110838 38537807
    [Google Scholar]
  71. Bakshi H.A. Quinn G.A. Nasef M.M. Mishra V. Aljabali A.A.A. El-Tanani M. Serrano-Aroca Á. Webba Da Silva M. McCarron P.A. Tambuwala M.M. Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways. Cells 2022 11 9 1502 10.3390/cells11091502 35563808
    [Google Scholar]
  72. Ghalehbandi S. Yuzugulen J. Pranjol M.Z.I. Pourgholami M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023 949 175586 10.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  73. Wang R. Ma Y. Zhan S. Zhang G. Cao L. Zhang X. Shi T. Chen W. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death Dis. 2020 11 1 55 10.1038/s41419‑020‑2252‑3 31974361
    [Google Scholar]
  74. Senger D.R. Galli S.J. Dvorak A.M. Perruzzi C.A. Harvey V.S. Dvorak H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983 219 4587 983 985 10.1126/science.6823562 6823562
    [Google Scholar]
  75. Toomey D.P. Murphy J.F. Conlon K.C. COX-2, VEGF and tumour angiogenesis. Surgeon 2009 7 3 174 180 10.1016/S1479‑666X(09)80042‑5 19580182
    [Google Scholar]
  76. Zhang J. Zhang Y. Ma Y. Luo L. Chu M. Zhang Z. Therapeutic potential of exosomal circRNA derived from synovial mesenchymal cells via targeting circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF functional module in rheumatoid arthritis. Int. J. Nanomedicine 2021 16 7977 7994 10.2147/IJN.S333465 34887661
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673366195250331175911
Loading
/content/journals/cmc/10.2174/0109298673366195250331175911
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: STAT3 ; angiogenesis ; Erbin ; breast cancer ; HUVECs ; VEGF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test