Skip to content
2000
image of Genetic Studies on Multiple Consanguineous Families Segregating Diverse Phenotypes of Microphthalmia Identified Novel and Recurrent Mutations

Abstract

Introduction

Anophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.

Aims and Objectives

This study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.

Methodology

Patients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.

Results

The clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin () gene (ClinVar ID: VCV001333267.1). At the cellular level, is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.Cys240*) in the gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.

Conclusion

Our findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673365255250418092319
2025-05-05
2025-12-13
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673365255250418092319/BMS-CMC-2024-HT162-6676-3.html?itemId=/content/journals/cmc/10.2174/0109298673365255250418092319&mimeType=html&fmt=ahah

References

  1. Deml B. Reis L.M. Lemyre E. Clark R.D. Kariminejad A. Semina E.V. Novel mutations in PAX6, OTX2 and NDP in anophthalmia, microphthalmia and coloboma. Eur. J. Hum. Genet. 2016 24 4 535 541 10.1038/ejhg.2015.155 26130484
    [Google Scholar]
  2. Chassaing N. Causse A. Vigouroux A. Delahaye A. Alessandri J.L. Boespflug-Tanguy O. Boute-Benejean O. Dollfus H. Duban-Bedu B. Gilbert-Dussardier B. Giuliano F. Gonzales M. Holder-Espinasse M. Isidor B. Jacquemont M.L. Lacombe D. Martin-Coignard D. Mathieu-Dramard M. Odent S. Picone O. Pinson L. Quelin C. Sigaudy S. Toutain A. Thauvin-Robinet C. Kaplan J. Calvas P. Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin. Genet. 2014 86 4 326 334 10.1111/cge.12275 24033328
    [Google Scholar]
  3. Powles J. Fahimi S. Micha R. Khatibzadeh S. Shi P. Ezzati M. Engell R.E. Lim S.S. Danaei G. Mozaffarian D. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013 3 12 e003733 10.1136/bmjopen‑2013‑003733
    [Google Scholar]
  4. Chaudhry I.A. Arat Y.O. Shamsi F.A. Boniuk M. Congenital microphthalmos with orbital cysts: Distinct diagnostic features and management. Ophthal. Plast. Reconstr. Surg. 2004 20 6 452 457 10.1097/01.IOP.0000143716.12643.98 15599246
    [Google Scholar]
  5. Plaisancié J. Ceroni F. Holt R. Zazo Seco C. Calvas P. Chassaing N. Ragge N.K. Genetics of anophthalmia and microphthalmia. Part 1: Non-syndromic anophthalmia/microphthalmia. Hum. Genet. 2019 138 8-9 799 830 10.1007/s00439‑019‑01977‑y 30762128
    [Google Scholar]
  6. Slavotinek A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia. Hum. Genet. 2019 138 8-9 831 846 10.1007/s00439‑018‑1949‑1 30374660
    [Google Scholar]
  7. Lang E. Koller S. Atac D. Pfäffli O.A. Hanson J.V.M. Feil S. Bähr L. Bahr A. Kottke R. Joset P. Fasler K. Barthelmes D. Steindl K. Konrad D. Wille D.A. Berger W. Gerth-Kahlert C. Genotype–phenotype spectrum in isolated and syndromic nanophthalmos. Acta Ophthalmol. 2021 99 4 e594 e607 10.1111/aos.14615 32996714
    [Google Scholar]
  8. Alkatan M. Bedaiwi K.M. Al-Faky Y.H. Maktabi A.M.Y. Demographics and histopathological characteristics of enucleated microphthalmic globes. Sci Rep. 2022 12 1 5283 10.1038/s41598‑022‑09261‑2
    [Google Scholar]
  9. Verma A.S. FitzPatrick D.R. Anophthalmia and microphthalmia. Orphanet J. Rare Dis. 2007 2 1 47 10.1186/1750‑1172‑2‑47 18039390
    [Google Scholar]
  10. Brennan D. Giles S. Ocular involvement in fetal alcohol spectrum disorder: A review. Curr. Pharm. Des. 2014 20 34 5377 5387 10.2174/1381612820666140205144114 24502600
    [Google Scholar]
  11. Mauri L. Franzoni A. Scarcello M. Sala S. Garavelli L. Modugno A. Grammatico P. Patrosso M.C. Piozzi E. Del Longo A. Gesu G.P. Manfredini E. Primignani P. Damante G. Penco S. SOX2, OTX2 and PAX6 analysis in subjects with anophthalmia and microphthalmia. Eur. J. Med. Genet. 2015 58 2 66 70 10.1016/j.ejmg.2014.12.005 25542770
    [Google Scholar]
  12. McKenna A. Hanna M. Banks E. Sivachenko A. Cibulskis K. Kernytsky A. Garimella K. Altshuler D. Gabriel S. Daly M. DePristo M.A. The genome analysis toolkit: A MapReduce framework for analyzing next- generation DNA sequencing data. Genome Res. 2010 20 9 1297 1303 10.1101/gr.107524.110 20644199
    [Google Scholar]
  13. Seo G.H. Kim T. Choi I.H. Park J. Lee J. Kim S. Won D. Oh A. Lee Y. Choi J. Lee H. Kang H.G. Cho H.Y. Cho M.H. Kim Y.J. Yoon Y.H. Eun B.L. Desnick R.J. Keum C. Lee B.H. Diagnostic yield and clinical utility of whole exome sequencing using an automated variant prioritization system, EVIDENCE. Clin. Genet. 2020 98 6 562 570 10.1111/cge.13848 32901917
    [Google Scholar]
  14. Yang H. Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat. Protoc. 2015 10 10 1556 1566 10.1038/nprot.2015.105 26379229
    [Google Scholar]
  15. Schwarz J.M. Cooper D.N. Schuelke M. Seelow D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014 11 4 361 362 10.1038/nmeth.2890 24681721
    [Google Scholar]
  16. Adzhubei I.A. Schmidt S. Peshkin L. Ramensky V.E. Gerasimova A. Bork P. Kondrashov A.S. Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010 7 4 248 249 10.1038/nmeth0410‑248 20354512
    [Google Scholar]
  17. Choi Y. Chan A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015 31 16 2745 2747 10.1093/bioinformatics/btv195 25851949
    [Google Scholar]
  18. Vaser R. Adusumalli S. Leng S.N. Sikic M. Ng P.C. SIFT missense predictions for genomes. Nat. Protoc. 2016 11 1 1 9 10.1038/nprot.2015.123 26633127
    [Google Scholar]
  19. Thomas P.D. Ebert D. Muruganujan A. Mushayahama T. Albou L.P. Mi H. PANTHER : Making genome-scale phylogenetics accessible to all. Protein Sci. 2022 31 1 8 22 10.1002/pro.4218 34717010
    [Google Scholar]
  20. Untergasser A. Cutcutache I. Koressaar T. Ye J. Faircloth B.C. Remm M. Rozen S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012 40 15 e115 10.1093/nar/gks596 22730293
    [Google Scholar]
  21. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  22. Kozakov D. Hall D.R. Xia B. Porter K.A. Padhorny D. Yueh C. Beglov D. Vajda S. The ClusPro web server for protein–protein docking. Nat. Protoc. 2017 12 2 255 278 10.1038/nprot.2016.169 28079879
    [Google Scholar]
  23. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  24. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  25. Schiffrin B. Radford S.E. Brockwell D.J. Calabrese A.N. PyXlinkViewer : A flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 2020 29 8 1851 1857 10.1002/pro.3902 32557917
    [Google Scholar]
  26. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  27. Case D.A. Cheatham T.E. III Darden T. Gohlke H. Luo R. Merz K.M. Jr Onufriev A. Simmerling C. Wang B. Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005 26 16 1668 1688 10.1002/jcc.20290 16200636
    [Google Scholar]
  28. Khan K. Rudkin A. Parry D.A. Burdon K.P. McKibbin M. Logan C.V. Abdelhamed Z.I.A. Muecke J.S. Fernandez-Fuentes N. Laurie K.J. Shires M. Fogarty R. Carr I.M. Poulter J.A. Morgan J.E. Mohamed M.D. Jafri H. Raashid Y. Meng N. Piseth H. Toomes C. Casson R.J. Taylor G.R. Hammerton M. Sheridan E. Johnson C.A. Inglehearn C.F. Craig J.E. Ali M. Homozygous mutations in PXDN cause congenital cataract, corneal opacity, and developmental glaucoma. Am. J. Hum. Genet. 2011 89 3 464 473 10.1016/j.ajhg.2011.08.005 21907015
    [Google Scholar]
  29. Alagia M. Cappuccio G. Pinelli M. Torella A. Simonelli R.B.F. Limongelli G. Oppido G. Nigro V. Brunetti-pierri N. A child with Myhre syndrome presenting with corectopia and tetralogy of Fallot. Am. J. Med. Genet A. 2017 176 2 426 430 10.1002/ajmg.a.38560
    [Google Scholar]
  30. Gokce G. Oren N. Ozgonul C. Axenfeld-Rieger syndrome associated with severe maxillofacial and skeletal anomalies. J. Oral Maxillofac. Pathol. 2015 19 1 109 10.4103/0973‑029X.157219 26097324
    [Google Scholar]
  31. Ormestad M. Blixt A. Churchill A. Martinsson T. Enerbäck S. Carlsson P. Blixt Å. Churchill A. Martinsson T. Enerbäck S. FOXE3 haploinsufficiency in mice: a model for Peters’ anomaly. Invest. Ophthalmol. Vis. Sci. 2002 43 5 1350 1357 11980846
    [Google Scholar]
  32. Zazo-Seco C. Plaisancié J. Bitoun P. Corton M. Arteche A. Ayuso C. Schneider A. Zafeiropoulou D. Gilissen C. Roche O. Frémont F. Calvas P. Slavotinek A. Ragge N. Chassaing N. Novel PXDN biallelic variants in patients with microphthalmia and anterior segment dysgenesis. J. Hum. Genet. 2020 65 5 487 491 10.1038/s10038‑020‑0726‑x 32015378
    [Google Scholar]
  33. Liu Y. Carson-Walter E.B. Cooper A. Winans B.N. Johnson M.D. Walter K.A. Vascular gene expression patterns are conserved in primary and metastatic brain tumors. J. Neurooncol. 2010 99 1 13 24 10.1007/s11060‑009‑0105‑0 20063114
    [Google Scholar]
  34. Mitchell M.S. Kan-Mitchell J. Minev B. Edman C. Deans R.J. A novel melanoma gene (MG50) encoding the interleukin 1 receptor antagonist and six epitopes recognized by human cytolytic T lymphocytes. Cancer Res. 2000 60 22 6448 6456 11103812
    [Google Scholar]
  35. Castronovo V. Waltregny D. Kischel P. Roesli C. Elia G. Rybak J.N. Neri D. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol. Cell. Proteomics 2006 5 11 2083 2091 10.1074/mcp.M600164‑MCP200 16861259
    [Google Scholar]
  36. Kim H. Ham K.A. Lee S. Choi H.S. Kim H. Kim H.K. Shin H. Seo K.Y. Cho Y. Nam K.T. Biallelic deletion of PXDN in mice leads to anophthalmia and severe eye malformation. Int. J. Mol. Sci. 2019 20 24 6144 10.3390/ijms20246144
    [Google Scholar]
  37. Yan X. Li D. Cheng H. Generation of a novel peroxidasin knockout mouse. Invest. Ophthalmol. Vis. Sci. 2018 2018 59
    [Google Scholar]
  38. Bhave G. Cummings C.F. Vanacore R.M. Kumagai-Cresse C. Ero-Tolliver I.A. Rafi M. Kang J.S. Pedchenko V. Fessler L.I. Fessler J.H. Hudson B.G. Peroxidasin forms sulfilimine chemical bonds using hypohalous acids in tissue genesis. Nat. Chem. Biol. 2012 8 9 784 790 10.1038/nchembio.1038 22842973
    [Google Scholar]
  39. Van Agtmael T. Schlötzer-Schrehardt U. McKie L. Brownstein D.G. Lee A.W. Cross S.H. Sado Y. Mullins J.J. Pöschl E. Jackson I.J. Dominant mutations of COL4A1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum. Mol. Genet. 2005 14 21 3161 3168 10.1093/hmg/ddi348 16159887
    [Google Scholar]
  40. Gould D.B. Marchant J.K. Savinova O.V. Smith R.S. John S.W.M. COL4A1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum. Mol. Genet. 2007 16 7 798 807 10.1093/hmg/ddm024 17317786
    [Google Scholar]
  41. Labelle-Dumais C. Dilworth D.J. Harrington E.P. de Leau M. Lyons D. Kabaeva Z. Manzini M.C. Dobyns W.B. Walsh C.A. Michele D.E. Gould D.B. COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker-Warburg syndrome in humans. PLoS Genet. 2011 7 5 e1002062 10.1371/journal.pgen.1002062 21625620
    [Google Scholar]
  42. Weigel D. Jürgens G. Küttner F. Seifert E. Jäckle H. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 1989 57 4 645 658 10.1016/0092‑8674(89)90133‑5 2566386
    [Google Scholar]
  43. Reis L.M. Tyler R.C. Schneider A. Bardakjian T. Stoler J.M. Melancon S.B. Semina E.V. FOXE3 plays a significant role in autosomal recessive microphthalmia. Am. J. Med. Genet. A. 2010 152A 3 582 590 10.1002/ajmg.a.33257 20140963
    [Google Scholar]
  44. Blixt Å. Mahlapuu M. Aitola M. Pelto-Huikko M. Enerbäck S. Carlsson P. Blixt Å. Mahlapuu M. Aitola M. Pelto-Huikko M. A forkhead gene, FOXE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev. 2000 14 2 245 254 10.1101/gad.14.2.245 10652278
    [Google Scholar]
  45. Brownell I. Dirksen M. Jamrich M. ForkheadFOXE3 maps to thedysgenetic lens locus and is critical in lens development and differentiation. Genesis 2000 27 2 81 93 10.1002/1526‑968X(200006)27:2<81::AID‑GENE50>3.0.CO;2‑N 10890982
    [Google Scholar]
  46. Wada K. Maeda Y.Y. Watanabe K. Oshio T. Ueda T. Takahashi G. Yokohama M. Saito J. Seki Y. Takahama S. Ishii R. Shitara H. Taya C. Yonekawa H. Kikkawa Y. A deletion in a cis element of FOXE3 causes cataracts and microphthalmia in rct mice. Mamm. Genome 2011 22 11-12 693 702 10.1007/s00335‑011‑9358‑y 22002806
    [Google Scholar]
  47. Landgren H. Blixt A. Carlsson P. Persistent FOXE3 expression blocks cytoskeletal remodeling and organelle degradation during lens fiber differentiation. Invest. Ophthalmol. Vis. Sci. 2008 49 10 4269 4277 10.1167/iovs.08‑2243 18539941
    [Google Scholar]
  48. Blixt Å. Landgren H. Johansson B.R. Carlsson P. FOXE3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev. Biol. 2007 302 1 218 229 10.1016/j.ydbio.2006.09.021 17064680
    [Google Scholar]
  49. Shi X. Luo Y. Howley S. Dzialo A. Foley S. Hyde D.R. Vihtelic T.S. Zebrafish FOXE3: Roles in ocular lens morphogenesis through interaction with pitx3. Mech. Dev. 2006 123 10 761 782 10.1016/j.mod.2006.07.004 16963235
    [Google Scholar]
  50. Swindell E.C. Zilinski C.A. Hashimoto R. Shah R. Lane M.E. Jamrich M. Regulation and function of FOXE3 during early zebrafish development. genesis 2008 46 177 183 10.1002/dvg.20380
    [Google Scholar]
  51. Ali M. Buentello-Volante B. McKibbin M. Rocha-Medina J.A. Fernandez-Fuentes N. Koga-Nakamura W. Ashiq A. Khan K. Booth A.P. Williams G. Raashid Y. Jafri H. Rice A. Inglehearn C.F. Zenteno J.C. Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Mol. Vis. 2010 16 1162 1168 20664696
    [Google Scholar]
  52. Lopez Jimenez N. Flannick J. Yahyavi M. Li J. Bardakjian T. Tonkin L. Schneider A. Sherr E.H. Slavotinek A.M. Targeted “Next-generation” sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations. BMC Med. Genet. 2011 12 1 8 10.1186/1471‑2350‑12‑172
    [Google Scholar]
  53. Anjum I. Eiberg H. Baig S.M. Tommerup N. Hansen L. A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family. Mol. Vis. 2010 16 549 555 20361012
    [Google Scholar]
  54. Ullah E. Nadeem Saqib M.A. Sajid S. Shah N. Zubair M. Khan M.A. Ahmed I. Ali G. Dutta A.K. Danda S. Lao R. Ling-Fung Tang P. Kwok P. Ansar M. Slavotinek A. Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp. Eye Res. 2016 146 163 171 10.1016/j.exer.2016.03.014 26995144
    [Google Scholar]
  55. Khan S.Y. Vasanth S. Kabir F. Gottsch J.D. Khan A.O. Chaerkady R. Lee M.C.W. Leitch C.C. Ma Z. Laux J. Villasmil R. Khan S.N. Riazuddin S. Akram J. Cole R.N. Talbot C.C. Pourmand N. Zaghloul N.A. Hejtmancik J.F. Riazuddin S.A. FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat. Commun. 2016 7 1 10953 10.1038/ncomms10953 27218149
    [Google Scholar]
  56. Chen J. Wang Q. Cabrera P.E. Zhong Z. Sun W. Jiao X. Chen Y. Govindarajan G. Naeem M.A. Khan S.N. Ali M.H. Assir M.Z. Rahman F.U. Qazi Z.A. Riazuddin S. Akram J. Riazuddin S.A. Hejtmancik J.F. Molecular genetic analysis of pakistani families with autosomal recessive congenital cataracts by homozygosity screening. Invest. Ophthalmol. Vis. Sci. 2017 58 4 2207 2217 10.1167/iovs.17‑21469 28418495
    [Google Scholar]
  57. Rashid M. Qasim M. Ishaq R. Bukhari S.A. Sajid Z. Ashfaq U.A. Haque A. Ahmed Z.M. Pathogenic variants of AIPL1, MERTK, GUCY2D, and FOXE3 in Pakistani families with clinically heterogeneous eye diseases. PLoS One 2020 15 9 e0239748 10.1371/journal.pone.0239748 32976546
    [Google Scholar]
  58. Akbar W. Ullah A. Haider N. Suleman S. Khan F.U. Shah A.A. Sikandar M.A. Basit S. Ahmad W. Identification of novel homozygous variants in FOXE3 and AP4M1 underlying congenital syndromic anophthalmia and microphthalmia. J. Gene Med. 2024 26 1 e3601 10.1002/jgm.3601 37758467
    [Google Scholar]
  59. Reis L.M. Sorokina E.A. Dudakova L. Moravikova J. Skalicka P. Malinka F. Seese S.E. Thompson S. Bardakjian T. Capasso J. Allen W. Glaser T. Levin A.V. Schneider A. Khan A. Liskova P. Semina E.V. Comprehensive phenotypic and functional analysis of dominant and recessive FOXE3 alleles in ocular developmental disorders. Hum. Mol. Genet. 2021 30 17 1591 1606 10.1093/hmg/ddab142 34046667
    [Google Scholar]
  60. Valleix S. Niel F. Nedelec B. Algros M-P. Schwartz C. Delbosc B. Delpech M. Kantelip B. Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am. J. Hum. Genet. 2006 79 2 358 364 10.1086/505654
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673365255250418092319
Loading
/content/journals/cmc/10.2174/0109298673365255250418092319
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Microphthalmia ; anterior segment dysgenesis ; whole exome sequencing ; FOXE3 ; collagen IV ; PXDN
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test