Skip to content
2000
image of Genetically Predicted Gastroesophageal Reflux Disease and Common Thyroid Disorders: A Two-sample Mendelian Randomization Study

Abstract

Introduction

The causality between thyroid disorders and Gastroesophageal Reflux Disease (GERD) remains to be deciphered. This two-sample Mendelian Randomization (MR) study was performed to elucidate the causal association between GERD and thyroid diseases and functions.

Methods

Summary statistics for GERD were retrieved from a published GWAS dataset deposited in the Integrative Epidemiology Unit OpenGWAS database. Thyroid hormone level data were obtained from the ThyroidOmics Consortium, and genetic variants associated with thyroid disorders were sourced from the FinnGen Project. MR statistical analyses used the Inverse Variance Weighted (IVW) algorithm, followed by various sensitivity and reliability analyses. Odds Ratio (OR) and beta coefficient (β) with 95% Confidence Interval (CI) were estimated for categorical and continuous outcomes, respectively. The significant causal association was determined based on a Bonferroni-corrected threshold of -value < 0.0021 (calculated as 0.05/24 trait pairs).

Results

The findings of MR analysis tend to favor the causality of GERD for hyperthyroidism (IVW: OR = 1.517, 95% CI: 1.164 to 1.978, = 2.04E-03) but not the other thyroid disorders. The reverse MR estimates suggested that thyroid disorders may not affect the susceptibility of GERD. Moreover, genetic proxied GERD was significantly negatively associated with circulating Thyroid Stimulating Hormone (TSH) level (IVW: β = -0.048, 95% CI: -0.078 to -0.019, = 1.17E-03), whereas the causality of this enteropathy on Free Triiodothyronine (FT3), Free Thyroxine (FT4), Total Triiodothyronine (TT3), FT3/FT4 ratio, and TT3/FT4 ratio (and ) is unfounded.

Discussion

This MR study indicates that the genetic liability to GERD is significantly detrimental to hyperthyroidism risk and the homeostasis of TSH.

Conclusion

The findings suggest that effective GERD management could mitigate hyperthyroidism risk.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362752250730045645
2025-10-06
2025-11-04
Loading full text...

Full text loading...

References

  1. Kröner P.T. Cortés P. Lukens F.J. The medical management of gastroesophageal reflux disease: A narrative review. J. Prim. Care Community Health 2021 12 21501327211046736 10.1177/21501327211046736 34581222
    [Google Scholar]
  2. Nirwan J.S. Hasan S.S. Babar Z.U.D. Conway B.R. Ghori M.U. Global prevalence and risk factors of Gastro-oesophageal Reflux Disease (GORD): Systematic review with meta-analysis. Sci. Rep. 2020 10 1 5814 10.1038/s41598‑020‑62795‑1 32242117
    [Google Scholar]
  3. Saritas Y. Vaezi M. Extraesophageal manifestations of gastroesophageal reflux disease: Cough, asthma, laryngitis, chest pain. Swiss Med. Wkly. 2012 142 1112 w13544 10.4414/smw.2012.13544 22442097
    [Google Scholar]
  4. Daher R. Yazbeck T. Jaoude J.B. Abboud B. Consequences of dysthyroidism on the digestive tract and viscera. World J. Gastroenterol. 2009 15 23 2834 2838 10.3748/wjg.15.2834 19533804
    [Google Scholar]
  5. Eastwood G.L. Braverman L.E. White E.M. Vander Salm T.J. Reversal of lower esophageal sphincter hypotension and esophageal aperistalsis after treatment for hypothyroidism. J. Clin. Gastroenterol. 1982 4 4 307 310 10.1097/00004836‑198208000‑00003 7119407
    [Google Scholar]
  6. Evsyutina Y. Trukhmanov A. Ivashkin V. Storonova O. Godjello E. Case report of Graves’ disease manifesting with odynophagia and heartburn. World J. Gastroenterol. 2015 21 48 13582 13586 10.3748/wjg.v21.i48.13582 26730171
    [Google Scholar]
  7. Delshad S.D. Almario C.V. Chey W.D. Spiegel B.M.R. Prevalence of gastroesophageal reflux disease and proton pump inhibitor-refractory symptoms. Gastroenterology 2020 158 5 1250 1261.e2 10.1053/j.gastro.2019.12.014 31866243
    [Google Scholar]
  8. Admon A.J. Bohnert A.S.B. Cooke C.R. Taylor S.P. Beyond confounding: Identifying selection bias in observational pulmonary and critical care research. Ann. Am. Thorac. Soc. 2022 19 7 1084 1089 10.1513/AnnalsATS.202110‑1188PS 35120299
    [Google Scholar]
  9. Hammerton G. Munafò M.R. Causal inference with observational data: The need for triangulation of evidence. Psychol. Med. 2021 51 4 563 578 10.1017/S0033291720005127 33682654
    [Google Scholar]
  10. Smith G.D. Ebrahim S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ 2005 330 7499 1076 1079 10.1136/bmj.330.7499.1076 15879400
    [Google Scholar]
  11. Davey Smith G. Hemani G. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 2014 23 R1 R89 R98 10.1093/hmg/ddu328 25064373
    [Google Scholar]
  12. Sekula P. Del Greco M F. Pattaro C. Köttgen A. Mendelian randomization as an approach to assess causality using observational data. J. Am. Soc. Nephrol. 2016 27 11 3253 3265 10.1681/ASN.2016010098 27486138
    [Google Scholar]
  13. Zhao X. Ding R. Su C. Yue R. Sleep traits, fat accumulation, and glycemic traits in relation to gastroesophageal reflux disease: A Mendelian randomization study. Front. Nutr. 2023 10 1106769 10.3389/fnut.2023.1106769 36895273
    [Google Scholar]
  14. Yuan S. Larsson S.C. Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: A Mendelian randomization study. Eur. J. Epidemiol. 2022 37 7 747 754 10.1007/s10654‑022‑00842‑z 35119566
    [Google Scholar]
  15. Su C. Liao Z. Li H. Pei Y. Wang Z. Li J. Liu J. Metabolic dysfunction-associated steatotic liver disease and gastroesophageal reflux disease: A mendelian randomization study in European and East Asian populations. Front. Genet. 2024 15 1428334 10.3389/fgene.2024.1428334 39703225
    [Google Scholar]
  16. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Yarmolinsky J. Davies N.M. Swanson S.A. VanderWeele T.J. Higgins J.P.T. Timpson N.J. Dimou N. Langenberg C. Golub R.M. Loder E.W. Gallo V. Tybjaerg-Hansen A. Davey Smith G. Egger M. Richards J.B. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: The STROBE-MR statement. JAMA 2021 326 16 1614 1621 10.1001/jama.2021.18236 34698778
    [Google Scholar]
  17. Skrivankova V.W. Richmond R.C. Woolf B.A.R. Davies N.M. Swanson S.A. VanderWeele T.J. Timpson N.J. Higgins J.P.T. Dimou N. Langenberg C. Loder E.W. Golub R.M. Egger M. Davey Smith G. Richards J.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 2021 375 2233 n2233 10.1136/bmj.n2233 34702754
    [Google Scholar]
  18. Ong J.S. An J. Han X. Law M.H. Nandakumar P. Schumacher J. Gockel I. Bohmer A. Jankowski J. Palles C. Olsen C.M. Neale R.E. Fitzgerald R. Thrift A.P. Vaughan T.L. Buas M.F. Hinds D.A. Gharahkhani P. Kendall B.J. MacGregor S. Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett’s oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut 2022 71 6 1053 1061 10.1136/gutjnl‑2020‑323906 34187846
    [Google Scholar]
  19. Sterenborg R.B.T.M. Steinbrenner I. Li Y. Bujnis M.N. Naito T. Marouli E. Galesloot T.E. Babajide O. Andreasen L. Astrup A. Åsvold B.O. Bandinelli S. Beekman M. Beilby J.P. Bork-Jensen J. Boutin T. Brody J.A. Brown S.J. Brumpton B. Campbell P.J. Cappola A.R. Ceresini G. Chaker L. Chasman D.I. Concas M.P. Coutinho de Almeida R. Cross S.M. Cucca F. Deary I.J. Kjaergaard A.D. Echouffo Tcheugui J.B. Ellervik C. Eriksson J.G. Ferrucci L. Freudenberg J. Fuchsberger C. Gieger C. Giulianini F. Gögele M. Graham S.E. Grarup N. Gunjača I. Hansen T. Harding B.N. Harris S.E. Haunsø S. Hayward C. Hui J. Ittermann T. Jukema J.W. Kajantie E. Kanters J.K. Kårhus L.L. Kiemeney L.A.L.M. Kloppenburg M. Kühnel B. Lahti J. Langenberg C. Lapauw B. Leese G. Li S. Liewald D.C.M. Linneberg A. Lominchar J.V.T. Luan J. Martin N.G. Matana A. Meima M.E. Meitinger T. Meulenbelt I. Mitchell B.D. Møllehave L.T. Mora S. Naitza S. Nauck M. Netea-Maier R.T. Noordam R. Nursyifa C. Okada Y. Onano S. Papadopoulou A. Palmer C.N.A. Pattaro C. Pedersen O. Peters A. Pietzner M. Polašek O. Pramstaller P.P. Psaty B.M. Punda A. Ray D. Redmond P. Richards J.B. Ridker P.M. Russ T.C. Ryan K.A. Olesen M.S. Schultheiss U.T. Selvin E. Siddiqui M.K. Sidore C. Slagboom P.E. Sørensen T.I.A. Soto-Pedre E. Spector T.D. Spedicati B. Srinivasan S. Starr J.M. Stott D.J. Tanaka T. Torlak V. Trompet S. Tuhkanen J. Uitterlinden A.G. van den Akker E.B. van den Eynde T. van der Klauw M.M. van Heemst D. Verroken C. Visser W.E. Vojinovic D. Völzke H. Waldenberger M. Walsh J.P. Wareham N.J. Weiss S. Willer C.J. Wilson S.G. Wolffenbuttel B.H.R. Wouters H.J.C.M. Wright M.J. Yang Q. Zemunik T. Zhou W. Zhu G. Zöllner S. Smit J.W.A. Peeters R.P. Köttgen A. Teumer A. Medici M. Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nat. Commun. 2024 15 1 888 10.1038/s41467‑024‑44701‑9 38291025
    [Google Scholar]
  20. Kurki M.I. Karjalainen J. Palta P. Sipilä T.P. Kristiansson K. Donner K.M. Reeve M.P. Laivuori H. Aavikko M. Kaunisto M.A. Loukola A. Lahtela E. Mattsson H. Laiho P. Della Briotta Parolo P. Lehisto A.A. Kanai M. Mars N. Rämö J. Kiiskinen T. Heyne H.O. Veerapen K. Rüeger S. Lemmelä S. Zhou W. Ruotsalainen S. Pärn K. Hiekkalinna T. Koskelainen S. Paajanen T. Llorens V. Gracia-Tabuenca J. Siirtola H. Reis K. Elnahas A.G. Sun B. Foley C.N. Aalto-Setälä K. Alasoo K. Arvas M. Auro K. Biswas S. Bizaki-Vallaskangas A. Carpen O. Chen C.Y. Dada O.A. Ding Z. Ehm M.G. Eklund K. Färkkilä M. Finucane H. Ganna A. Ghazal A. Graham R.R. Green E.M. Hakanen A. Hautalahti M. Hedman Å.K. Hiltunen M. Hinttala R. Hovatta I. Hu X. Huertas-Vazquez A. Huilaja L. Hunkapiller J. Jacob H. Jensen J.N. Joensuu H. John S. Julkunen V. Jung M. Junttila J. Kaarniranta K. Kähönen M. Kajanne R. Kallio L. Kälviäinen R. Kaprio J. Kerimov N. Kettunen J. Kilpeläinen E. Kilpi T. Klinger K. Kosma V.M. Kuopio T. Kurra V. Laisk T. Laukkanen J. Lawless N. Liu A. Longerich S. Mägi R. Mäkelä J. Mäkitie A. Malarstig A. Mannermaa A. Maranville J. Matakidou A. Meretoja T. Mozaffari S.V. Niemi M.E.K. Niemi M. Niiranen T. O´Donnell C.J. Obeidat M. Okafo G. Ollila H.M. Palomäki A. Palotie T. Partanen J. Paul D.S. Pelkonen M. Pendergrass R.K. Petrovski S. Pitkäranta A. Platt A. Pulford D. Punkka E. Pussinen P. Raghavan N. Rahimov F. Rajpal D. Renaud N.A. Riley-Gillis B. Rodosthenous R. Saarentaus E. Salminen A. Salminen E. Salomaa V. Schleutker J. Serpi R. Shen H. Siegel R. Silander K. Siltanen S. Soini S. Soininen H. Sul J.H. Tachmazidou I. Tasanen K. Tienari P. Toppila-Salmi S. Tukiainen T. Tuomi T. Turunen J.A. Ulirsch J.C. Vaura F. Virolainen P. Waring J. Waterworth D. Yang R. Nelis M. Reigo A. Metspalu A. Milani L. Esko T. Fox C. Havulinna A.S. Perola M. Ripatti S. Jalanko A. Laitinen T. Mäkelä T.P. Plenge R. McCarthy M. Runz H. Daly M.J. Palotie A. FinnGen FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023 613 7944 508 518 10.1038/s41586‑022‑05473‑8 36653562
    [Google Scholar]
  21. Pierce B.L. Ahsan H. VanderWeele T.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 2011 40 3 740 752 10.1093/ije/dyq151 20813862
    [Google Scholar]
  22. Shashkova T.I. Pakhomov E.D. Gorev D.D. Karssen L.C. Joshi P.K. Aulchenko Y.S. PheLiGe: An interactive database of billions of human genotype–phenotype associations. Nucleic Acids Res. 2021 49 D1 D1347 D1350 10.1093/nar/gkaa1086 33245779
    [Google Scholar]
  23. Bowden J. Del Greco M F. Minelli C. Davey Smith G. Sheehan N. Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 2017 36 11 1783 1802 10.1002/sim.7221 28114746
    [Google Scholar]
  24. Burgess S. Butterworth A. Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013 37 7 658 665 10.1002/gepi.21758 24114802
    [Google Scholar]
  25. Burgess S. Bowden J. Fall T. Ingelsson E. Thompson S.G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 2017 28 1 30 42 10.1097/EDE.0000000000000559 27749700
    [Google Scholar]
  26. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  27. Burgess S. Dudbridge F. Thompson S.G. Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Stat. Med. 2016 35 11 1880 1906 10.1002/sim.6835 26661904
    [Google Scholar]
  28. Burgess S. Thompson S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017 32 5 377 389 10.1007/s10654‑017‑0255‑x 28527048
    [Google Scholar]
  29. Bowden J. Davey Smith G. Haycock P.C. Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016 40 4 304 314 10.1002/gepi.21965 27061298
    [Google Scholar]
  30. Wu Y. Pei Y. Wang F. Xu D. Cui W. Higher FT4 or TSH below the normal range are associated with increased risk of dementia: A meta-analysis of 11 studies. Sci. Rep. 2016 6 1 31975 10.1038/srep31975 27558885
    [Google Scholar]
  31. Blum M.R. Bauer D.C. Collet T.H. Fink H.A. Cappola A.R. da Costa B.R. Wirth C.D. Peeters R.P. Åsvold B.O. den Elzen W.P.J. Luben R.N. Imaizumi M. Bremner A.P. Gogakos A. Eastell R. Kearney P.M. Strotmeyer E.S. Wallace E.R. Hoff M. Ceresini G. Rivadeneira F. Uitterlinden A.G. Stott D.J. Westendorp R.G.J. Khaw K.T. Langhammer A. Ferrucci L. Gussekloo J. Williams G.R. Walsh J.P. Jüni P. Aujesky D. Rodondi N. Subclinical thyroid dysfunction and fracture risk: A meta-analysis. JAMA 2015 313 20 2055 2065 10.1001/jama.2015.5161 26010634
    [Google Scholar]
  32. Misiak B. Stańczykiewicz B. Wiśniewski M. Bartoli F. Carra G. Cavaleri D. Samochowiec J. Jarosz K. Rosińczuk J. Frydecka D. Thyroid hormones in persons with schizophrenia: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021 111 110402 10.1016/j.pnpbp.2021.110402 34274416
    [Google Scholar]
  33. Hellevik A.I. Åsvold B.O. Bjøro T. Romundstad P.R. Nilsen T.I.L. Vatten L.J. Thyroid function and cancer risk: A prospective population study. Cancer Epidemiol. Biomarkers Prev. 2009 18 2 570 574 10.1158/1055‑9965.EPI‑08‑0911 19155436
    [Google Scholar]
  34. Kandulski A. Malfertheiner P. Gastroesophageal reflux disease—From reflux episodes to mucosal inflammation. Nat. Rev. Gastroenterol. Hepatol. 2012 9 1 15 22 10.1038/nrgastro.2011.210 22105108
    [Google Scholar]
  35. Bartalena L. Brogioni S. Grasso L. Rago T. Vitti P. Pinchera A. Martino E. Interleukin-6: A marker of thyroid-destructive processes? J. Clin. Endocrinol. Metab. 1994 79 5 1424 1427 10.1210/jcem.79.5.7962338 7962338
    [Google Scholar]
  36. Akalin A. Colak Ö. Alatas Ö. Efe B. Bone remodelling markers and serum cytokines in patients with hyperthyroidism. Clin. Endocrinol. 2002 57 1 125 129 10.1046/j.1365‑2265.2002.01578.x 12100080
    [Google Scholar]
  37. Lv L.F. Jia H.Y. Zhang H.F. Hu Y.X. Expression level and clinical significance of IL-2, IL-6 and TGF-β in elderly patients with goiter and hyperthyroidism. Eur. Rev. Med. Pharmacol. Sci. 2017 21 20 4680 4686 29131274
    [Google Scholar]
  38. Ma H. Tan T. Wu J. Chen J. Zhang X. Predisposition to hyperthyroidism may be influenced by functional TNF-α, IL-1, IL-6, and IL-10 polymorphisms: A meta-analysis. Int. Arch. Allergy Immunol. 2020 181 12 956 965 10.1159/000508284 32942281
    [Google Scholar]
  39. Emdin C.A. Khera A.V. Kathiresan S. Mendelian Randomization. JAMA 2017 318 19 1925 1926 10.1001/jama.2017.17219 29164242
    [Google Scholar]
  40. Zhu X. Mendelian randomization and pleiotropy analysis. Quant. Biol. 2021 9 2 122 132 10.1007/s40484‑020‑0216‑3 34386270
    [Google Scholar]
  41. Watanabe K. Stringer S. Frei O. Umićević Mirkov M. de Leeuw C. Polderman T.J.C. van der Sluis S. Andreassen O.A. Neale B.M. Posthuma D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019 51 9 1339 1348 10.1038/s41588‑019‑0481‑0 31427789
    [Google Scholar]
  42. Davey Smith G. Ebrahim S. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003 32 1 1 22 10.1093/ije/dyg070 12689998
    [Google Scholar]
  43. Fakhre Yaseri H. Gender is a risk factor in patients with gastroesophageal reflux disease. Med. J. Islam. Repub. Iran 2017 31 1 336 338 10.14196/mjiri.31.58 29445687
    [Google Scholar]
  44. Kim Y.S. Kim N. Kim G.H. Sex and gender differences in gastroesophageal reflux disease. J. Neurogastroenterol. Motil. 2016 22 4 575 588 10.5056/jnm16138 27703114
    [Google Scholar]
  45. Pelzner K. Fuchs C. Petersen M. Maus M. Bruns C.J. Leers J.M. Sex- and gender-specific differences in symptoms and health-related quality of life among patients with gastroesophageal reflux disease. Dis. Esophagus 2024 37 3 doad064 10.1093/dote/doad064 37963417
    [Google Scholar]
  46. Ference B.A. Holmes M.V. Smith G.D. Using mendelian randomization to improve the design of randomized trials. Cold Spring Harb. Perspect. Med. 2021 11 7 a040980 10.1101/cshperspect.a040980 33431510
    [Google Scholar]
  47. Lee Y. H. Overview of mendelian randomization analysis. JRD 2020 27 4 241 246
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362752250730045645
Loading
/content/journals/cmc/10.2174/0109298673362752250730045645
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test