Skip to content
2000
image of Icaritin Attenuates HSC Activation by Down-regulating the HIF-1α and TGF-β/Smad Signaling Pathways to Ameliorate Liver Fibrosis

Abstract

Introduction

Icaritin is a bioactive flavonol isolated from the Chinese medicinal herb . The comprehensive understanding of antifibrotic effects and associated molecular mechanisms of icaritin remains incomplete. This study aims to explore the protective effects of icaritin against liver fibrosis and to further elucidate the mechanisms involved.

Methods

Human hepatic stellate LX-2 cells stimulated with TGF-β1 and a carbon tetrachloride (CCl)-induced liver fibrosis mouse model were employed. assays were carried out to evaluate collagen type I (COL I) and α-smooth muscle actin (α-SMA) expression, while studies assessed fibrosis alleviation. Molecular mechanisms were explored analysis of TGF-β1, phosphorylated Smad2/3, and HIF-1α protein levels using Western blotting.

Results

Icaritin suppressed TGF-β1-induced COL I and α-SMA expression in LX-2 cells and ameliorated liver fibrosis in CCl-treated mice. Mechanistically, it significantly reduced TGF-β1 levels, inhibited Smad2/3 phosphorylation, and downregulated HIF-1α protein expression in LX-2 cells.

Conclusion

Icaritin attenuated experimental liver fibrosis through the inhibition of the TGF-β/Smad and HIF-1α signaling pathways, highlighting its therapeutic potential for fibrotic liver diseases.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362768250417052953
2025-05-05
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673362768250417052953/BMS-CMC-2024-791.html?itemId=/content/journals/cmc/10.2174/0109298673362768250417052953&mimeType=html&fmt=ahah

References

  1. Kisseleva T. Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021 18 3 151 166 10.1038/s41575‑020‑00372‑7 33128017
    [Google Scholar]
  2. Xiang D.M. Sun W. Ning B.F. Zhou T.F. Li X.F. Zhong W. Cheng Z. Xia M.Y. Wang X. Deng X. Wang W. Li H.Y. Cui X.L. Li S.C. Wu B. Xie W.F. Wang H.Y. Ding J. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 2018 67 9 1704 1715 10.1136/gutjnl‑2016‑313392 28754776
    [Google Scholar]
  3. Friedman S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008 88 1 125 172 10.1152/physrev.00013.2007 18195085
    [Google Scholar]
  4. Higashi T. Friedman S.L. Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv. Drug Deliv. Rev. 2017 121 27 42 10.1016/j.addr.2017.05.007 28506744
    [Google Scholar]
  5. Zeng H.T. Guo J. Chen Y. Research progress on pharmacology effects and new drug delivery system of icaritin. Chin. Tradit. Herb. Drugs 2020 24 5372 5380
    [Google Scholar]
  6. Zeng LL Original new Chinese medicine icaritin soft capsule approved for marketing. J. Electron. Publ. 2022 1 9
    [Google Scholar]
  7. Wu R.H. Dong M. Bai J. Qing Y. Li L. The effects of icaritin on proliferation and apoptosis of human hepatocellular carcinoma Hep-G2 cells and its action mechanism. Med. J. West China 2022 34 819 823
    [Google Scholar]
  8. Yuan S. Wei C. Liu G. Zhang L. Li J. Li L. Cai S. Fang L. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/SLC7A11 pathway. Cell Prolif. 2022 55 1 e13158 10.1111/cpr.13158 34811833
    [Google Scholar]
  9. Foglia B. Novo E. Protopapa F. Maggiora M. Bocca C. Cannito S. Parola M. Hypoxia, hypoxia-inducible factors and liver fibrosis. Cells 2021 10 7 1764 10.3390/cells10071764 34359934
    [Google Scholar]
  10. Cai J. Hu M. Chen Z. Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 2021 19 1 186 10.1186/s12967‑021‑02854‑x 33933107
    [Google Scholar]
  11. Sun J. Shi L. Xiao T. Xue J. Li J. Wang P. Wu L. Dai X. Ni X. Liu Q. microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. Chemosphere 2021 266 129177 10.1016/j.chemosphere.2020.129177 33310519
    [Google Scholar]
  12. ElBaset M.A. Salem R.S. Ayman F. Ayman N. Shaban N. Afifi S.M. Esatbeyoglu T. Abdelaziz M. Elalfy Z.S. Effect of empagliflozin on thioacetamide-induced liver injury in rats: Role of AMPK/SIRT-1/HIF-1α pathway in halting liver fibrosis. Antioxidants 2022 11 11 2152 10.3390/antiox11112152 36358524
    [Google Scholar]
  13. Lim J.H. Yook J.M. Oh S.H. Jeon S.J. Noh H.W. Jung H.Y. Choi J.Y. Cho J-H. Kim C-D. Kim Y-L. Park S-H. Paricalcitol improves hypoxia-induced and TGF-β1-induced injury in kidney pericytes. Int. J. Mol. Sci. 2021 22 18 9751 10.3390/ijms22189751
    [Google Scholar]
  14. Lei R. Li J. Liu F. Li W. Zhang S. Wang Y. Chu X. Xu J. HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle 2019 18 23 3239 3250 10.1080/15384101.2019.1670508 31645185
    [Google Scholar]
  15. Fan W. Liu T. Chen W. Hammad S. Longerich T. Hausser I. Fu Y. Li N. He Y. Liu C. Zhang Y. Lian Q. Zhao X. Yan C. Li L. Yi C. Ling Z. Ma L. Zhao X. Xu H. Wang P. Cong M. You H. Liu Z. Wang Y. Chen J. Li D. Hui L. Dooley S. Hou J. Jia J. Sun B. ECM1 prevents activation of transforming growth factor β, hepatic stellate cells, and fibrogenesis in mice. Gastroenterology 2019 157 5 1352 1367.e13 10.1053/j.gastro.2019.07.036 31362006
    [Google Scholar]
  16. Bataller R. Brenner D.A. Liver fibrosis. J. Clin. Invest. 2005 115 2 209 218 10.1172/JCI24282 15690074
    [Google Scholar]
  17. Inagaki Y. Okazaki I. Emerging insights into transforming growth factor smad signal in hepatic fibrogenesis. Gut 2007 56 2 284 292 10.1136/gut.2005.088690 17303605
    [Google Scholar]
  18. Fabregat I. Moreno-Càceres J. Sánchez A. Dooley S. Dewidar B. Giannelli G. Dijke T.P. TGF-β signalling and liver disease. FEBS J. 2016 283 12 2219 2232 10.1111/febs.13665 26807763
    [Google Scholar]
  19. Iredale J.P. Benyon R.C. Pickering J. McCullen M. Northrop M. Pawley S. Hovell C. Arthur M.J. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 1998 102 3 538 549 10.1172/JCI1018 9691091
    [Google Scholar]
  20. Rodríguez-González F.G. Sieuwerts A.M. Smid M. Look M.P. Meijer-van Gelder M.E. Weerd D.V. Sleijfer S. Martens J.W.M. Foekens J.A. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res. Treat. 2011 127 1 43 51 10.1007/s10549‑010‑0940‑x 20490652
    [Google Scholar]
  21. Hernandez-Gea V. Friedman S.L. Pathogenesis of liver fibrosis. Annu. Rev. Pathol. 2011 6 1 425 456 10.1146/annurev‑pathol‑011110‑130246 21073339
    [Google Scholar]
  22. Wang P. Fang Y. Qiu J. Zhou Y. Wang Z. Jiang C. miR-345–5p curbs hepatic stellate cell activation and liver fibrosis progression by suppressing hypoxia-inducible factor-1alpha expression. Toxicol. Lett. 2022 370 42 52 10.1016/j.toxlet.2022.09.008 36126797
    [Google Scholar]
  23. Chee M.E. Majumder K. Mine Y. Intervention of dietary dipeptide gamma- l -glutamyl- l -valine (γ-ev) ameliorates inflammatory response in a mouse model of LPS-induced sepsis. J. Agric. Food Chem. 2017 65 29 5953 5960 10.1021/acs.jafc.7b02109 28691814
    [Google Scholar]
  24. Danis E.G. Acar G. Dasdelen D. Solmaz M. Mogulkoc R. Baltaci A.K. Naringin affects caspase-3, IL-1β, and HIF-1α levels in experimental kidney ischemia-reperfusion in rats. Curr. Pharm. Des. 2024 30 42 3339 3349 10.2174/0113816128324562240816095551 39229980
    [Google Scholar]
  25. Copple B.L. Kaska S. Wentling C. Hypoxia-inducible factor activation in myeloid cells contributes to the development of liver fibrosis in cholestatic mice. J. Pharmacol. Exp. Ther. 2012 341 2 307 316 10.1124/jpet.111.189340 22271822
    [Google Scholar]
  26. Chen L. Lin X. Xiao J. Tian Y. Zheng B. Teng H. Sonchus oleraceus Linn protects against LPS-induced sepsis and inhibits inflammatory responses in RAW264.7 cells. J. Ethnopharmacol. 2019 236 63 69 10.1016/j.jep.2019.02.039 30802614
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362768250417052953
Loading
/content/journals/cmc/10.2174/0109298673362768250417052953
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test