Skip to content
2000
image of A Neuroendocrine Differentiation-related Molecular Model for Prognosis Prediction in Prostate Cancer Patients

Abstract

Purpose

The purpose of this study is to construct and validate a neuroendocrine differentiation-related molecular model for predicting prognosis in patients with prostate cancer (PCa).

Materials and Methods

Transcriptome data for PCa were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) websites. Differentially expressed neuroendocrine differentiation related genes (NDGs) were identified. By utilizing multivariate Cox analysis, a neuroendocrine differentiation-related molecular model for predicting prognosis was constructed and validated. The study investigated the novel model’s association with the tumor immune microenvironment, clinicopathological characteristics, tumor stemness, and anticancer treatment sensitivity. Additionally, preliminary experimental verifications of Diencephalon / Mesencephalon Homeobox 1 (DMBX1) were conducted.

Results

Finally, we identified a total of 19 differentially expressed NDGs. A neuroendocrine differentiation-related molecular model was established and successfully validated both internally and externally. The high-risk group   exhibited   significantly   poorer biochemical recurrence-free survival (BCRFS) in the training, testing, and validating cohorts. The areas under the receiver operating characteristic curves for the training, testing, and validating cohorts were 0.825, 0.719, and 0.729, respectively. The tumor immune microenvironment, clinicopathological features, tumor stemness, and anti-cancer drug sensitivity was significantly different between high and low-risk patients. Preliminary experiments revealed that higher expression of DMBX1 significantly enhanced the proliferation, migration, and neuroendocrine differentiation of PCa cells.

Conclusion

This research developed a unique neuroendocrine differentiation-related molecular model that is highly suitable for predicting BCRFS. High DMBX1 expression may promote the development and neuroendocrine differentiation of prostate cancer.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362568250505074520
2025-05-15
2025-09-12
Loading full text...

Full text loading...

References

  1. Wang H.T. Yao Y.H. Li B.G. Tang Y. Chang J.W. Zhang J. Neuroendocrine prostate cancer (NEPC) progressing from conventional prostatic adenocarcinoma: Factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J. Clin. Oncol. 2014 32 30 3383 3390 10.1200/JCO.2013.54.3553 25225419
    [Google Scholar]
  2. Wang Y. Wang Y. Ci X. Choi S.Y.C. Crea F. Lin D. Wang Y. Molecular events in neuroendocrine prostate cancer development. Nat. Rev. Urol. 2021 18 10 581 596 10.1038/s41585‑021‑00490‑0 34290447
    [Google Scholar]
  3. Kouchkovsky D.I. Chan E. Schloss C. Poehlein C. Aggarwal R. Diagnosis and management of neuroendocrine prostate cancer. Prostate 2024 84 5 426 440 10.1002/pros.24664 38173302
    [Google Scholar]
  4. Lu X. Gao W. Zhang Y. Wang T. Gao H. Chen Q. Shi X. Lian B. Zhang W. Gao X. Li J. Case report: Systemic treatment and serial genomic sequencing of metastatic prostate adenocarcinoma progressing to small cell carcinoma. Front. Oncol. 2021 11 732071 10.3389/fonc.2021.732071 34646773
    [Google Scholar]
  5. Yamada Y. Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr. Oncol. Rep. 2021 23 2 15 10.1007/s11912‑020‑01003‑9 33433737
    [Google Scholar]
  6. Merkens L. Sailer V. Lessel D. Janzen E. Greimeier S. Kirfel J. Perner S. Pantel K. Werner S. Amsberg V.G. Aggressive variants of prostate cancer: Underlying mechanisms of neuroendocrine transdifferentiation. J. Exp. Clin. Cancer Res. 2022 41 1 46 10.1186/s13046‑022‑02255‑y 35109899
    [Google Scholar]
  7. Shui X. Xu R. Zhang C. Meng H. Zhao J. Shi C. Advances in neuroendocrine prostate cancer research: From model construction to molecular network analyses. Lab. Invest. 2022 102 4 332 340 10.1038/s41374‑021‑00716‑0 34937865
    [Google Scholar]
  8. Kaarijärvi R. Kaljunen H. Ketola K. Molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression. Cancers 2021 13 4 692 10.3390/cancers13040692
    [Google Scholar]
  9. Ostano P. Mello-Grand M. Sesia D. Gregnanin I. Peraldo-Neia C. Guana F. Jachetti E. Farsetti A. Chiorino G. Gene expression signature predictive of neuroendocrine transformation in prostate adenocarcinoma. Int. J. Mol. Sci. 2020 21 3 1078 10.3390/ijms21031078 32041153
    [Google Scholar]
  10. Davies A.H. Beltran H. Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. 2018 15 5 271 286 10.1038/nrurol.2018.22 29460922
    [Google Scholar]
  11. Alabi B.R. Liu S. Stoyanova T. Current and emerging therapies for neuroendocrine prostate cancer. Pharmacol. Ther. 2022 238 108255 10.1016/j.pharmthera.2022.108255 35905791
    [Google Scholar]
  12. Zhang Q. Han Y. Zhang Y. Liu D. Ming J. Huang B. Qiu X. Treatment-emergent neuroendocrine prostate cancer: A clinicopathological and immunohistochemical analysis of 94 cases. Front. Oncol. 2021 10 571308 10.3389/fonc.2020.571308 33598420
    [Google Scholar]
  13. Beltran H. Demichelis F. Therapy considerations in neuroendocrine prostate cancer: What next? Endocr. Relat. Cancer 2021 28 8 T67 T78 10.1530/ERC‑21‑0140 34111024
    [Google Scholar]
  14. Zhou B. Song H. Xu W. Zhang Y. Liu Y. Qi W. The comprehensive analysis of hub gene ARRB2 in prostate cancer. Dis. Markers 2022 2022 1 16 10.1155/2022/8518378 36284990
    [Google Scholar]
  15. Wan S. Jiang C. Li S. Fan Y. Special issue on bioinformatics and machine learning for cancer biology. Biology 2022 11 3 361 10.3390/biology11030361 35336735
    [Google Scholar]
  16. Hao Y. Jing X.Y. Sun Q. Cancer survival prediction by learning comprehensive deep feature representation for multiple types of genetic data. BMC Bioinformatics 2023 24 1 267 10.1186/s12859‑023‑05392‑z 37380946
    [Google Scholar]
  17. Lee M. Deep learning techniques with genomic data in cancer prognosis: A comprehensive review of the 2021–2023 literature. Biology 2023 12 7 893 10.3390/biology12070893 37508326
    [Google Scholar]
  18. Kourou K. Exarchos K.P. Papaloukas C. Sakaloglou P. Exarchos T. Fotiadis D.I. Applied machine learning in cancer research: A systematic review for patient diagnosis, classification and prognosis. Comput. Struct. Biotechnol. J. 2021 19 5546 5555 10.1016/j.csbj.2021.10.006 34712399
    [Google Scholar]
  19. Tran K.A. Kondrashova O. Bradley A. Williams E.D. Pearson J.V. Waddell N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021 13 1 152 10.1186/s13073‑021‑00968‑x 34579788
    [Google Scholar]
  20. Issa N.T. Stathias V. Schürer S. Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 2021 68 132 142 10.1016/j.semcancer.2019.12.011 31904426
    [Google Scholar]
  21. Rahman M.H. Rana H.K. Peng S. Hu X. Chen C. Quinn J.M.W. Moni M.A. Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression. Brief. Bioinform. 2021 22 5 bbaa365 10.1093/bib/bbaa365 33406529
    [Google Scholar]
  22. Yong L. YuFeng Z. Guang B. Association between PPP2CA expression and colorectal cancer prognosis tumor marker prognostic study. Int. J. Surg. 2018 59 80 89 10.1016/j.ijsu.2018.09.020 30296597
    [Google Scholar]
  23. Kakar M.U. Mehboob M.Z. Akram M. Shah M. Shakir Y. Ijaz H.W. Aziz U. Ullah Z. Ahmad S. Ali S. Yin Y. Identification of differentially expressed genes associated with the prognosis and diagnosis of hepatocellular carcinoma by integrated bioinformatics analysis. BioMed Res. Int. 2022 2022 1 4237633 10.1155/2022/4237633 36317111
    [Google Scholar]
  24. Haffner M.C. Zwart W. Roudier M.P. True L.D. Nelson W.G. Epstein J.I. Marzo D.A.M. Nelson P.S. Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol. 2021 18 2 79 92 10.1038/s41585‑020‑00400‑w 33328650
    [Google Scholar]
  25. Puca L. Vlachostergios P.J. Beltran H. Neuroendocrine differentiation in prostate cancer: Emerging biology, models, and therapies. Cold Spring Harb. Perspect. Med. 2019 9 2 a030593 10.1101/cshperspect.a030593 29844220
    [Google Scholar]
  26. Cheng S. Prieto-Dominguez N. Yang S. Connelly Z.M. StPierre S. Rushing B. Watkins A. Shi L. Lakey M. Baiamonte L.B. Fazili T. Lurie A. Corey E. Shi R. Yeh Y. Yu X. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Prost. Cancer Prost. Dis. 2020 23 4 661 669 10.1038/s41391‑020‑0229‑z 32313141
    [Google Scholar]
  27. Zhang T. Zhao F. Lin Y. Liu M. Zhou H. Cui F. Jin Y. Chen L. Sheng X. Integrated analysis of single- cell and bulk transcriptomics develops a robust neuroendocrine cell-intrinsic signature to predict prostate cancer progression. Theranostics 2024 14 3 1065 1080 10.7150/thno.92336 38250042
    [Google Scholar]
  28. Lin Y. Zhao X. Miao Z. Ling Z. Wei X. Pu J. Hou J. Shen B. Data-driven translational prostate cancer research: From biomarker discovery to clinical decision. J. Transl. Med. 2020 18 1 119 10.1186/s12967‑020‑02281‑4 32143723
    [Google Scholar]
  29. Alarcón-Zendejas A.P. Scavuzzo A. Jiménez-Ríos M.A. Álvarez-Gómez R.M. Montiel-Manríquez R. Castro-Hernández C. Jiménez-Dávila M.A. Pérez-Montiel D. González-Barrios R. Jiménez-Trejo F. Arriaga- Canon C. Herrera L.A. The promising role of new molecular biomarkers in prostate cancer: From coding and non- coding genes to artificial intelligence approaches. Prostate Cancer Prostatic Dis. 2022 25 3 431 443 10.1038/s41391‑022‑00537‑2 35422101
    [Google Scholar]
  30. Goldenberg S.L. Nir G. Salcudean S.E. A new era: Artificial intelligence and machine learning in prostate cancer. Nat. Rev. Urol. 2019 16 7 391 403 10.1038/s41585‑019‑0193‑3 31092914
    [Google Scholar]
  31. Cheng S. Yu X. Bioinformatics analyses of publicly available NEPCa datasets. Am. J. Clin. Exp. Urol. 2019 7 5 327 340 31763364
    [Google Scholar]
  32. Beltran H. Prandi D. Mosquera J.M. Benelli M. Puca L. Cyrta J. Marotz C. Giannopoulou E. Chakravarthi B.V.S.K. Varambally S. Tomlins S.A. Nanus D.M. Tagawa S.T. Allen V.E.M. Elemento O. Sboner A. Garraway L.A. Rubin M.A. Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 2016 22 3 298 305 10.1038/nm.4045 26855148
    [Google Scholar]
  33. Xie Y. Ning S. Hu J. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. J. Cancer Res. Clin. Oncol. 2022 148 7 1813 1823 10.1007/s00432‑022‑04061‑7 35633416
    [Google Scholar]
  34. Zamora I. Freeman M.R. Encío I.J. Rotinen M. Targeting key players of neuroendocrine differentiation in prostate cancer. Int. J. Mol. Sci. 2023 24 18 13673 10.3390/ijms241813673 37761978
    [Google Scholar]
  35. Han M. Li F. Zhang Y. Dai P. He J. Li Y. Zhu Y. Zheng J. Huang H. Bai F. Gao D. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell 2022 40 11 1306 1323.e8 10.1016/j.ccell.2022.10.011 36332622
    [Google Scholar]
  36. Nouruzi S. Namekawa T. Tabrizian N. Kobelev M. Sivak O. Scurll J.M. Cui C.J. Ganguli D. Zoubeidi A. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight 2024 9 23 e185952 10.1172/jci.insight.185952 39470735
    [Google Scholar]
  37. Liu Q. Pang J. Wang L. Huang Z. Xu J. Yang X. Xie Q. Huang Y. Tang T. Tong D. Liu G. Wang L. Zhang D. Ma Q. Xiao H. Lan W. Qin J. Jiang J. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2. J. Pathol. 2021 253 1 106 118 10.1002/path.5557 33009820
    [Google Scholar]
  38. Mizrahi R.G. Williams I. Azad A. Lawrentschuk N. Genetics of neuroendocrine prostate cancer: Recent progress in genetic understanding is translating into therapeutic opportunities. Curr. Opin. Urol. 2022 32 5 462 465 10.1097/MOU.0000000000001015 35849697
    [Google Scholar]
  39. Wishahi M. Treatment-induced neuroendocrine prostate cancer and de novo neuroendocrine prostate cancer: Identification, prognosis and survival, genetic and epigenetic factors. World J. Clin. Cases 2024 12 13 2143 2146 10.12998/wjcc.v12.i13.2143 38808339
    [Google Scholar]
  40. Liu S. Alabi B.R. Yin Q. Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin. Cancer Biol. 2022 86 Pt 3 57 68 10.1016/j.semcancer.2022.05.007 35597438
    [Google Scholar]
  41. Heimdörfer D. Artamonova N. Culig Z. Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J. Cancer Res. Clin. Oncol. 2024 150 10 462 10.1007/s00432‑024‑05983‑0 39412660
    [Google Scholar]
  42. Watanabe R. Miura N. Kurata M. Kitazawa R. Kikugawa T. Saika T. Spatial gene expression analysis reveals characteristic gene expression patterns of de novo neuroendocrine prostate cancer coexisting with androgen receptor pathway prostate cancer. Int. J. Mol. Sci. 2023 24 10 8955 10.3390/ijms24108955 37240308
    [Google Scholar]
  43. Fei X. Xue J.W. Wu J. Yang C.Y. Wang K.J. Ma Q. Promising therapy for neuroendocrine prostate cancer: Current status and future directions. Ther. Adv. Med. Oncol. 2024 16 17588359241269676 10.1177/17588359241269676 39131727
    [Google Scholar]
  44. Kemble J. Kwon E.D. Karnes R.J. Addressing the need for more therapeutic options in neuroendocrine prostate cancer. Expert Rev. Anticancer Ther. 2023 23 2 177 185 10.1080/14737140.2023.2173174 36698089
    [Google Scholar]
  45. Eule C.J. Hu J. Al-Saad S. Collier K. Boland P. Lewis A.R. McKay R.R. Narayan V. Bosse D. Mortazavi A. Rose T.L. Costello B.A. Bryce A.H. Lam E.T. Outcomes of second-line therapies in patients with metastatic de novo and treatment-emergent neuroendocrine prostate cancer: A multi-institutional study. Clin. Genitourin. Cancer 2023 21 4 483 490 10.1016/j.clgc.2023.04.008 37193610
    [Google Scholar]
  46. Fujimoto N. Tsubonuma Y. Nagata Y. Minato A. Tomisaki I. Harada K. Miyamoto H. Second-line systemic therapy for highly aggressive neuroendocrine prostate cancer. Anticancer Res. 2023 43 9 3841 3847 10.21873/anticanres.16571 37648316
    [Google Scholar]
  47. Hulsen T. An overview of publicly available patient-centered prostate cancer datasets. Transl. Androl. Urol. 2019 8 S1 S64 S77 10.21037/tau.2019.03.01 31143673
    [Google Scholar]
  48. Lin J. Cai Y. Wang Z. Ma Y. Pan J. Liu Y. Zhao Z. Novel biomarkers predict prognosis and drug-induced neuroendocrine differentiation in patients with prostate cancer. Front. Endocrinol. 2023 13 1005916 10.3389/fendo.2022.1005916 36686485
    [Google Scholar]
  49. Yao K. Zhang R. Li L. Liu M. Feng S. Yan H. Zhang Z. Xie D. The signature of cuproptosis-related immune genes predicts the tumor microenvironment and prognosis of prostate adenocarcinoma. Front. Immunol. 2023 14 1181370 10.3389/fimmu.2023.1181370 37600770
    [Google Scholar]
  50. Zhu W. Wu J. Huang J. Xiao D. Li F. Wu C. Li X. Zeng H. Zheng J. Lai W. Wen X. Multi-omics analysis reveals a macrophage-related marker gene signature for prognostic prediction, immune landscape, genomic heterogeneity, and drug choices in prostate cancer. Front. Immunol. 2023 14 1122670 10.3389/fimmu.2023.1122670 37122696
    [Google Scholar]
  51. Ke Z.B. You Q. Chen J.Y. Sun J.B. Xue Y.T. Zhuang R.B. Zheng Q.S. Chen Y.H. Wei Y. Sun X.L. Xue X.Y. Xu N. A radiation resistance related index for biochemical recurrence and tumor immune environment in prostate cancer patients. Comput. Biol. Med. 2022 146 105711 10.1016/j.compbiomed.2022.105711 35701253
    [Google Scholar]
  52. Kim S. Yu H. Mutual regulation between the spindle checkpoint and APC/C. Semin. Cell Dev. Biol. 2011 22 6 551 558 10.1016/j.semcdb.2011.03.008 21439394
    [Google Scholar]
  53. Kapanidou M. Curtis N.L. Bolanos-Garcia V.M. Cdc20: At the crossroads between chromosome segregation and mitotic exit. Trends Biochem. Sci. 2017 42 3 193 205 10.1016/j.tibs.2016.12.001 28202332
    [Google Scholar]
  54. Gayyed M.F. El-Maqsoud N.M.R.A. Tawfiek E.R. Gelany E.S.A.A. Rahman M.F.A. A comprehensive analysis of CDC20 overexpression in common malignant tumors from multiple organs: Its correlation with tumor grade and stage. Tumour Biol. 2016 37 1 749 762 10.1007/s13277‑015‑3808‑1 26245990
    [Google Scholar]
  55. Wang L. Zhang J. Wan L. Zhou X. Wang Z. Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol. Ther. 2015 151 141 151 10.1016/j.pharmthera.2015.04.002 25850036
    [Google Scholar]
  56. Li K. Mao Y. Lu L. Hu C. Wang D. Si-Tu J. Lu M. Peng S. Qiu J. Gao X. Silencing of CDC20 suppresses metastatic castration-resistant prostate cancer growth and enhances chemosensitivity to docetaxel. Int. J. Oncol. 2016 49 4 1679 1685 10.3892/ijo.2016.3671 27633058
    [Google Scholar]
  57. Xian F. Yang X. Xu G. Prognostic significance of CDC20 expression in malignancy patients: A meta-analysis. Front. Oncol. 2022 12 1017864 10.3389/fonc.2022.1017864 36479068
    [Google Scholar]
  58. Wu F. Sun Y. Chen J. Li H. Yao K. Liu Y. Liu Q. Lu J. The oncogenic role of APC/C activator protein CDC20 by an integrated pan-cancer analysis in human tumors. Front. Oncol. 2021 11 721797 10.3389/fonc.2021.721797 34527589
    [Google Scholar]
  59. Yang C. Ge Y. Zang Y. Xu M. Jin L. Wang Y. Xu X. Xue B. Wang Z. Wang L. CDC20 promotes radioresistance of prostate cancer by activating Twist1 expression. Apoptosis 2023 28 11-12 1584 1595 10.1007/s10495‑023‑01877‑7 37535214
    [Google Scholar]
  60. Chang D.Z. Ma Y. Ji B. Liu Y. Hwu P. Abbruzzese J.L. Logsdon C. Wang H. Increased CDC20 expression is associated with pancreatic ductal adenocarcinoma differentiation and progression. J. Hematol. Oncol. 2012 5 1 15 10.1186/1756‑8722‑5‑15 22475564
    [Google Scholar]
  61. Alfarsi L.H. Ansari R.E. Craze M.L. Toss M.S. Masisi B. Ellis I.O. Rakha E.A. Green A.R. CDC20 expression in oestrogen receptor positive breast cancer predicts poor prognosis and lack of response to endocrine therapy. Breast Cancer Res. Treat. 2019 178 3 535 544 10.1007/s10549‑019‑05420‑8 31471836
    [Google Scholar]
  62. Jiang J. Jedinak A. Sliva D. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA. Biochem. Biophys. Res. Commun. 2011 415 2 325 329 10.1016/j.bbrc.2011.10.055 22033405
    [Google Scholar]
  63. Horning A.M. Wang Y. Lin C.K. Louie A.D. Jadhav R.R. Hung C.N. Wang C.M. Lin C.L. Kirma N.B. Liss M.A. Kumar A.P. Sun L. Liu Z. Chao W.T. Wang Q. Jin V.X. Chen C.L. Huang T.H.M. Single-cell RNA-seq reveals a subpopulation of prostate cancer cells with enhanced cell-cycle–related transcription and attenuated androgen response. Cancer Res. 2018 78 4 853 864 10.1158/0008‑5472.CAN‑17‑1924 29233929
    [Google Scholar]
  64. Dai L. Song Z.X. Wei D.P. Zhang J.D. Liang J.Q. Wang B.B. Ma W.T. Li L.Y. Dang Y.L. Zhao L. Zhang L.M. Zhao Y.M. CDC20 and PTTG1 are important biomarkers and potential therapeutic targets for metastatic prostate cancer. Adv. Ther. 2021 38 6 2973 2989 10.1007/s12325‑021‑01729‑3 33881746
    [Google Scholar]
  65. Zhang Q. Huang H. Liu A. Li J. Liu C. Sun B. Chen L. Gao Y. Xu D. Su C. Cell division cycle 20 (CDC20) drives prostate cancer progression via stabilization of β-catenin in cancer stem-like cells. EBioMedicine 2019 42 397 407 10.1016/j.ebiom.2019.03.032 30904606
    [Google Scholar]
  66. Mao Y. Li K. Lu L. Si-tu J. Lu M. Gao X. Overexpression of CDC20 in clinically localized prostate cancer: Relation to high Gleason score and biochemical recurrence after laparoscopic radical prostatectomy. Cancer Biomark. 2016 16 3 351 358 10.3233/CBM‑160573 26889981
    [Google Scholar]
  67. Xian F. Zhao C. Huang C. Bie J. Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: A narrative review. Medicine 2023 102 36 e35038 10.1097/MD.0000000000035038 37682144
    [Google Scholar]
  68. Wu F. Wang M. Zhong T. Xiao C. Chen X. Huang Y. Wu M. Yu J. Chen D. Inhibition of CDC20 potentiates anti-tumor immunity through facilitating GSDME-mediated pyroptosis in prostate cancer. Exp. Hematol. Oncol. 2023 12 1 67 10.1186/s40164‑023‑00428‑9 37528490
    [Google Scholar]
  69. Ohtoshi A. Behringer R.R. Neonatal lethality, dwarfism, and abnormal brain development in DMBX1 mutant mice. Mol. Cell. Biol. 2004 24 17 7548 7558 10.1128/MCB.24.17.7548‑7558.2004 15314164
    [Google Scholar]
  70. Luo J. Liu K. Yao Y. Sun Q. Zheng X. Zhu B. Zhang Q. Xu L. Shen Y. Ren B. DMBX1 promotes tumor proliferation and regulates cell cycle progression via repressing OTX2-mediated transcription of p21 in lung adenocarcinoma cell. Cancer Lett. 2019 453 45 56 10.1016/j.canlet.2019.03.045 30928384
    [Google Scholar]
  71. Xu X. Liu T. Wang Y. Fu J. Yang Q. Wu J. Zhou H. miRNA–mRNA associated with survival in endometrial cancer. Front. Genet. 2019 10 743 10.3389/fgene.2019.00743 31481972
    [Google Scholar]
  72. Huang X. Xiang L. Liu W. Li M. Ren A. Chen Z. Zheng C. Chengcong C. Liu J. Yuan Y. Roles of diencephalon/mesencephalon homeobox 1 in the development and prognosis of hepatocellular carcinoma. Ann. Hepatol. 2021 24 100314 10.1016/j.aohep.2021.100314 33524552
    [Google Scholar]
  73. Gu Y. Chow M.J. Kapoor A. Mei W. Jiang Y. Yan J. Melo D.J. Seliman M. Yang H. Cutz J.C. Bonert M. Major P. Tang D. Biphasic alteration of butyrylcholinesterase (BChE) during prostate cancer development. Transl. Oncol. 2018 11 4 1012 1022 10.1016/j.tranon.2018.06.003 29966864
    [Google Scholar]
  74. Ma J.B. Bai J.Y. Zhang H.B. Gu L. He D. Guo P. Downregulation of collagen COL4A6 is associated with prostate cancer progression and metastasis. Genet. Test. Mol. Biomarkers 2020 24 7 399 408 10.1089/gtmb.2020.0009 32551898
    [Google Scholar]
  75. Xiong Y. Huang H. Chen S. Dai H. Zhang L. ERK5-regulated RERG expression promotes cancer progression in prostatic carcinoma. Oncol. Rep. 2019 41 2 1160 1168 30431143
    [Google Scholar]
  76. Xu S. Wu X. Tao Z. Li H. Fan C. Chen S. Guo J. Ning Y. Hu X. Effect of aberrantly methylated androgen receptor target gene PCDH7 on the development of androgen-independent prostate cancer cells. Genes Genomics 2020 42 3 299 307 10.1007/s13258‑019‑00903‑w 31872382
    [Google Scholar]
  77. Banyard J. Bao L. Hofer M.D. Zurakowski D. Spivey K.A. Feldman A.S. Hutchinson L.M. Kuefer R. Rubin M.A. Zetter B.R. Collagen XXIII expression is associated with prostate cancer recurrence and distant metastases. Clin. Cancer Res. 2007 13 9 2634 2642 10.1158/1078‑0432.CCR‑06‑2163 17473194
    [Google Scholar]
  78. Yang W. Chen H. Ma L. Dong J. Wei M. Xue X. Li Y. Jin Z. Xu W. Ji Z. SHOX2 promotes prostate cancer proliferation and metastasis through disruption of the Hippo-YAP pathway. iScience 2023 26 9 107617 10.1016/j.isci.2023.107617 37664594
    [Google Scholar]
  79. Zhu L.F. Song L.D. Xu Q. Zhan J.F. Highly expressed long non-coding RNA FEZF1-AS1 promotes cells proliferation and metastasis through Notch signaling in prostate cancer. Eur. Rev. Med. Pharmacol. Sci. 2019 23 12 5122 5132 31298365
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362568250505074520
Loading
/content/journals/cmc/10.2174/0109298673362568250505074520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test