Skip to content
2000
image of The Role of CDKs in the Regulation of the Monocyte/Macrophage Immune Response

Abstract

Monocytes/macrophages play an important role in controlling the onset and progression of inflammatory responses by changing their activation state. Inflammation accompanies some slowly progressing pathologies, such as neurodegenerative diseases, rheumatoid arthritis, atherosclerosis, and other inflammatory disorders. Monocyte/macrophage differentiation and polarization are accompanied by transcriptional profile changes. A better understanding of the specific ligands and receptors involved in the regulation of immune cell transcription will help to identify selective molecular targets for the therapy of inflammatory diseases. CDKs are key regulators of cell cycle and transcription in eukaryotes. Thus, this review is aimed to examine the role of CDKs in the monocyte-macrophage response and the data obtained from relevant experiments. M1 macrophages can trigger harmful inflammatory responses. A potential solution is to shift the polarization of macrophages towards the protective anti-inflammatory M2 phenotype (macrophage reprogramming). The mechanisms regulating this switch are crucial for the proper functioning of monocytes and macrophages. Inhibition of different types of CDKs leads to changes in the functional activity of monocytes/macrophages. It has been shown that monocytes/macrophage differentiation and immune functions are dependent on CDK activity. Recent studies on CDKs and their role in the immune system have concluded that their activity plays an essential role in monocyte/macrophage differentiation and immune functions. However, the role of CDKs in monocytes, macrophages, and the immune response is not fully understood. Unraveling the role of transcriptional regulators could provide valuable insights for the development of new treatments for macrophage-mediated inflammatory diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673365178250414074531
2025-05-29
2025-09-10
Loading full text...

Full text loading...

References

  1. Guilliams M. Mildner A. Yona S. Developmental and functional heterogeneity of monocytes. Immunity 2018 49 4 595 613 10.1016/j.immuni.2018.10.005 30332628
    [Google Scholar]
  2. Tang D. Kang R. Coyne C.B. Zeh H.J. Lotze M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012 249 1 158 175 10.1111/j.1600‑065X.2012.01146.x 22889221
    [Google Scholar]
  3. Parihar A. Eubank T.D. Doseff A.I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun. 2010 2 3 204 215 10.1159/000296507 20375558
    [Google Scholar]
  4. Yang J. Zhang L. Yu C. Yang X.F. Wang H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2014 2 1 1 9 10.1186/2050‑7771‑2‑1 24398220
    [Google Scholar]
  5. Zhang X. Mosser D. M. Macrophage activation by endogenous danger signals. J. Pathol.: J. Patholog. Soci. Great Brit. Irel. 2008 214 2 161 178 10.1002/path.2284 18161744
    [Google Scholar]
  6. Italiani P. Boraschi D. From monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol. 2014 5 514 10.3389/fimmu.2014.00514 25368618
    [Google Scholar]
  7. Wang Y. Smith W. Hao D. He B. Kong L. M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int. Immunopharmacol. 2019 70 459 466 10.1016/j.intimp.2019.02.050 30861466
    [Google Scholar]
  8. Ward N.C. Watts G.F. Eckel R.H. Statin toxicity. Circ. Res. 2019 124 2 328 350 10.1161/CIRCRESAHA.118.312782 30653440
    [Google Scholar]
  9. Theofilis P. Oikonomou E. Tsioufis K. Tousoulis D. The role of macrophages in atherosclerosis: Pathophysiologic mechanisms and treatment considerations. Int. J. Mol. Sci. 2023 24 11 9568 10.3390/ijms24119568 37298518
    [Google Scholar]
  10. Yang Z-Y. Jin W.L. Xu Y. Jin M.Z. Microglia in neurodegenerative diseases. Neural Regen. Res. 2021 16 2 270 280 10.4103/1673‑5374.290881 32859774
    [Google Scholar]
  11. Zheng R. Yan Y. Dai S. Ruan Y. Chen Y. Hu C. Lin Z. Xue N. Song Z. Liu Y. Zhang B. Pu J. ASC specks exacerbate α-synuclein pathology via amplifying NLRP3 inflammasome activities. J. Neuroinflammation 2023 20 1 26 10.1186/s12974‑023‑02709‑w 36740674
    [Google Scholar]
  12. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  13. Yang X. Chang Y. Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif. 2020 53 7 e12854 10.1111/cpr.12854 32530555
    [Google Scholar]
  14. Kokinos E.K. Tsymbal S.A. Galochkina A.V. Bezlepkina S.A. Nikolaeva J.V. Vershinina S.O. Shtro A.A. Tatarskiy V.V. Shtil A.A. Broude E.V. Roninson I.B. Dukhinova M. Inhibition of cyclin-dependent kinases 8/19 restricts bacterial and virus-induced inflammatory responses in monocytes. Viruses 2023 15 6 1292 10.3390/v15061292 37376593
    [Google Scholar]
  15. Walsh K.P. Mills K.H.G. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013 34 11 521 530 10.1016/j.it.2013.07.006 23973621
    [Google Scholar]
  16. Orekhov A.N. Orekhova V.A. Nikiforov N.G. Myasoedova V.A. Grechko A.V. Romanenko E.B. Zhang D. Chistiakov D.A. Monocyte differentiation and macrophage polarization. Vessel Plus 2019 2019 10 2574 1209 10.20517/2574‑1209.2019.04
    [Google Scholar]
  17. Derlindati E. Dei Cas A. Montanini B. Spigoni V. Curella V. Aldigeri R. Ardigò D. Zavaroni I. Bonadonna R.C. Transcriptomic analysis of human polarized macrophages: More than one role of alternative activation? PLoS One 2015 10 3 e0119751 10.1371/journal.pone.0119751 25799240
    [Google Scholar]
  18. Wang L. Zhang S. Wu H. Rong X. Guo J. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 2019 106 2 345 358 10.1002/JLB.3RU1018‑378RR 30576000
    [Google Scholar]
  19. Strizova Z. Benesova I. Bartolini R. Novysedlak R. Cecrdlova E. Foley L.K. Striz I. M1/M2 macrophages and their overlaps – myth or reality? Clin. Sci. (Lond.) 2023 137 15 1067 1093 10.1042/CS20220531 37530555
    [Google Scholar]
  20. Pérez S. Rius-Pérez S. Macrophage polarization and reprogramming in acute inflammation: A redox perspective. Antioxidants 2022 11 7 1394 10.3390/antiox11071394 35883885
    [Google Scholar]
  21. Yi L. Gai Y. Chen Z. Tian K. Liu P. Liang H. Xu X. Peng Q. Luo X. Macrophage colony-stimulating factor and its role in the tumor microenvironment: Novel therapeutic avenues and mechanistic insights. Front. Oncol. 2024 14 1358750 10.3389/fonc.2024.1358750 38646440
    [Google Scholar]
  22. Kiseleva V. Vishnyakova P. Elchaninov A. Fatkhudinov T. Sukhikh G. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int. Immunopharmacol. 2023 122 110583 10.1016/j.intimp.2023.110583 37423155
    [Google Scholar]
  23. Gharavi A.T. Hanjani N.A. Movahed E. Doroudian M. The role of macrophage subtypes and exosomes in immunomodulation. Cell. Mol. Biol. Lett. 2022 27 1 83 10.1186/s11658‑022‑00384‑y 36192691
    [Google Scholar]
  24. McCormick S.M. Heller N.M. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015 75 1 38 50 10.1016/j.cyto.2015.05.023 26187331
    [Google Scholar]
  25. Cheng Y. Rong J. Macrophage polarization as a therapeutic target in myocardial infarction. Curr. Drug Targets 2018 19 6 651 662 10.2174/1389450118666171031115025 29086692
    [Google Scholar]
  26. Zhang Q. Sioud M. Tumor-associated macrophage subsets: Shaping polarization and targeting. Int. J. Mol. Sci. 2023 24 8 7493 10.3390/ijms24087493 37108657
    [Google Scholar]
  27. Heitzer M.D. Wolf I.M. Sanchez E.R. Witchel S.F. DeFranco D.B. Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 2007 8 4 321 330 10.1007/s11154‑007‑9059‑8 18049904
    [Google Scholar]
  28. Li P. Ma C. Li J. You S. Dang L. Wu J. Hao Z. Li J. Zhi Y. Chen L. Sun S. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J. Zhejiang Univ. Sci. B 2022 23 5 407 422 10.1631/jzus.B2100930 35557041
    [Google Scholar]
  29. Martinez F.O. Gordon S. Locati M. Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: New molecules and patterns of gene expression. J. Immunol. 2006 177 10 7303 7311 10.4049/jimmunol.177.10.7303 17082649
    [Google Scholar]
  30. Sundar V. Vimal S. Sai Mithlesh M. Dutta A. Tamizhselvi R. Manickam V. Transcriptional cyclin-dependent kinases as the mediators of inflammation-a review. Gene 2021 769 145200 10.1016/j.gene.2020.145200 33031895
    [Google Scholar]
  31. Bertoli C. Skotheim J.M. de Bruin R.A.M. Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 2013 14 8 518 528 10.1038/nrm3629 23877564
    [Google Scholar]
  32. Krishnaveni M. Cyclin dependent kinase inhibitors as drug targets for cancer-a review. Mod. Appro. Drug Desig. 2017 1 1 10.31031/MADD.2017.01.000503
    [Google Scholar]
  33. Barone G. Staples C.J. Ganesh A. Patterson K.W. Bryne D.P. Myers K.N. Patil A.A. Eyers C.E. Maslen S. Skehel J.M. Eyers P.A. Collis S.J. Human CDK18 promotes replication stress signaling and genome stability. Nucleic Acids Res. 2016 44 18 8772 8785 10.1093/nar/gkw615 27382066
    [Google Scholar]
  34. Chen S. Bohrer L.R. Rai A.N. Pan Y. Gan L. Zhou X. Bagchi A. Simon J.A. Huang H. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat. Cell Biol. 2010 12 11 1108 1114 10.1038/ncb2116 20935635
    [Google Scholar]
  35. Jirawatnotai S. Dalton S. Wattanapanitch M. Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Semin. Cell Dev. Biol. 2020 107 63 71 10.1016/j.semcdb.2020.05.001 32417217
    [Google Scholar]
  36. Hisanaga S. Endo R. Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J. Neurochem. 2010 115 6 1309 1321 10.1111/j.1471‑4159.2010.07050.x 21044075
    [Google Scholar]
  37. Palmer N. Talib S.Z.A. Kaldis P. Diverse roles for CDK-associated activity during spermatogenesis. FEBS Lett. 2019 593 20 2925 2949 10.1002/1873‑3468.13627 31566717
    [Google Scholar]
  38. Bernabò N. Ramal-Sanchez M. Valbonetti L. Machado-Simoes J. Ordinelli A. Capacchietti G. Taraschi A. Barboni B. Cyclin–cdk complexes are key controllers of capacitation-dependent actin dynamics in mammalian spermatozoa. Int. J. Mol. Sci. 2019 20 17 4236 10.3390/ijms20174236 31470670
    [Google Scholar]
  39. Bruter A.V. Varlamova E.A. Stavskaya N.I. Antysheva Z.G. Manskikh V.N. Tvorogova A.V. Tatarskiy V.V. Knockout of cyclin dependent kinases 8 and 19 leads to depletion of cyclin C and suppresses spermatogenesis and male fertility in mice. bioRxiv 2023 4 564913 10.1101/2023.11.04.564913
    [Google Scholar]
  40. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  41. Fant C.B. Taatjes D.J. Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 2019 10 2 76 90 10.1080/21541264.2018.1556915 30585107
    [Google Scholar]
  42. Lolli G. Johnson L.N. CAK-Cyclin-dependent Activating Kinase: A key kinase in cell cycle control and a target for drugs? Cell Cycle 2005 4 4 565 570 10.4161/cc.4.4.1607 15876871
    [Google Scholar]
  43. Bártová I. Otyepka M. Kříž Z. Koča J. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop. Protein Sci. 2004 13 6 1449 1457 10.1110/ps.03578504 15133164
    [Google Scholar]
  44. Pluta A.J. Studniarek C. Murphy S. Norbury C.J. Cyclin-dependent kinases: Masters of the eukaryotic universe. Wiley Interdiscip. Rev. RNA 2024 15 1 e1816 10.1002/wrna.1816 37718413
    [Google Scholar]
  45. Ghafouri-Fard S. Khoshbakht T. Hussen B.M. Dong P. Gassler N. Taheri M. Baniahmad A. Dilmaghani N.A. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int. 2022 22 1 325 10.1186/s12935‑022‑02747‑z 36266723
    [Google Scholar]
  46. Brighi N. Conteduca V. Lolli C. Gurioli G. Schepisi G. Palleschi M. Mariotti M. Casadei C. De Giorgi U. The cyclin-dependent kinases pathway as a target for prostate cancer treatment: Rationale and future perspectives. Crit. Rev. Oncol. Hematol. 2021 157 103199 10.1016/j.critrevonc.2020.103199 33316419
    [Google Scholar]
  47. Ding L. Cao J. Lin W. Chen H. Xiong X. Ao H. Yu M. Lin J. Cui Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int. J. Mol. Sci. 2020 21 6 1960 10.3390/ijms21061960 32183020
    [Google Scholar]
  48. Qin A. Reddy H.G. Weinberg F.D. Kalemkerian G.P. Cyclin-dependent kinase inhibitors for the treatment of lung cancer. Expert Opin. Pharmacother. 2020 21 8 941 952 10.1080/14656566.2020.1738385 32164461
    [Google Scholar]
  49. Li J. Wang Y. Wang X. Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: Evidence from integrated bioinformatics analysis. World J. Surg. Oncol. 2020 18 1 50 10.1186/s12957‑020‑01817‑8 32127012
    [Google Scholar]
  50. García-Reyes B. Kretz A.L. Ruff J.P. Von Karstedt S. Hillenbrand A. Knippschild U. Henne-Bruns D. Lemke J. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int. J. Mol. Sci. 2018 19 10 3219 10.3390/ijms19103219 30340359
    [Google Scholar]
  51. Giannone G. Tuninetti V. Ghisoni E. Genta S. Scotto G. Mittica G. Valabrega G. Role of cyclin-dependent kinase inhibitors in endometrial cancer. Int. J. Mol. Sci. 2019 20 9 2353 10.3390/ijms20092353 31083638
    [Google Scholar]
  52. Kohlmeyer J.L. Gordon D.J. Tanas M.R. Monga V. Dodd R.D. Quelle D.E. CDKs in sarcoma: Mediators of disease and emerging therapeutic targets. Int. J. Mol. Sci. 2020 21 8 3018 10.3390/ijms21083018 32344731
    [Google Scholar]
  53. Goel B. Tripathi N. Bhardwaj N. Jain S.K. Small molecule CDK inhibitors for the therapeutic management of cancer. Curr. Top. Med. Chem. 2020 20 17 1535 1563 10.2174/1568026620666200516152756 32416692
    [Google Scholar]
  54. Bae S. Park P.S.U. Lee Y. Mun S.H. Giannopoulou E. Fujii T. Lee K.P. Violante S.N. Cross J.R. Park-Min K.H. MYC-mediated early glycolysis negatively regulates proinflammatory responses by controlling IRF4 in inflammatory macrophages. Cell Rep. 2021 35 11 109264 10.1016/j.celrep.2021.109264 34133930
    [Google Scholar]
  55. Gartel A.L. Ye X. Goufman E. Shianov P. Hay N. Najmabadi F. Tyner A.L. Myc represses the p21 (WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proc. Natl. Acad. Sci. USA 2001 98 8 4510 4515 10.1073/pnas.081074898 11274368
    [Google Scholar]
  56. Cheng M. Wang D. Roussel M.F. Expression of c-Myc in response to colony-stimulating factor-1 requires mitogen-activated protein kinase kinase-1. J. Biol. Chem. 1999 274 10 6553 6558 10.1074/jbc.274.10.6553 10037749
    [Google Scholar]
  57. Gnanaprakasam J.N. Wang R. MYC in regulating immunity: Metabolism and beyond. Genes (Basel) 2017 8 3 88 10.3390/genes8030088 28245597
    [Google Scholar]
  58. Röszer T. Understanding the biology of self-renewing macrophages. Cells 2018 7 8 103 10.3390/cells7080103 30096862
    [Google Scholar]
  59. Soto-Heredero G. Gómez de las Heras M.M. Gabandé-Rodríguez E. Oller J. Mittelbrunn M. Glycolysis – a key player in the inflammatory response. FEBS J. 2020 287 16 3350 3369 10.1111/febs.15327 32255251
    [Google Scholar]
  60. Xaus J. Cardó M. Valledor A.F. Soler C. Lloberas J. Celada A. Interferon γ induces the expression of p21waf-1 and arrests macrophage cell cycle, preventing induction of apoptosis. Immunity 1999 11 1 103 113 10.1016/S1074‑7613(00)80085‑0 10435583
    [Google Scholar]
  61. Harper J.W. Elledge S.J. Keyomarsi K. Dynlacht B. Tsai L.H. Zhang P. Dobrowolski S. Bai C. Connell-Crowley L. Swindell E. Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 1995 6 4 387 400 10.1091/mbc.6.4.387 7626805
    [Google Scholar]
  62. Koshiji M. Kageyama Y. Pete E.A. Horikawa I. Barrett J.C. Huang L.E. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004 23 9 1949 1956 10.1038/sj.emboj.7600196 15071503
    [Google Scholar]
  63. Mlcochova P. Winstone H. Zuliani-Alvarez L. Gupta R.K. TLR4-mediated pathway triggers interferon-independent G0 arrest and antiviral SAMHD1 activity in macrophages. Cell Rep. 2020 30 12 3972 3980.e5 10.1016/j.celrep.2020.03.008 32209460
    [Google Scholar]
  64. Daniel B. Belk J.A. Meier S.L. Chen A.Y. Sandor K. Czimmerer Z. Varga Z. Bene K. Buquicchio F.A. Qi Y. Kitano H. Wheeler J.R. Foster D.S. Januszyk M. Longaker M.T. Chang H.Y. Satpathy A.T. Macrophage inflammatory and regenerative response periodicity is programmed by cell cycle and chromatin state. Mol. Cell 2023 83 1 121 138.e7 10.1016/j.molcel.2022.11.017 36521490
    [Google Scholar]
  65. Rackov G. Hernández-Jiménez E. Shokri R. Carmona-Rodríguez L. Mañes S. Álvarez-Mon M. López-Collazo E. Martínez-A C. Balomenos D. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. J. Clin. Invest. 2016 126 8 3089 3103 10.1172/JCI83404 27427981
    [Google Scholar]
  66. Lamm N. Rogers S. Cesare A.J. The mTOR pathway: Implications for DNA replication. Prog. Biophys. Mol. Biol. 2019 147 17 25 10.1016/j.pbiomolbio.2019.04.002 30991055
    [Google Scholar]
  67. Deshmane S.L. Kremlev S. Amini S. Sawaya B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytok. Res. 2009 29 6 313 326 10.1089/jir.2008.0027 19441883
    [Google Scholar]
  68. Kundumani-Sridharan V. Singh N.K. Kumar S. Gadepalli R. Rao G.N. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling. J. Biol. Chem. 2013 288 30 22150 22162 10.1074/jbc.M113.454082 23737530
    [Google Scholar]
  69. Perkins N.D. Felzien L.K. Betts J.C. Leung K. Beach D.H. Nabel G.J. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 1997 275 5299 523 527 10.1126/science.275.5299.523 8999795
    [Google Scholar]
  70. Haque A. Koide N. Iftakhar-E-Khuda I. Noman A.S.M. Odkhuu E. Badamtseren B. Naiki Y. Komatsu T. Yoshida T. Yokochi T. Flavopiridol inhibits lipopolysaccharide-induced TNF-α production through inactivation of nuclear factor-κB and mitogen-activated protein kinases in the MyD88-dependent pathway. Microbiol. Immunol. 2011 55 3 160 167 10.1111/j.1348‑0421.2010.00304.x 21204955
    [Google Scholar]
  71. Du J. Wei N. Guan T. Xu H. An J. Pritchard K.A. Jr Shi Y. Inhibition of CDKS by roscovitine suppressed LPS-induced · NO production through inhibiting NF-κB activation and BH4 biosynthesis in macrophages. Am. J. Physiol. Cell Physiol. 2009 297 3 C742 C749 10.1152/ajpcell.00138.2009 19553566
    [Google Scholar]
  72. Jhou R-S. Sun K-H. Sun G-H. Wang H-H. Chang C-I. Huang H-C. Lu S-Y. Tang S-J. Inhibition of cyclin-dependent kinases by olomoucine and roscovitine reduces lipopolysaccharide-induced inflammatory responses via down-regulation of nuclear factor κB. Cell Prolif. 2009 42 2 141 149 10.1111/j.1365‑2184.2009.00584.x 19250292
    [Google Scholar]
  73. Denechaud P.D. Fajas L. Giralt A. E2F1, a novel regulator of metabolism. Front. Endocrinol. (Lausanne) 2017 8 311 10.3389/fendo.2017.00311 29176962
    [Google Scholar]
  74. Goodrich D.W. Wang N.P. Qian Y.W. Lee E.Y.H.P. Lee W.H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991 67 2 293 302 10.1016/0092‑8674(91)90181‑W 1655277
    [Google Scholar]
  75. Le Roy L. Letondor A. Le Roux C. Amara A. Timsit S. Cellular and molecular mechanisms of R/S-roscovitine and CDKs related inhibition under both focal and global cerebral ischemia: A focus on neurovascular unit and immune cells. Cells 2021 10 1 104 10.3390/cells10010104 33429982
    [Google Scholar]
  76. McHugh B.J. Stephen J. Robb C.T. Fox S. Kipari T. Cartwright J.A. Haslett C. Duffin R. Lucas C.D. Rossi A.G. Inhibition of cyclin-dependent kinase 9 downregulates cytokine production without detrimentally affecting human monocyte-derived macrophage viability. Front. Cell Dev. Biol. 2022 10 905315 10.3389/fcell.2022.905315 35693926
    [Google Scholar]
  77. Mansilla S.F. De La Vega M.B. Calzetta N.L. Siri S.O. Gottifredi V. CDK-independent and PCNA-dependent functions of p21 in DNA replication. Genes (Basel) 2020 11 6 593 10.3390/genes11060593 32481484
    [Google Scholar]
  78. Kang Y.J. Chen J. Otsuka M. Mols J. Ren S. Wang Y. Han J. Macrophage deletion of p38α partially impairs lipopolysaccharide-induced cellular activation. J. Immunol. 2008 180 7 5075 5082 10.4049/jimmunol.180.7.5075 18354233
    [Google Scholar]
  79. Trakala M. Arias C.F. García M.I. Moreno-Ortiz M.C. Tsilingiri K. Fernández P.J. Mellado M. Díaz-Meco M.T. Moscat J. Serrano M. Martínez-A C. Balomenos D. Regulation of macrophage activation and septic shock susceptibility via p21(WAF1/CIP1). Eur. J. Immunol. 2009 39 3 810 819 10.1002/eji.200838676 19224635
    [Google Scholar]
  80. Scatizzi J.C. Mavers M. Hutcheson J. Young B. Shi B. Pope R.M. Ruderman E.M. Samways D.S.K. Corbett J.A. Egan T.M. Perlman H. The CDK domain of p21 is a suppressor of IL-1β-mediated inflammation in activated macrophages. Eur. J. Immunol. 2009 39 3 820 825 10.1002/eji.200838683 19189309
    [Google Scholar]
  81. Kihara S. Hayashi S. Hashimoto S. Kanzaki N. Takayama K. Matsumoto T. Chinzei N. Iwasa K. Haneda M. Takeuchi K. Nishida K. Kuroda R. Cyclin-dependent kinase Inhibitor-1-deficient mice are susceptible to osteoarthritis associated with enhanced inflammation. J. Bone Miner. Res. 2017 32 5 991 1001 10.1002/jbmr.3080 28128866
    [Google Scholar]
  82. Mavers M. Cuda C.M. Misharin A.V. Gierut A.K. Agrawal H. Weber E. Novack D.V. Haines G.K. III Balomenos D. Perlman H. Cyclin-dependent kinase inhibitor p21, via its C-terminal domain, is essential for resolution of murine inflammatory arthritis. Arthritis Rheum. 2012 64 1 141 152 10.1002/art.33311 21898359
    [Google Scholar]
  83. Arpa L. Valledor A.F. Lloberas J. Celada A. IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21 Waf1 in a STAT6-dependent way. Eur. J. Immunol. 2009 39 2 514 526 10.1002/eji.200838283 19130475
    [Google Scholar]
  84. Olson C.M. Liang Y. Leggett A. Park W.D. Li L. Mills C.E. Elsarrag S.Z. Ficarro S.B. Zhang T. Düster R. Geyer M. Sim T. Marto J.A. Sorger P.K. Westover K.D. Lin C.Y. Kwiatkowski N. Gray N.S. Development of a selective CDK7 covalent inhibitor reveals predominant cell-cycle phenotype. Cell Chem. Biol. 2019 26 6 792 803.e10 10.1016/j.chembiol.2019.02.012 30905681
    [Google Scholar]
  85. Zhang H. Christensen C.L. Dries R. Oser M.G. Deng J. Diskin B. Li F. Pan Y. Zhang X. Yin Y. Papadopoulos E. Pyon V. Thakurdin C. Kwiatkowski N. Jani K. Rabin A.R. Castro D.M. Chen T. Silver H. Huang Q. Bulatovic M. Dowling C.M. Sundberg B. Leggett A. Ranieri M. Han H. Li S. Yang A. Labbe K.E. Almonte C. Sviderskiy V.O. Quinn M. Donaghue J. Wang E.S. Zhang T. He Z. Velcheti V. Hammerman P.S. Freeman G.J. Bonneau R. Kaelin W.G. Jr Sutherland K.D. Kersbergen A. Aguirre A.J. Yuan G.C. Rothenberg E. Miller G. Gray N.S. Wong K.K. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell 2020 37 1 37 54.e9 10.1016/j.ccell.2019.11.003 31883968
    [Google Scholar]
  86. Li M. Wang M. Wen Y. Zhang H. Zhao G.N. Gao Q. Signaling pathways in macrophages: Molecular mechanisms and therapeutic targets. MedComm 2023 4 5 e349 10.1002/mco2.349 37706196
    [Google Scholar]
  87. Cai R. Wang M. Liu M. Zhu X. Feng L. Yu Z. Yang X. Zhang Z. Guo H. Guo R. Zheng Y. An iRGD-conjugated photothermal therapy-responsive gold nanoparticle system carrying siCDK7 induces necroptosis and immunotherapeutic responses in lung adenocarcinoma. Bioeng. Transl. Med. 2023 8 4 e10430 10.1002/btm2.10430 37476070
    [Google Scholar]
  88. Patrick G.N. Zhou P. Kwon Y.T. Howley P.M. Tsai L.H. p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 1998 273 37 24057 24064 10.1074/jbc.273.37.24057 9727024
    [Google Scholar]
  89. Sahdev S. Saini K.S. Hasnain S.E. Baculovirus P35 protein: An overview of its applications across multiple therapeutic and biotechnological arenas. Biotechnol. Prog. 2010 26 2 301 312 10.1002/btpr.339 19830825
    [Google Scholar]
  90. Nau G.J. Schlesinger A. Richmond J.F.L. Young R.A. Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J. Immunol. 2003 170 10 5203 5209 10.4049/jimmunol.170.10.5203 12734368
    [Google Scholar]
  91. Na Y.R. Jung D. Gu G.J. Jang A.R. Suh Y.H. Seok S.H. The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci. Signal. 2015 8 404 ra121 ra121 10.1126/scisignal.aab3156 26602020
    [Google Scholar]
  92. Pfänder P. Fidan M. Burret U. Lipinski L. Vettorazzi S. CDK5 deletion enhances the anti-inflammatory potential of GC-mediated GR activation during inflammation. Front. Immunol. 2019 10 1554 10.3389/fimmu.2019.01554 31354714
    [Google Scholar]
  93. Blonska M. Joo D. Nurieva R.I. Zhao X. Chiao P. Sun S.C. Dong C. Lin X. Activation of the transcription factor c-Maf in T cells is dependent on the CARMA1-IKKβ signaling cascade. Sci. Signal. 2013 6 306 ra110 ra110 10.1126/scisignal.2004273 24345681
    [Google Scholar]
  94. Pfänder P. Eiers A.K. Burret U. Vettorazzi S. Deletion of CDK5 in macrophages ameliorates anti-inflammatory response during endotoxemia through induction of C-Maf and Il-10. Int. J. Mol. Sci. 2021 22 17 9648 10.3390/ijms22179648 34502552
    [Google Scholar]
  95. Chen M. Liang J. Ji H. Yang Z. Altilia S. Hu B. Schronce A. McDermott M.S.J. Schools G.P. Lim C. Oliver D. Shtutman M.S. Lu T. Stark G.R. Porter D.C. Broude E.V. Roninson I.B. CDK8/19 Mediator kinases potentiate induction of transcription by NFκB. Proc. Natl. Acad. Sci. USA 2017 114 38 10208 10213 10.1073/pnas.1710467114 28855340
    [Google Scholar]
  96. Szilagyi Z. Gustafsson C.M. Emerging roles of CDK8 in cell cycle control. Biochim. Biophys. Acta. Gene Regul. Mech. 2013 1829 9 916 920 10.1016/j.bbagrm.2013.04.010 23643644
    [Google Scholar]
  97. Chen M. Li J. Zhang L. Wang L. Cheng C. Ji H. Altilia S. Ding X. Cai G. Altomare D. Shtutman M. Byrum S.D. Mackintosh S.G. Feoktistov A. Soshnikova N. Mogila V.A. Tatarskiy V. Erokhin M. Chetverina D. Prawira A. Ni Y. Urban S. McInnes C. Broude E.V. Roninson I.B. CDK8 and CDK19: Positive regulators of signal-induced transcription and negative regulators of Mediator complex proteins. Nucleic Acids Res. 2023 51 14 7288 7313 10.1093/nar/gkad538 37378433
    [Google Scholar]
  98. Guo Z. Wang G. Lv Y. Wan Y.Y. Zheng J. Inhibition of CDK8/CDK19 activity promotes Treg cell differentiation and suppresses autoimmune diseases. Front. Immunol. 2019 10 1988 10.3389/fimmu.2019.01988 31552016
    [Google Scholar]
  99. Witalisz-Siepracka A. Gotthardt D. Prchal-Murphy M. Didara Z. Menzl I. Prinz D. Edlinger L. Putz E.M. Sexl V. Cell–Specific CDK8 deletion enhances antitumor responses. Cancer Immunol. Res. 2018 6 4 458 466 10.1158/2326‑6066.CIR‑17‑0183 29386186
    [Google Scholar]
  100. Johannessen L. Sundberg T.B. O’Connell D.J. Kolde R. Berstler J. Billings K.J. Khor B. Seashore-Ludlow B. Fassl A. Russell C.N. Latorre I.J. Jiang B. Graham D.B. Perez J.R. Sicinski P. Phillips A.J. Schreiber S.L. Gray N.S. Shamji A.F. Xavier R.J. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat. Chem. Biol. 2017 13 10 1102 1108 10.1038/nchembio.2458 28805801
    [Google Scholar]
  101. Lv B. Liu X. Zhu X. Huang M. miR-382-5p promotes cell invasion in hepatocellular carcinoma by targeting PTEN to activate PI3K/Akt signaling pathway. World J. Surg. Oncol. 2022 20 1 175 10.1186/s12957‑022‑02638‑7 35655254
    [Google Scholar]
  102. Zhou H. Gan M. Jin X. Dai M. Wang Y. Lei Y. Ming J. miR-382 inhibits breast cancer progression and metastasis by affecting the M2 polarization of tumor-associated macrophages by targeting PGC-1α. Int. J. Oncol. 2022 61 4 1 16 10.3892/ijo.2022.5416 36069230
    [Google Scholar]
  103. Wang J. Chen C. Yan X. Wang P. The role of miR-382-5p in glioma cell proliferation, migration and invasion. OncoTargets Ther. 2019 12 4993 5002 10.2147/OTT.S196322 31417288
    [Google Scholar]
  104. Lv Y. Li Y. Wang J. Li M. Zhang W. Zhang H. Shen Y. Li C. Du Y. Jiang L. MiR-382-5p suppresses M1 macrophage polarization and inflammatory response in response to bronchopulmonary dysplasia through targeting CDK8: Involving inhibition of STAT1 pathway. Genes Cells 2021 26 10 772 781 10.1111/gtc.12883 34228857
    [Google Scholar]
  105. Bancerek J. Poss Z.C. Steinparzer I. Sedlyarov V. Pfaffenwimmer T. Mikulic I. Dölken L. Strobl B. Müller M. Taatjes D.J. Kovarik P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013 38 2 250 262 10.1016/j.immuni.2012.10.017 23352233
    [Google Scholar]
  106. Goel S. DeCristo M.J. McAllister S.S. Zhao J.J. CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol. 2018 28 11 911 925 10.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  107. Arora M. Moser J. Hoffman T.E. Watts L.P. Min M. Musteanu M. Rong Y. Ill C.R. Nangia V. Schneider J. Sanclemente M. Lapek J. Nguyen L. Niessen S. Dann S. VanArsdale T. Barbacid M. Miller N. Spencer S.L. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell 2023 186 12 2628 2643.e21 10.1016/j.cell.2023.05.013 37267950
    [Google Scholar]
  108. Cornwell J.A. Crncec A. Afifi M.M. Tang K. Amin R. Cappell S.D. Loss of CDK4/6 activity in S/G2 phase leads to cell cycle reversal. Nature 2023 619 7969 363 370 10.1038/s41586‑023‑06274‑3 37407814
    [Google Scholar]
  109. McKenney C. Lendner Y. Guerrero Zuniga A. Sinha N. Veresko B. Aikin T.J. Regot S. CDK4/6 activity is required during G 2 arrest to prevent stress-induced endoreplication. Science 2024 384 6695 eadi2421 10.1126/science.adi2421 38696576
    [Google Scholar]
  110. Jeselsohn R. Schiff R. Grinshpun A. Restoring order at the cell cycle border: Co-targeting CDK4/6 and CDK2. Cancer Cell 2021 39 10 1302 1305 10.1016/j.ccell.2021.08.007 34506738
    [Google Scholar]
  111. Freeman-Cook K. Hoffman R.L. Miller N. Almaden J. Chionis J. Zhang Q. Eisele K. Liu C. Zhang C. Huser N. Nguyen L. Costa-Jones C. Niessen S. Carelli J. Lapek J. Weinrich S.L. Wei P. McMillan E. Wilson E. Wang T.S. McTigue M. Ferre R.A. He Y.A. Ninkovic S. Behenna D. Tran K.T. Sutton S. Nagata A. Ornelas M.A. Kephart S.E. Zehnder L.R. Murray B. Xu M. Solowiej J.E. Visswanathan R. Boras B. Looper D. Lee N. Bienkowska J.R. Zhu Z. Kan Z. Ding Y. Mu X.J. Oderup C. Salek-Ardakani S. White M.A. VanArsdale T. Dann S.G. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 2021 39 10 1404 1421.e11 10.1016/j.ccell.2021.08.009 34520734
    [Google Scholar]
  112. Schaefer I.M. Hemming M.L. Lundberg M.Z. Serrata M.P. Goldaracena I. Liu N. Yin P. Paulo J.A. Gygi S.P. George S. Morgan J.A. Bertagnolli M.M. Sicinska E.T. Chu C. Zheng S. Mariño-Enríquez A. Hornick J.L. Raut C.P. Ou W.B. Demetri G.D. Saka S.K. Fletcher J.A. Concurrent inhibition of CDK2 adds to the anti-tumour activity of CDK4/6 inhibition in GIST. Br. J. Cancer 2022 127 11 2072 2085 10.1038/s41416‑022‑01990‑5 36175617
    [Google Scholar]
  113. Kerdivel G. Amrouche F. Calmejane M.A. Carallis F. Hamroune J. Hantel C. Bertherat J. Assié G. Boeva V. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin. Epigenetics 2023 15 1 121 10.1186/s13148‑023‑01534‑5 37528470
    [Google Scholar]
  114. Chen Y. Cai Q. Pan C. Liu W. Li L. Liu J. Gao M. Li X. Wang L. Rao Y. Yang H. Cheng G. CDK2 inhibition enhances antitumor immunity by increasing IFN response to endogenous retroviruses. Cancer Immunol. Res. 2022 10 4 525 539 10.1158/2326‑6066.CIR‑21‑0806 35181784
    [Google Scholar]
  115. Goel S. DeCristo M.J. Watt A.C. BrinJones H. Sceneay J. Li B.B. Khan N. Ubellacker J.M. Xie S. Metzger-Filho O. Hoog J. Ellis M.J. Ma C.X. Ramm S. Krop I.E. Winer E.P. Roberts T.M. Kim H.J. McAllister S.S. Zhao J.J. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017 548 7668 471 475 10.1038/nature23465 28813415
    [Google Scholar]
  116. Scirocchi F. Scagnoli S. Botticelli A. Di Filippo A. Napoletano C. Zizzari I.G. Strigari L. Tomao S. Cortesi E. Rughetti A. Marchetti P. Nuti M. Immune effects of CDK4/6 inhibitors in patients with HR+/HER2− metastatic breast cancer: Relief from immunosuppression is associated with clinical response. EBioMedicine 2022 79 104010 10.1016/j.ebiom.2022.104010 35477069
    [Google Scholar]
  117. Zhang J. Gan Y. Li H. Yin J. He X. Lin L. Xu S. Fang Z. Kim B. Gao L. Ding L. Zhang E. Ma X. Li J. Li L. Xu Y. Horne D. Xu R. Yu H. Gu Y. Huang W. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat. Commun. 2022 13 1 2835 10.1038/s41467‑022‑30264‑0 35595767
    [Google Scholar]
  118. Dietrich C. Trub A. Ahn A. Taylor M. Ambani K. Chan K.T. Lu K.H. Mahendra C.A. Blyth C. Coulson R. Ramm S. Watt A.C. Matsa S.K. Bisi J. Strum J. Roberts P. Goel S. INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors. Cancer Discov. 2024 14 3 446 467 10.1158/2159‑8290.CD‑23‑0954 38047585
    [Google Scholar]
  119. Wu J. Chen Y. Li R. Guan Y. Chen M. Yin H. Yang X. Jin M. Huang B. Ding X. Yang J. Wang Z. He Y. Wang Q. Luo J. Wang P. Mao Z. Huen M.S.Y. Lou Z. Yuan J. Gong F. Synergistic anticancer effect by targeting CDK2 and EGFR–ERK signaling. J. Cell Biol. 2024 223 1 e202203005 10.1083/jcb.202203005 37955924
    [Google Scholar]
  120. Wang L. Shao X. Zhong T. Wu Y. Xu A. Sun X. Gao H. Liu Y. Lan T. Tong Y. Tao X. Du W. Wang W. Chen Y. Li T. Meng X. Deng H. Yang B. He Q. Ying M. Rao Y. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol. 2021 17 5 567 575 10.1038/s41589‑021‑00742‑5 33664520
    [Google Scholar]
  121. Li Q. Jiang B. Guo J. Shao H. Del Priore I.S. Chang Q. Kudo R. Li Z. Razavi P. Liu B. Boghossian A.S. Rees M.G. Ronan M.M. Roth J.A. Donovan K.A. Palafox M. Reis-Filho J.S. de Stanchina E. Fischer E.S. Rosen N. Serra V. Koff A. Chodera J.D. Gray N.S. Chandarlapaty S. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 2022 12 2 356 371 10.1158/2159‑8290.CD‑20‑1726 34544752
    [Google Scholar]
  122. Huang Z. Li X. Tang B. Li H. Zhang J. Sun R. Ma J. Pan Y. Yan B. Zhou Y. Ding D. Yan Y. Jimenez R. Orme J.J. Jin X. Yang J. Huang H. Jia Z. SETDB1 modulates degradation of phosphorylated RB and anticancer efficacy of CDK4/6 inhibitors. Cancer Res. 2023 83 6 875 889 10.1158/0008‑5472.CAN‑22‑0264 36637424
    [Google Scholar]
  123. Zhu Y. Ke K.B. Xia Z.K. Li H.J. Su R. Dong C. Zhou F.M. Wang L. Chen R. Wu S.G. Zhao H. Gu P. Leung K.S. Wong M.H. Lu G. Zhang J.Y. Jiang B.H. Qiu J.G. Shi X.N. Lin M.C. Discovery of vanoxerine dihydrochloride as a CDK2/4/6 triple-inhibitor for the treatment of human hepatocellular carcinoma. Mol. Med. 2021 27 1 15 10.1186/s10020‑021‑00269‑4 33579185
    [Google Scholar]
  124. Braal C.L. Jongbloed E.M. Wilting S.M. Mathijssen R.H.J. Koolen S.L.W. Jager A. Inhibiting CDK4/6 in breast cancer with palbociclib, ribociclib, and abemaciclib: Similarities and differences. Drugs 2021 81 3 317 331 10.1007/s40265‑020‑01461‑2 33369721
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673365178250414074531
Loading
/content/journals/cmc/10.2174/0109298673365178250414074531
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test