Skip to content
2000
image of Imidazole-2-thione and Acylhydrazone Derivatives Targeting Carbonic Anhydrase-II: Synthesis, In-Vitro Evaluations, and MM-GBSA Calculation

Abstract

Introduction

Several pathological conditions, including glaucoma, malignant brain tumors, and renal, gastric, and pancreatic carcinomas, are commonly associated with carbonic anhydrase type II (CA-II). Additionally, CA-II plays a critical role in regulating bicarbonate concentration in the eyes. The inhibition of CA-II reduces aqueous humor production and thus lowers intraocular pressure associated with glaucoma.

Objectives

This study aimed to synthesize potent CA-II inhibitors, 5-nitro-1H-benzo[d]imidazole-2(3H)-thione (5NBIT) and acylhydrazone derivatives (-).

Methods

In this study, a new series of potent CA-II inhibitors, (5NBIT) and acylhydrazone derivatives (), were synthesized and characterized by IR, NMR, UV and mass spectroscopy and evaluated against bovine carbonic anhydrase-II (CA-II).

Results

Interestingly, most of the compounds showed better inhibition than the standard drug, acetazolamide (IC: 18.2±0.51 µM), such as compounds (IC: 10.5±0.81 µM), (IC: 11.3±0.36 µM), (IC: 16.5±0.53 µM), (IC: 15.8±1.02 µM), (IC: 13.7±1.03 µM), and (IC: 12.2±1.03 µM). Among the synthesized compounds, compound (IC: 8.2±0.32 µM) exhibited the highest and compound (IC: 27.6±0.39 µM) showed the lowest inhibition. Structure-activity relationships suggest that the presence of nitro group on the phenyl ring contributed significantly to the overall inhibitory activity. Molecular docking of all the active compounds was performed to predict their binding behavior, which indicated good agreement between docking and experimental findings. Moreover, the MD simulation of compound also showed excellent binding behavior and binding energy within the binding cavity of CA-II.

Conclusion

These findings suggest that the synthesized 5NBIT and acylhydrazone derivatives exhibited potent CA-II inhibition, with several compounds outperforming the standard drug acetazolamide. These results provide valuable insights for the development of novel CA-II inhibitors with potential therapeutic applications in glaucoma and other related conditions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673365555250617114928
2025-10-06
2025-11-04
Loading full text...

Full text loading...

References

  1. Hewett-Emmett D. Evolution and distribution of the carbonic anhydrase gene families. EXS. 2000 90 29 76
    [Google Scholar]
  2. Jakubowski M. Szahidewicz-Krupska E. Doroszko A. The human carbonic anhydrase ii in platelets: An underestimated field of its activity. Biomed. Res. Int. 2018 2018 4548353 10.1155/2018/4548353
    [Google Scholar]
  3. Shank R.P. Doose D.R. Streeter A.J. Bialer M. Plasma and whole blood pharmacokinetics of topiramate: the role of carbonic anhydrase. Epilepsy Res. 2005 63 2-3 103 112 10.1016/j.eplepsyres.2005.01.001 15715969
    [Google Scholar]
  4. Arslan O. Inhibition of bovine carbonic anhydrase by new sulfonamide compounds. Biochemistry (Mosc.) 2001 66 9 982 983 10.1023/A:1012365424900 11703179
    [Google Scholar]
  5. Shaik N.A. Bokhari H.A. Masoodi T.A. Shetty P.J. Ajabnoor G.M.A. Elango R. Banaganapalli B. Molecular modelling and dynamics of CA2 missense mutations causative to carbonic anhydrase 2 deficiency syndrome. J. Biomol. Struct. Dyn. 2020 38 14 4067 4080 10.1080/07391102.2019.1671899 31542996
    [Google Scholar]
  6. Supuran C.T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008 7 2 168 181 10.1038/nrd2467 18167490
    [Google Scholar]
  7. Zaraei S.O. El-Gamal M.I. Shafique Z. Amjad S.T. Afridi S. Zaib S. Anbar H.S. El-Gamal R. Iqbal J. Sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as potent carbonic anhydrase II/IX/XII inhibitors. Bioorg. Med. Chem. 2019 27 17 3889 3901 10.1016/j.bmc.2019.07.026 31345748
    [Google Scholar]
  8. Parkkila A.K. Herva R. Parkkila S. Rajaniemi H. Immunohistochemical demonstration of human carbonic anhydrase isoenzyme II in brain tumours. Histochem. J. 1995 27 12 974 982 10.1007/BF02389687 8789398
    [Google Scholar]
  9. Pastorekova S. Supuran C.T. Hypoxia and Cancer, Biological Implications and Therapeutic Opportunities. Humana New York, NY Springer 2014
    [Google Scholar]
  10. Parkkila S. Rajaniemi H. Parkkila A.K. Kivelä J. Waheed A. Pastoreková S. Pastorek J. Sly W.S. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Proc. Natl. Acad. Sci. USA 2000 97 5 2220 2224 10.1073/pnas.040554897 10688890
    [Google Scholar]
  11. Achal V. Pan X. Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr. Microbiol. 2011 62 3 894 902 10.1007/s00284‑010‑9801‑4 21046391
    [Google Scholar]
  12. Bozdag M. Supuran C.T. Esposito D. Angeli A. Carta F. Monti S.M. De Simone G. Alterio V. 2-Mercaptobenzoxazoles: a class of carbonic anhydrase inhibitors with a novel binding mode to the enzyme active site. Chem. Commun. (Camb.) 2020 56 59 8297 8300 10.1039/D0CC02857F 32573627
    [Google Scholar]
  13. Milite C. Amendola G. Nocentini A. Bua S. Cipriano A. Barresi E. Feoli A. Novellino E. Da Settimo F. Supuran C.T. Castellano S. Cosconati S. Taliani S. Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. J. Enzyme Inhib. Med. Chem. 2019 34 1 1697 1710 10.1080/14756366.2019.1666836 31537132
    [Google Scholar]
  14. Hou Z. Li C. Liu Y. Zhang M. Wang Y. Fan Z. Guo C. Lin B. Liu Y. Design, synthesis and biological evaluation of carbohydrate-based sulphonamide derivatives as topical antiglaucoma agents through selective inhibition of carbonic anhydrase II. J. Enzyme Inhib. Med. Chem. 2020 35 1 383 390 10.1080/14756366.2019.1705293 31865756
    [Google Scholar]
  15. Pala N. Micheletto L. Sechi M. Aggarwal M. Carta F. McKenna R. Supuran C.T. Carbonic anhydrase inhibition with benzenesulfonamides and tetrafluorobenzenesulfonamides obtained via click chemistry. ACS Med. Chem. Lett. 2014 5 8 927 930 10.1021/ml500196t 25147616
    [Google Scholar]
  16. Akhtar W. Khan M.F. Verma G. Shaquiquzzaman M. Rizvi M.A. Mehdi S.H. Akhter M. Alam M.M. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur. J. Med. Chem. 2017 126 705 753 10.1016/j.ejmech.2016.12.010 27951484
    [Google Scholar]
  17. Kalinina T.S. Shimshirt A.A. Volkova A.V. Korolev A.O. Voronina T.A. Anxiolytic effects of diazepam and afobazole on the anxiety response evoked by GABA(A) receptor blockade in wistar rats and inbred mice of Balb/c and C57BI/6 strains. Eksp. Klin. Farmakol. 2016 79 10 3 7 30085476
    [Google Scholar]
  18. Bischof J. Leban J. Zaja M. Grothey A. Radunsky B. Othersen O. Strobl S. Vitt D. Knippschild U. 2-Benzamido-N-(1H-benzo[d]imidazol-2-yl)thiazole-4-carboxamide derivatives as potent inhibitors of CK1δ/ε. Amino Acids 2012 43 4 1577 1591 10.1007/s00726‑012‑1234‑x 22331384
    [Google Scholar]
  19. Ramurthy S. Subramanian S. Aikawa M. Amiri P. Costales A. Dove J. Fong S. Jansen J.M. Levine B. Ma S. McBride C.M. Michaelian J. Pick T. Poon D.J. Girish S. Shafer C.M. Stuart D. Sung L. Renhowe P.A. Design and synthesis of orally bioavailable benzimidazoles as Raf kinase inhibitors. J. Med. Chem. 2008 51 22 7049 7052 10.1021/jm801050k 18942827
    [Google Scholar]
  20. Ali M. Ali S. Khan M. Rashid U. Ahmad M. Khan A. Al-Harrasi A. Ullah F. Latif A. Synthesis, biological activities, and molecular docking studies of 2-mercaptobenzimidazole based derivatives. Bioorg. Chem. 2018 80 472 479 10.1016/j.bioorg.2018.06.032 29990895
    [Google Scholar]
  21. Latif A. Bibi S. Ali S. Ammara A. Ahmad M. Khan A. Al-Harrasi A. Ullah F. Ali M. New multitarget directed benzimidazole-2-thiol-based heterocycles as prospective anti-radical and anti-Alzheimer's agents. Drug Dev. Res. 2021 82 2 207 216 10.1002/ddr.21740 32897587
    [Google Scholar]
  22. Agili F. Novel hydrazide hydrazone derivatives as antimicrobial agents: Design, synthesis, and molecular dynamics. Processes (Basel) 2024 12 6 1055 10.3390/pr12061055
    [Google Scholar]
  23. Cui P. Liu K. Yang Z. Sun P. Meng Y. Yang Q. Wu X. Lv Y. Yang Y. Wu J. Design, synthesis, and antiviral and fungicidal activities of 4-Oxo-4 H -quinolin-1-yl acylhydrazone derivatives. ACS Omega 2024 9 34 acsomega.4c05046 10.1021/acsomega.4c05046 39220544
    [Google Scholar]
  24. Zong Z. Zhou F.Y. Chang Q. Gao F. Liu Z. Fang S. Zheng X. Tao J. Liang L. Four acylhydrazone based complexes: Inhibition of proliferation, inducing apoptosis and inhibiting cell migration. J. Mol. Struct. 2024 1295 136617 10.1016/j.molstruc.2023.136617
    [Google Scholar]
  25. Joneidi S. Alizadeh S.R. Ebrahimzadeh M.A. Chlorogenic acid derivatives: Structural modifications, drug design, and biological activities: A review. Mini Rev. Med. Chem. 2024 24 7 748 766 10.2174/1389557523666230822095959 37608658
    [Google Scholar]
  26. Jiang S.L. Hu Z.Y. Sui H.Y. Huang T. Han L. Hu C.M. Xu X.T. Shi J.H. Chu C. Comprehending the inhibition mechanism of indole-based bis-acylhydrazone compounds on α-glucosidase: Spectral and theoretical approaches. Int. J. Biol. Macromol. 2024 276 Pt 1 133489 10.1016/j.ijbiomac.2024.133489 38964679
    [Google Scholar]
  27. Boubekri Y. Slassi S. Aarjane M. Tazi B. Amine A. Microwave assisted synthesis, photoisomerization study and antioxidant activity of a series of N-acylhydrazones. Arab. J. Chem. 2024 17 9 105913 10.1016/j.arabjc.2024.105913
    [Google Scholar]
  28. Naeem N. Sadiq A. Othman G.A. Yassin H.M. Mughal E.U. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: A decade of structural and therapeutic insights. RSC Advances 2024 14 48 35769 35970 10.1039/D4RA06290F 39534850
    [Google Scholar]
  29. Shareef M.A. Devi G.P. Rani Routhu S. Kumar C.G. Kamal A. Babu B.N. New imidazo[2,1- b ]thiazole-based aryl hydrazones: Unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med. Chem. 2020 11 10 1178 1184 10.1039/D0MD00188K 33479622
    [Google Scholar]
  30. Moi D. Vittorio S. Angeli A. Balboni G. Supuran C.T. Onnis V. Investigation on hydrazonobenzenesulfonamides as human carbonic anhydrase I, II, IX and XII inhibitors. Molecules 2022 28 1 91 10.3390/molecules28010091 36615285
    [Google Scholar]
  31. Bakhoda A. Okoromoba O.E. Greene C. Boroujeni M.R. Bertke J.A. Warren T.H. Three-coordinate copper(ii) alkynyl complex in C–C bond formation: The sesquicentennial of the glaser coupling. J. Am. Chem. Soc. 2020 142 43 18483 18490 10.1021/jacs.0c07137 32956589
    [Google Scholar]
  32. Sapna K. Sharma N.K. Kohli S. Synthesis, characterization and antimicrobial studies of copper (II) complexes of semicarbazone and thiosemicarbazone of m-hydroxy benzaldehyde and p-hydroxy benzaldehyde. Orient. J. Chem. 2012 28 2 969 974 10.13005/ojc/280244
    [Google Scholar]
  33. Xu X. Wei C. Yang Y. Liu M. Luo A. Song H. Wang Y. Duan X. New discovery of anti-ulcerative colitis active ingredients of Nostoc commune: p-Hydroxy benzaldehyde. J. Funct. Foods 2021 77 104327 10.1016/j.jff.2020.104327
    [Google Scholar]
  34. Li X. Fan R. Xiang J. Yuan Y. Mao X. Zhou N. P-hydroxy benzaldehyde facilitates reprogramming of reactive astrocytes into neurons via endogenous transcriptional regulation. Int. J. Neurosci. 2023 133 10 1096 1108 10.1080/00207454.2022.2049775 35321633
    [Google Scholar]
  35. Matta R. Pochampally J. Dhoddi B.N. Bhookya S. Bitla S. Akkiraju A.G. Synthesis, antimicrobial and antioxidant activity of triazole, pyrazole containing thiazole derivatives and molecular docking studies on COVID-19. BMC Chem. 2023 17 1 61 10.1186/s13065‑023‑00965‑8 37330518
    [Google Scholar]
  36. Khan A. Khan M. Halim S.A. Khan Z.A. Shafiq Z. Al-Harrasi A. Quinazolinones as competitive inhibitors of carbonic anhydrase-II (human and bovine): Synthesis, in-vitro, in-silico, selectivity, and kinetics studies. Front Chem. 2020 8 598095 10.3389/fchem.2020.598095 33335888
    [Google Scholar]
  37. Rose P.W. Prlić A. Altunkaya A. Bi C. Bradley A.R. Christie C.H. Costanzo L.D. Duarte J.M. Dutta S. Feng Z. The RCSB protein data bank: Integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016 45 D1 D271 D281 10.1093/nar/gkw1000
    [Google Scholar]
  38. Saito R. Sato T. Ikai A. Tanaka N. Structure of bovine carbonic anhydrase II at 1.95 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 2004 60 4 792 795 10.1107/S0907444904003166 15039588
    [Google Scholar]
  39. Liu X. Shi D. Zhou S. Liu H. Liu H. Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018 13 1 23 37 10.1080/17460441.2018.1403419 29139324
    [Google Scholar]
  40. Case D.A. Aktulga H.M. Belfon K. Cerutti D.S. Cisneros G.A. Cruzeiro V.W.D. Forouzesh N. Giese T.J. Götz A.W. Gohlke H. Izadi S. Kasavajhala K. Kaymak M.C. King E. Kurtzman T. Lee T.S. Li P. Liu J. Luchko T. Luo R. Manathunga M. Machado M.R. Nguyen H.M. O’Hearn K.A. Onufriev A.V. Pan F. Pantano S. Qi R. Rahnamoun A. Risheh A. Schott-Verdugo S. Shajan A. Swails J. Wang J. Wei H. Wu X. Wu Y. Zhang S. Zhao S. Zhu Q. Cheatham T.E. III Roe D.R. Roitberg A. Simmerling C. York D.M. Nagan M.C. Merz K.M. Jr AmberTools. J. Chem. Inf. Model. 2023 63 20 6183 6191 10.1021/acs.jcim.3c01153 37805934
    [Google Scholar]
  41. Tian C. Kasavajhala K. Belfon K.A.A. Raguette L. Huang H. Migues A.N. Bickel J. Wang Y. Pincay J. Wu Q. Simmerling C. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2020 16 1 528 552 10.1021/acs.jctc.9b00591 31714766
    [Google Scholar]
  42. Sengupta A. Li Z. Song L.F. Li P. Merz K.M. Jr. Parameterization of monovalent ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J. Chem. Inf. Model. 2021 61 2 869 880 10.1021/acs.jcim.0c01390 33538599
    [Google Scholar]
  43. Wang B. Merz K.M. A fast QM/MM (quantum mechanical/molecular mechanical) approach to calculate nuclear magnetic resonance chemical shifts for macromolecules. J. Chem. Theory Comput. 2006 2 1 209 215 10.1021/ct050212s 26626395
    [Google Scholar]
  44. Wang J. Wang W. Kollman P.A. Case D.A. Antechamber: An accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 2001 222 1
    [Google Scholar]
  45. Kräutler V. Van Gunsteren W.F. Hünenberger P.H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001 22 5 501 508 10.1002/1096‑987X(20010415)22:5<501::AID‑JCC1021>3.0.CO;2‑V
    [Google Scholar]
  46. Harris J.A. Liu R. Martins de Oliveira V. Vázquez-Montelongo E.A. Henderson J.A. Shen J. GPU-accelerated all-atom particle-mesh Ewald continuous constant pH molecular dynamics in Amber. J. Chem. Theory Comput. 2022 18 12 7510 7527 10.1021/acs.jctc.2c00586 36377980
    [Google Scholar]
  47. Press W.H. Numerical recipes Cambridge University Press 2007
    [Google Scholar]
  48. Sindhikara D.J. Kim S. Voter A.F. Roitberg A.E. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput. 2009 5 6 1624 1631 10.1021/ct800573m 26609854
    [Google Scholar]
  49. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  50. Kollman P.A. Massova I. Reyes C. Kuhn B. Huo S. Chong L. Lee M. Lee T. Duan Y. Wang W. Donini O. Cieplak P. Srinivasan J. Case D.A. Cheatham T.E. III Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 2000 33 12 889 897 10.1021/ar000033j 11123888
    [Google Scholar]
  51. Wang W. Donini O. Reyes C.M. Kollman P.A. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 2001 30 1 211 243 10.1146/annurev.biophys.30.1.211 11340059
    [Google Scholar]
  52. Wang J. Hou T. Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr. Computeraided Drug Des. 2006 2 3 287 306 10.2174/157340906778226454
    [Google Scholar]
  53. Onufriev A. Bashford D. Case D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004 55 2 383 394 10.1002/prot.20033 15048829
    [Google Scholar]
  54. Weiser J. Shenkin P.S. Still W.C. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J. Comput. Chem. 1999 20 2 217 230 10.1002/(SICI)1096‑987X(19990130)20:2<217::AID‑JCC4>3.0.CO;2‑A
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673365555250617114928
Loading
/content/journals/cmc/10.2174/0109298673365555250617114928
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test