Skip to content
2000
image of Nanomaterial Enhances the Performance of Amyloid-beta Biosensing for Alzheimer’s Disease Diagnosis

Abstract

Background

Highly sensitive, accurate, and low-cost detection systems are gaining interest for early intervention in the progression of Alzheimer's disease (AD). Amyloid-beta (Aβ), a peptide highly involved in the progression of AD, is found in abundance in patients with severe AD.

Objective

This research focused on developing an Aβ oligomer (AβO) biosensor using a single-walled carbon nanotube-modified (SWCN) interdigitated electrode (IDE) sensor.

Methods

The SWCN was functionalized onto the sensor surface through an amine linker, followed by the attachment of an aptamer-gold nanoparticle (GNP) complex, which was used to capture the AβO.

Results

The GNP-aptamer was saturated at 500 nM on the SWCN surface, and AβO was detected using a sandwich consisting of aptamer-AβO-antibody. The SWCN modification increased the number of aptamer attachment sites on the IDE, while the aptamer and antibody conjugation with GNP enhanced AβO interaction. This sandwich assay detected AβO at concentrations as low as 10 fM, with a linear regression coefficient (y = 2.9189x - 2.076; R2 = 0.9544). Furthermore, AβO-spiked artificial CSF was detected without interference, as confirmed by the increased current responses. No significant changes were recorded with control proteins, including α-synuclein, IgG antibody, and a complementary aptamer, indicating specific AβO detection.

Conclusion

This SWCN modified IDE-based sandwich detects AβO at its lower level and contributes to the early diagnosis of AD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673363138250417001048
2025-05-07
2025-09-09
Loading full text...

Full text loading...

References

  1. Kim T. Can gamma entrainment of the brain rhythms prevent or alleviate Alzheimer’s disease? J. Transl. Int. Med. 2021 9 4 231 233 10.2478/jtim‑2021‑0048 35136721
    [Google Scholar]
  2. Wei W. Wang Z.Y. Ma L.N. Zhang T.T. Cao Y. Li H. MicroRNAs in Alzheimer’s disease: Function and potential applications as diagnostic biomarkers. Front. Mol. Neurosci. 2020 13 160 10.3389/fnmol.2020.00160 32973449
    [Google Scholar]
  3. Shtaiwi M. Aljaar N. Al-Najjar L. Malakar C.C. Shtaiwi A. Abu-Sini M. Al-Refai M. Design, synthesis, biological activity, and molecular modeling of novel spiroquinazoline derivatives as acetylcholinesterase inhibitors for alzheimer disease. Polycycl. Aromat. Compd. 2023 43 9 8082 8095 10.1080/10406638.2022.2144911
    [Google Scholar]
  4. Cordes M. Wszolek Z. Brück W. Zimny A. Sasiadek M. Kuwert T. Neurodegeneration with dementia: From fundamentals of pathology to clinical imaging by MRI and SPECT. Curr. Med. Imaging Rev. 2016 12 4 257 268 10.2174/1573405612666160606105654
    [Google Scholar]
  5. Ma X. Wang X. Xiao Y. Zhao Q. Retinal examination modalities in the early detection of Alzheimer’s disease: Seeing brain through the eye. J. Transl. Int. Med. 2022 10 3 185 187 10.2478/jtim‑2021‑0053 36776234
    [Google Scholar]
  6. Bae J.B. Lee S. Jung W. Park S. Kim W. Oh H. Han J.W. Kim G.E. Kim J.S. Kim J.H. Kim K.W. Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Sci. Rep. 2020 10 1 22252 10.1038/s41598‑020‑79243‑9 33335244
    [Google Scholar]
  7. Sun L. Zhong Y. Gui J. Wang X. Zhuang X. Weng J. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int. J. Nanomedicine 2018 13 843 856 10.2147/IJN.S152163 29467574
    [Google Scholar]
  8. Steinman J. Ovcjak A. Luo Z. Zhang X. Britto L.R. Henderson J.T. Sun H.S. Feng Z.P. Transient receptor potential melastatin 2 channels in neurological disorders: Mechanisms and animal models. Adv. Neurol. 2022 1 1 3 10.36922/an.v1i1.3
    [Google Scholar]
  9. Zhou G. Yin Y. Huan X. Zhuang Y. Xu S. Liu J. Liu S. Duan J. The potential role of the brain–gut axis in the development and progression of Alzheimer’s disease. J. Transl. Int. Med. 2022 10 2 89 91 10.2478/jtim‑2022‑0016 35959446
    [Google Scholar]
  10. Qin H. Gao X. Yang X. Cao W. Liu S. A label-free and signal-on electrochemiluminescence strategy for sensitive amyloid-beta assay. Biosens. Bioelectron. 2019 141 111438 10.1016/j.bios.2019.111438 31254862
    [Google Scholar]
  11. Manafikhi R. Bassam Haik M. Lahdo R. AlQuoubaili F. Plasma amyloid β levels in Alzheimer’s disease and cognitively normal controls in Syrian population. Med. J. Islam. Repub. Iran 2021 35 19 10.47176/mjiri.35.19 33996670
    [Google Scholar]
  12. Zhou Y. Zhang H. Liu L. Li C. Chang Z. Zhu X. Ye B. Xu M. Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Sci. Rep. 2016 6 1 35186 10.1038/srep35186 27725775
    [Google Scholar]
  13. Wennmalm S. Chmyrov V. Widengren J. Tjernberg L. Highly sensitive FRET-FCS detects amyloid β-peptide oligomers in solution at physiological concentrations. Anal. Chem. 2015 87 23 11700 11705 10.1021/acs.analchem.5b02630 26489794
    [Google Scholar]
  14. Veloso A.J. Chow A.M. Ganesh H.V.S. Li N. Dhar D. Wu D.C.H. Mikhaylichenko S. Brown I.R. Kerman K. Electrochemical immunosensors for effective evaluation of amyloid-beta modulators on oligomeric and fibrillar aggregation processes. Anal. Chem. 2014 86 10 4901 4909 10.1021/ac500424t 24784791
    [Google Scholar]
  15. Huang Y. Zhang L. Li Z. Gopinath S.C.B. Chen Y. Xiao Y. Aptamer–17β-estradiol–antibody sandwich ELISA for determination of gynecological endocrine function. Biotechnol. Appl. Biochem. 2021 68 4 881 888 10.1002/bab.2008 33245588
    [Google Scholar]
  16. Gopinath S.C.B. Lakshmipriya T. Chen Y. Phang W.M. Hashim U. Aptamer-based ‘point-of-care testing’. Biotechnol. Adv. 2016 34 3 198 208 10.1016/j.biotechadv.2016.02.003 26876017
    [Google Scholar]
  17. Lakshmipriya T. Gopinath S.C.B. Aptamer: A versatile probe in medical diagnosis. INNOSC Theranostics Pharmacol. Sci. 2018 1 1 14 19 10.26689/itps.v1i1.511
    [Google Scholar]
  18. Geng H. Gopinath S.C.B. Niu W. Highly sensitive hepatitis B virus identification by antibody-aptamer sandwich enzyme-linked immunosorbent assay. INNOSC Theranostics Pharmacol. Sci. 2023 5 1 7 14 10.36922/itps.298
    [Google Scholar]
  19. Yao J. Li S. Zhang L. Yang Y. Gopinath S.C.B. Lakshmipriya T. Zhou Y. Aptamer-antibody dual probes on single-walled carbon nanotube bridged dielectrode: Comparative analysis on human blood clotting factor. Int. J. Biol. Macromol. 2020 151 1133 1138 10.1016/j.ijbiomac.2019.10.156 31743722
    [Google Scholar]
  20. Wang F. Gopinath S.C.B. Lakshmipriya T. Aptamer-antibody complementation on multiwalled carbon nanotube-gold transduced dielectrode surfaces to detect pandemic swine influenza virus. Int. J. Nanomedicine 2019 14 8469 8481 10.2147/IJN.S219976 31695375
    [Google Scholar]
  21. Jo H.J. Kang M.S. Jang H.J. Raja I.S. Lim D. Kim B. Han D.-W. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering. Mater. Sci. Addit. Manuf. 2023 2 2 0620 10.36922/msam.0620
    [Google Scholar]
  22. Iversen M. Monisha M. Agarwala S. Flexible, wearable and fully-printed smart patch for pH and hydration sensing in wounds. Int. J. Bioprint. 2021 8 1 447 10.18063/ijb.v8i1.447 35187277
    [Google Scholar]
  23. Sarvari P. Sarvari P. Advances in nanoparticle-based drug delivery in cancer treatment. Global Transl. Med. 2023 2 0394 10.36922/gtm.0394
    [Google Scholar]
  24. Gong B. Zhuang J. Ji W. Chen X. Li P. Cheng W. Chu J. Liang W. He B. Gao J. Yin Y. The long and the short of current nanomedicines for treating Alzheimer’s disease. J. Transl. Int. Med. 2023 10 4 294 296 10.2478/jtim‑2021‑0054 36860633
    [Google Scholar]
  25. Qiu Z. Zhang X. Jia N. Li X. Li R. Gopinath S.C.B. Jiao M. Zeolite nanomaterial-modified dielectrode oxide surface for diagnosing Alzheimer’s disease by dual molecular probed impedance sensor. Turk Biyokim. Derg. 2024 48 6 668 674 10.1515/tjb‑2023‑0079
    [Google Scholar]
  26. Kaymaz S.V. Nobar H.M. Sarıgül H. Soylukan C. Akyüz L. Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv. Colloid Interface Sci. 2023 322 103035 10.1016/j.cis.2023.103035 37931382
    [Google Scholar]
  27. Li M. Singh R. Wang Y. Marques C. Zhang B. Kumar S. Advances in novel nanomaterial-based optical fiber biosensors—a review. Biosensors 2022 12 10 843 10.3390/bios12100843 36290980
    [Google Scholar]
  28. Wei-Wen Hsiao W. Fadhilah G. Lee C.C. Endo R. Lin Y.J. Angela S. Ku C.C. Chang H.C. Chiang W.H. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta 2023 265 124892 10.1016/j.talanta.2023.124892 37451119
    [Google Scholar]
  29. Xu K. Meshik X. Nichols B.M. Zakar E. Dutta M. Stroscio M.A. Graphene- and aptamer-based electrochemical biosensor. Nanotechnology 2014 25 20 205501 10.1088/0957‑4484/25/20/205501 24785149
    [Google Scholar]
  30. Park C.S. Yoon H. Kwon O.S. Graphene-based nanoelectronic biosensors. J. Ind. Eng. Chem. 2016 38 13 22 10.1016/j.jiec.2016.04.021
    [Google Scholar]
  31. Lakshmipriya T. Horiguchi Y. Nagasaki Y. Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst (Lond.) 2014 139 16 3977 3985 10.1039/C4AN00168K 24922332
    [Google Scholar]
  32. Lakshmipriya T. Fujimaki M. Gopinath S.C.B. Awazu K. Horiguchi Y. Nagasaki Y. A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 2013 138 10 2863 2870 10.1039/c3an00298e 23577343
    [Google Scholar]
  33. Luo J. Gopinath S.C.B. Subramaniam S. Wu Z. Arthritis biosensing: Aptamer-antibody-mediated identification of biomarkers by ELISA. Process Biochem. 2022 121 396 402 10.1016/j.procbio.2022.07.022
    [Google Scholar]
  34. Tsukakoshi K. Abe K. Sode K. Ikebukuro K. Selection of DNA aptamers that recognize α-synuclein oligomers using a competitive screening method. Anal. Chem. 2012 84 13 5542 5547 10.1021/ac300330g 22697251
    [Google Scholar]
  35. Adam H. Gopinath S.C.B. Kumarevel T. Arshad M.K.M. Adam T. Sauli Z. Subramaniam S. Hashim U. Chen Y. Selective detection of amyloid fibrils by a dipole moment mechanism on dielectrode – Structural insights by in silico analysis. Process Biochem. 2023 126 23 32 10.1016/j.procbio.2022.12.030
    [Google Scholar]
  36. Gong B. Cheng W. Ji W. Chen X. Chu J. Liang W. He B. Zhuang J. Yin Y. Gao J. Hydrogel: A promising new technique for treating Alzheimer’s disease. J. Transl. Int. Med. 2022 10 3 188 190 10.2478/jtim‑2022‑0008 35702184
    [Google Scholar]
  37. Zhang J. Gopinath S.C.B. Quantification of cortisol for the medical diagnosis of multiple pregnancy-related diseases. 3 Biotech 2020 10 35 10.1007/s13205‑019‑2030‑z
    [Google Scholar]
  38. Zhang R. Wang S. Huang X. Yang Y. Fan H. Yang F. Li J. Dong X. Feng S. Anbu P. Gopinath S.C.B. Xin T. Gold-nanourchin seeded single-walled carbon nanotube on voltammetry sensor for diagnosing neurogenerative Parkinson’s disease. Anal. Chim. Acta 2020 1094 142 150 10.1016/j.aca.2019.10.012 31761041
    [Google Scholar]
  39. Andreasen N. Hesse C. Davidsson P. Minthon L. Wallin A. Winblad B. Vanderstichele H. Vanmechelen E. Blennow K. Cerebrospinal fluid β-amyloid(1-42) in Alzheimer disease: Differences between early- and late-onset Alzheimer disease and stability during the course of disease. Arch. Neurol. 1999 56 6 673 680 10.1001/archneur.56.6.673 10369305
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673363138250417001048
Loading
/content/journals/cmc/10.2174/0109298673363138250417001048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test