Skip to content
2000
image of Sulfur and Selenium Modifications at Phosphorus Atom in Nucleoside Monophosphates, Activity and Potential Applications

Abstract

Nucleotides and nucleosides play an essential role in many cellular processes but have low physiological stability, which limits their usefulness. Nucleosides modified with chalcogen at the phosphorus atom are more stable in body fluids and tissues. They can act as activators or inhibitors in many processes, including signal transduction through receptors and intracellular signaling. Some of them are also used as drugs or prodrugs that can serve as potential therapeutics in cancer and other diseases. This review focuses primarily on the activity and potential application of the nucleoside monophosphates modified with sulfur and selenium at the phosphorus atom, such as nucleoside 5’-O-phosphorothioate and 5’-O-phosphoroselenoates as well as adenosine cyclic 5’, 3’- monothiophosphate and guanosine cyclic 5’, 3’-monothiophosphate.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673361335250404171911
2025-04-28
2025-10-28
Loading full text...

Full text loading...

References

  1. Składanowski A.C. The role of soluble 5′-nucleotidases in the conversion of nucleotide analogs: Metabolic and therapeutic aspects. Curr. Med. Chem. 2013 20 34 4249 4259 10.2174/0929867311320340005 23992311
    [Google Scholar]
  2. Long Y.C. Zierath J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 2006 116 7 1776 1783 10.1172/JCI29044 16823475
    [Google Scholar]
  3. Kepp O. Loos F. Liu P. Kroemer G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol. Rev. 2017 280 1 83 92 10.1111/imr.12571 29027229
    [Google Scholar]
  4. Yegutkin G.G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta Mol. Cell Res. 2008 1783 5 673 694 10.1016/j.bbamcr.2008.01.024 18302942
    [Google Scholar]
  5. Yan K. Gao L.N. Cui Y.L. Zhang Y. Zhou X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery (Review). Mol. Med. Rep. 2016 13 5 3715 3723 10.3892/mmr.2016.5005 27035868
    [Google Scholar]
  6. Moroder L. Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J. Pept. Sci. 2005 11 4 187 214 10.1002/psc.654 15782428
    [Google Scholar]
  7. Li G.M. Zingaro R.A. Segi M. Reibenspies J.H. Nakajima T. Synthesis and structure of telluroamides and selenoamides. The first crystallographic study of telluroamides. Organometallics 1997 16 4 756 762 10.1021/om960883w
    [Google Scholar]
  8. Nawrot B. Sierant M. Szczupak P. Sugimoto N. Sulfur and Selenium modified bacterial tRNAs. Handbook of Chemical Biology of Nucleic Acids. Springer Singapore 2023 10.1007/978‑981‑16‑1313‑5_43‑1
    [Google Scholar]
  9. Shetty S.P. Copeland P.R. Selenocysteine incorporation: A trump card in the game of mRNA decay. Biochimie 2015 114 97 101 10.1016/j.biochi.2015.01.007 25622574
    [Google Scholar]
  10. Kayrouz C.M. Seyedsayamdost M.R. Enzymatic strategies for selenium incorporation into biological molecules. Curr. Opin. Chem. Biol. 2024 81 102495 10.1016/j.cbpa.2024.102495 38954947
    [Google Scholar]
  11. Ramadan S.E. Razak A.A. Ragab A.M. El-Meleigy M. Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biol. Trace Elem. Res. 1989 20 3 225 232 10.1007/BF02917437 2484755
    [Google Scholar]
  12. Budisa N. Karnbrock W. Steinbacher S. Humm A. Prade L. Neuefeind T. Moroder L. Huber R. Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 1997 270 4 616 623 10.1006/jmbi.1997.1132 9245591
    [Google Scholar]
  13. Chen C. Huang Z. Tellurium-modified nucleosides, nucleotides, and nucleic acids with potential applications. Molecules 2022 27 23 8379 10.3390/molecules27238379 36500495
    [Google Scholar]
  14. Espinasse A. Lembke H.K. Cao A.A. Carlson E.E. Modified nucleoside triphosphates in bacterial research for in vitro and live-cell applications. RSC Chem. Biol. 2020 1 5 333 351 10.1039/D0CB00078G 33928252
    [Google Scholar]
  15. Eckstein F. Nucleoside phosphorothioates. Annu. Rev. Biochem. 1985 54 1 367 402 10.1146/annurev.bi.54.070185.002055 2411211
    [Google Scholar]
  16. Egli M. Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023 51 6 2529 2573 10.1093/nar/gkad067 36881759
    [Google Scholar]
  17. Crooke S.T. Liang X.H. Baker B.F. Crooke R.M. Antisense technology: A review. J. Biol. Chem. 2021 296 100416 10.1016/j.jbc.2021.100416 33600796
    [Google Scholar]
  18. Gait M.J. Agrawal S. Introduction and history of the chemistry of nucleic acids therapeutics. Methods Mol. Biol. 2022 2434 3 31 10.1007/978‑1‑0716‑2010‑6_1 35213007
    [Google Scholar]
  19. Eckstein F. Gish G. Phosphorothioates in molecular biology. Trends Biochem. Sci. 1989 14 3 97 100 10.1016/0968‑0004(89)90130‑8 2658220
    [Google Scholar]
  20. Wójcik M. Cieślak M. Stec W.J. Goding J.W. Koziołkiewicz M. Nucleotide pyrophosphatase/phosphodiesterase 1 is responsible for degradation of antisense phosphorothioate oligonucleotides. Oligonucleotides 2007 17 1 134 145 10.1089/oli.2007.0021 17461770
    [Google Scholar]
  21. Gilar M. Belenky A. Smisek D.L. Bourque A. Cohen A.S. Kinetics of phosphorothioate oligonucleotide metabolism in biological fluids. Nucleic Acids Res. 1997 25 18 3615 3620 10.1093/nar/25.18.3615 9278481
    [Google Scholar]
  22. Agrawal S. Temsamani J. Tang J.Y. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA 1991 88 17 7595 7599 10.1073/pnas.88.17.7595 1881900
    [Google Scholar]
  23. Sands H. Gorey-Feret L.J. Cocuzza A.J. Hobbs F.W. Chidester D. Trainor G.L. Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol. 1994 45 5 932 943 10.1016/S0026‑895X(25)10208‑3 8190109
    [Google Scholar]
  24. Temsamani J. Roskey A. Chaix C. Agrawal S. In vivo metabolic profile of a phosphorothioate oligodeoxyribonucleotide. Antisense Nucleic Acid Drug Dev. 1997 7 3 159 165 10.1089/oli.1.1997.7.159 9212906
    [Google Scholar]
  25. Koziołkiewicz M. Wójcik M. Kobylańska A. Karwowski B. Rȩbowska B. Guga P. Stec W.J. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: Diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dev. 1997 7 1 43 48 10.1089/oli.1.1997.7.43 9055038
    [Google Scholar]
  26. Koziołkiewicz M. Owczarek A. Domañski K. Nowak M. Guga P. Stec W.J. Stereochemistry of cleavage of internucleotide bonds by Serratia marcescens endonuclease. Bioorg. Med. Chem. 2001 9 9 2403 2409 10.1016/S0968‑0896(01)00214‑0 11553482
    [Google Scholar]
  27. Koziołkiewicz M. Owczarek A. Gendaszewska E. Enzymatic assignment of diastereomeric purity of stereodefined phosphorothioate oligonucleotides. Antisense Nucleic Acid Drug Dev. 1999 9 2 171 181 10.1089/oli.1.1999.9.171 10355823
    [Google Scholar]
  28. Braasch D.A. Jensen S. Liu Y. Kaur K. Arar K. White M.A. Corey D.R. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003 42 26 7967 7975 10.1021/bi0343774 12834349
    [Google Scholar]
  29. Jahns H. Taneja N. Willoughby J.L.S. Akabane-Nakata M. Brown C.R. Nguyen T. Bisbe A. Matsuda S. Hettinger M. Manoharan R.M. Rajeev K.G. Maier M.A. Zlatev I. Charisse K. Egli M. Manoharan M. Chirality matters: Stereo-defined phosphorothioate linkages at the termini of small interfering RNAs improve pharmacology in vivo. Nucleic Acids Res. 2022 50 3 1221 1240 10.1093/nar/gkab544 34268578
    [Google Scholar]
  30. Belgrad J. Fakih H.H. Khvorova A. Nucleic acid therapeutics: Successes, milestones, and upcoming innovation. Nucleic Acid Ther. 2024 34 2 52 72 10.1089/nat.2023.0068 38507678
    [Google Scholar]
  31. Wang L. Chen S. Xu T. Taghizadeh K. Wishnok J.S. Zhou X. You D. Deng Z. Dedon P.C. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 2007 3 11 709 710 10.1038/nchembio.2007.39 17934475
    [Google Scholar]
  32. Wang L. Chen S. Vergin K.L. Giovannoni S.J. Chan S.W. DeMott M.S. Taghizadeh K. Cordero O.X. Cutler M. Timberlake S. Alm E.J. Polz M.F. Pinhassi J. Deng Z. Dedon P.C. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl. Acad. Sci. USA 2011 108 7 2963 2968 10.1073/pnas.1017261108 21285367
    [Google Scholar]
  33. Xiong L. Liu S. Chen S. Xiao Y. Zhu B. Gao Y. Zhang Y. Chen B. Luo J. Deng Z. Chen X. Wang L. Chen S. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 2019 10 1 1688 10.1038/s41467‑019‑09390‑9 30975999
    [Google Scholar]
  34. Kaiser S. Byrne S.R. Ammann G. Atoi P.A. Borland K. Brecheisen R. DeMott M.S. Gehrke T. Hagelskamp F. Heiss M. Yoluç Y. Liu L. Zhang Q. Dedon P.C. Cao B. Kellner S. Strategies to avoid artifacts in mass spectrometry-based epitranscriptome analyses. Angew. Chem. Int. Ed. 2021 60 44 23885 23893 10.1002/anie.202106215 34339593
    [Google Scholar]
  35. Wagner C.R. Iyer V.V. McIntee E.J. Pronucleotides: Toward the in vivo delivery of antiviral and anticancer nucleotides. Med. Res. Rev. 2000 20 6 417 451 10.1002/1098‑1128(200011)20:6<417::AID‑MED1>3.0.CO;2‑Z 11058891
    [Google Scholar]
  36. Cahard D. McGuigan C. Balzarini J. Aryloxy phosphoramidate triesters as pro-tides. Mini Rev. Med. Chem. 2004 4 4 371 381 10.2174/1389557043403936 15134540
    [Google Scholar]
  37. Chou T.F. Baraniak J. Kaczmarek R. Zhou X. Cheng J. Ghosh B. Wagner C.R. Phosphoramidate pronucleotides: A comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins. Mol. Pharm. 2007 4 2 208 217 10.1021/mp060070y 17217311
    [Google Scholar]
  38. Krakowiak A. Kaczmarek R. Baraniak J. Wieczorek M. Stec W.J. Stereochemistry of rHint1 hydrolase assisted cleavage of P–N bond in nucleoside 5′-O-phosphoramidothioates. Chem. Commun. 2007 21 2163 2165 10.1039/B615160D 17520123
    [Google Scholar]
  39. Mehellou Y. Rattan H.S. Balzarini J. The ProTide prodrug technology: From the concept to the clinic. J. Med. Chem. 2018 61 6 2211 2226 10.1021/acs.jmedchem.7b00734 28792763
    [Google Scholar]
  40. Brenner C. Hint, Fhit, and GalT: Function, structure, evolution, and mechanism of three branches of the histidine triad superfamily of nucleotide hydrolases and transferases. Biochemistry 2002 41 29 9003 9014 10.1021/bi025942q 12119013
    [Google Scholar]
  41. Serpi M. di Ciano S. Pertusati F. Design, synthesis and biological evaluation of aryloxy thiophosphoramidate triesters of anticancer nucleoside analogues. Bioorg. Med. Chem. 2024 103 117696 10.1016/j.bmc.2024.117696 38547648
    [Google Scholar]
  42. Smith D.B. Deval J. Dyktina N. Beigelman L. Wang, G. Substituted nucleotide analogs. Patent US 2012/0071434 A1 2012
  43. Murray A.W. Atkinson M.R. Adenosine 5′-phosphorothioate. A nucleotide analog that is a substrate, competitive inhibitor, or regulator of some enzymes that interact with adenosine 5′-phosphate. Biochemistry 1968 7 11 4023 4029 10.1021/bi00851a032 4301880
    [Google Scholar]
  44. Johnson D.C. II Widlanski T.S. Overview of the synthesis of nucleoside phosphates and polyphosphates. Curr Protoc Nucleic Acid Chem 2004
    [Google Scholar]
  45. Baraniak J. Kaczmarek R. Korczyński D. Wasilewska E. Oxathiaphospholane approach to N- and O-phosphorothioylation of amino acids. J. Org. Chem. 2002 67 21 7267 7274 10.1021/jo026027d 12375953
    [Google Scholar]
  46. Misiura K. Szymanowicz D. Stec W.J. Synthesis of nucleoside alpha-thiotriphosphates via an oxathiaphospholane approach. Org. Lett. 2005 7 11 2217 2220 10.1021/ol050617r 15901173
    [Google Scholar]
  47. Asseline U. Thuong N.T. Modification of the 5' terminus of oligodeoxyribonucleotides for conjugation with ligands. Curr Protoc Nucleic Acid Chem 2001
    [Google Scholar]
  48. Bartoszewicz A. Kalek M. Stawinski J. The case for the intermediacy of monomeric metaphosphate analogues during oxidation of H-phosphonothioate, H-phosphonodithioate, and H-phosphonoselenoate monoesters: Mechanistic and synthetic studies. J. Org. Chem. 2008 73 13 5029 5038 10.1021/jo8006072 18507440
    [Google Scholar]
  49. Sun Q. Li X. Gong S. Liu G. Shen L. Peng L. A novel synthesis of antiviral nucleoside phosphoramidate and thiophosphoramidate prodrugs via nucleoside H-phosphonamidates. Nucleosides Nucleotides Nucleic Acids 2013 32 11 617 638 10.1080/15257770.2013.838262 24138500
    [Google Scholar]
  50. Huang Y. Knouse K.W. Qiu S. Hao W. Padial N.M. Vantourout J.C. Zheng B. Mercer S.E. Lopez-Ogalla J. Narayan R. Olson R.E. Blackmond D.G. Eastgate M.D. Schmidt M.A. McDonald I.M. Baran P.S. A P(V) platform for oligonucleotide synthesis. Science 2021 373 6560 1265 1270 10.1126/science.abi9727 34516793
    [Google Scholar]
  51. Obexer R. Nassir M. Moody E.R. Baran P.S. Lovelock S.L. Modern approaches to therapeutic oligonucleotide manufacturing. Science 2024 384 6692 eadl4015 10.1126/science.adl4015 38603508
    [Google Scholar]
  52. Vaerman J.L. Moureau P. Deldime F. Lewalle P. Lammineur C. Morschhauser F. Martiat P. Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise release of deoxyribonucleotides. Blood 1997 90 1 331 339 10.1182/blood.V90.1.331.331_331_339 9207469
    [Google Scholar]
  53. Koziolkiewicz M. Gendaszewska E. Maszewska M. Stein C.A. Stec W.J. The mononucleotide-dependent, nonantisense mechanism of action of phosphodiester and phosphorothioate oligonucleotides depends upon the activity of an ecto-5′-nucleotidase. Blood 2001 98 4 995 1002 10.1182/blood.V98.4.995 11493444
    [Google Scholar]
  54. Zukowska P. Kutryb-Zajac B. Toczek M. Smolenski R.T. Slominska E.M. The role of ecto-5′-nucleotidase in endothelial dysfunction and vascular pathologies. Pharmacol. Rep. 2015 67 4 675 681 10.1016/j.pharep.2015.05.002 26321267
    [Google Scholar]
  55. Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 2000 362 4-5 299 309 10.1007/s002100000309 11111825
    [Google Scholar]
  56. Abbracchio M.P. Burnstock G. Boeynaems J.M. Barnard E.A. Boyer J.L. Kennedy C. Knight G.E. Fumagalli M. Gachet C. Jacobson K.A. Weisman G.A. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 2006 58 3 281 341 10.1124/pr.58.3.3 16968944
    [Google Scholar]
  57. Gendaszewska-Darmach E. Szustak M. Thymidine 5′-O-monophosphorothioate induces HeLa cell migration by activation of the P2Y6 receptor. Purinergic Signal. 2016 12 2 199 209 10.1007/s11302‑015‑9492‑1 26746211
    [Google Scholar]
  58. Gendaszewska-Darmach E. Węgłowska E. Walczak-Drzewiecka A. Karaś K. Nucleoside 5′- O -monophosphorothioates as modulators of the P2Y14 receptor and mast cell degranulation. Oncotarget 2016 7 43 69358 69370 10.18632/oncotarget.12541 27732965
    [Google Scholar]
  59. Węgłowska E. Koziołkiewicz M. Kamińska D. Grobelski B. Pawełczak D. Kołodziejczyk M. Bielecki S. Gendaszewska-Darmach E. Extracellular nucleotides affect the proangiogenic behavior of fibroblasts, keratinocytes, and endothelial cells. Int. J. Mol. Sci. 2021 23 1 238 10.3390/ijms23010238 35008664
    [Google Scholar]
  60. Breslow R. Katz I. Relative reactivities of p-nitrophenyl phosphate and phosphorothioate toward alkaline phosphatase and in aqueous hydrolysis. J. Am. Chem. Soc. 1968 90 26 7376 7377 10.1021/ja01028a054
    [Google Scholar]
  61. Chlebowski J.F. Coleman J.E. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase. J. Biol. Chem. 1974 249 22 7192 7202 10.1016/S0021‑9258(19)42092‑9 4612034
    [Google Scholar]
  62. Mohamed M.F. Hollfelder F. Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer. Biochim. Biophys. Acta. Proteins Proteomics 2013 1834 1 417 424 10.1016/j.bbapap.2012.07.015 22885024
    [Google Scholar]
  63. Pabis A. Duarte F. Kamerlin S.C.L. Promiscuity in the enzymatic catalysis of phosphate and sulfate transfer. Biochemistry 2016 55 22 3061 3081 10.1021/acs.biochem.6b00297 27187273
    [Google Scholar]
  64. Jiang R.T. Dahnke T. Tsai M.D. Mechanism of adenylate kinase. 10. Reversing phosphorus stereospecificity by site-directed mutagenesis. J. Am. Chem. Soc. 1991 113 14 5485 5486 10.1021/ja00014a067
    [Google Scholar]
  65. Krakowiak A. Owczarek A. Koziołkiewicz M. Stec W.J. Stereochemical course of Escherichia coli RNase H. ChemBioChem 2002 3 12 1242 1250 10.1002/1439‑7633(20021202)3:12<1242::AID‑CBIC1242>3.0.CO;2‑Y 12465033
    [Google Scholar]
  66. Connolly B.A. Eckstein F. Pingoud A. The stereochemical course of the restriction endonuclease EcoRI-catalyzed reaction. J. Biol. Chem. 1984 259 17 10760 10763 10.1016/S0021‑9258(18)90576‑4 6088516
    [Google Scholar]
  67. Grasby J.A. Connolly B.A. Stereochemical outcome of the hydrolysis reaction catalyzed by the EcoRV restriction endonuclease. Biochemistry 1992 31 34 7855 7861 10.1021/bi00149a016 1510972
    [Google Scholar]
  68. Ozga M. Dolot R. Janicka M. Kaczmarek R. Krakowiak A. Histidine triad nucleotide-binding protein 1 (HINT-1) phosphoramidase transforms nucleoside 5′-O-phosphorothioates to nucleoside 5′-O-phosphates. J. Biol. Chem. 2010 285 52 40809 40818 10.1074/jbc.M110.162065 20940308
    [Google Scholar]
  69. Brenner C. Garrison P. Gilmour J. Peisach D. Ringe D. Petsko G.A. Lowenstein J.M. Crystal structures of HINT demonstrate that histidine triad proteins are GalT-related nucleotide-binding proteins. Nat. Struct. Biol. 1997 4 3 231 238 10.1038/nsb0397‑231 9164465
    [Google Scholar]
  70. Krakowiak A. Pawłowska R. Kocoń-Rębowska B. Dolot R. Stec W.J. Interactions of cellular histidine triad nucleotide binding protein 1 with nucleosides 5′-O- monophosphorothioate and their derivatives — Implication for desulfuration process in the cell. Biochim. Biophys. Acta, Gen. Subj. 2014 1840 12 3357 3366 10.1016/j.bbagen.2014.08.016 25199874
    [Google Scholar]
  71. Krakowiak A. Piotrzkowska D. Kocoń-Rębowska B. Kaczmarek R. Maciaszek A. The role of the Hint1 protein in the metabolism of phosphorothioate oligonucleotides drugs and prodrugs, and the release of H2S under cellular conditions. Biochem. Pharmacol. 2019 163 250 259 10.1016/j.bcp.2019.02.018 30772266
    [Google Scholar]
  72. Bełtowski J. Guranowski A. Jamroz-Wiśniewska A. Korolczuk A. Wojtak A. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties. Pharmacol. Res. 2014 81 34 43 10.1016/j.phrs.2014.01.003 24508566
    [Google Scholar]
  73. Bełtowski J. Guranowski A. Jamroz-Wiśniewska A. Wolski A. Hałas K. Hydrogen-sulfide-mediated vasodilatory effect of nucleoside 5′-monophosphorothioates in perivascular adipose tissue. Can. J. Physiol. Pharmacol. 2015 93 7 585 595 10.1139/cjpp‑2014‑0543 26120822
    [Google Scholar]
  74. Bełtowski J. Synthesis, metabolism, and signaling mechanisms of hydrogen sulfide: An overview. Methods Mol. Biol. 2019 2007 1 8 10.1007/978‑1‑4939‑9528‑8_1 31148102
    [Google Scholar]
  75. Szabo C. Ransy C. Módis K. Andriamihaja M. Murghes B. Coletta C. Olah G. Yanagi K. Bouillaud F. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br. J. Pharmacol. 2014 171 8 2099 2122 10.1111/bph.12369 23991830
    [Google Scholar]
  76. Kolluru G.K. Shen X. Bir S.C. Kevil C.G. Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide 2013 35 5 20 10.1016/j.niox.2013.07.002 23850632
    [Google Scholar]
  77. Martelli A. Testai L. Breschi M.C. Blandizzi C. Virdis A. Taddei S. Calderone V. Hydrogen sulphide: Novel opportunity for drug discovery. Med. Res. Rev. 2012 32 6 1093 1130 10.1002/med.20234 23059761
    [Google Scholar]
  78. Kashfi K. Olson K.R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol. 2013 85 5 689 703 10.1016/j.bcp.2012.10.019 23103569
    [Google Scholar]
  79. Bełtowski J. Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem. Pharmacol. 2023 208 115381 10.1016/j.bcp.2022.115381 36528069
    [Google Scholar]
  80. Taskén K. Aandahl E.M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 2004 84 1 137 167 10.1152/physrev.00021.2003 14715913
    [Google Scholar]
  81. Francis S.H. Blount M.A. Zoraghi R. Corbin J.D. Molecular properties of mammalian proteins that interact with cGMP: Protein kinases, cation channels, phosphodiesterases, and multi-drug anion transporters. Front. Biosci. 2005 10 1-3 2097 2117 10.2741/1684 15970481
    [Google Scholar]
  82. Slika H. Mansour H. Nasser S.A. Shaito A. Kobeissy F. Orekhov A.N. Pintus G. Eid A.H. Epac as a tractable therapeutic target. Eur. J. Pharmacol. 2023 945 175645 10.1016/j.ejphar.2023.175645 36894048
    [Google Scholar]
  83. Musheshe N. Schmidt M. Zaccolo M. cAMP: From long-range second messenger to nanodomain signalling. Trends Pharmacol. Sci. 2018 39 2 209 222 10.1016/j.tips.2017.11.006 29289379
    [Google Scholar]
  84. Biel, M.; Michalakis, S. Cyclic nucleotide-gated channels. In: Schmidt, H.H.H.W.; Hofmann, F.; Stasch, J.P. cGMP: Generators, Effectors and Therapeutic Implications, 1st ed.; Springer Berlin, Heidelberg, 2009. 10.1007/978‑3‑540‑68964‑5
    [Google Scholar]
  85. Schindler R.F.R. Brand T. The Popeye domain containing protein family – A novel class of cAMP effectors with important functions in multiple tissues. Prog. Biophys. Mol. Biol. 2016 120 1-3 28 36 10.1016/j.pbiomolbio.2016.01.001 26772438
    [Google Scholar]
  86. Ke X. Terashima M. Nariai Y. Nakashima Y. Nabika T. Tanigawa Y. Nitric oxide regulates actin reorganization through cGMP and Ca2+/calmodulin in RAW 264.7 cells. Biochim. Biophys. Acta Mol. Cell Res. 2001 1539 1-2 101 113 10.1016/S0167‑4889(01)00090‑8 11389972
    [Google Scholar]
  87. Houslay M.D. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci. 2010 35 2 91 100 10.1016/j.tibs.2009.09.007 19864144
    [Google Scholar]
  88. Keravis T. Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: Benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br. J. Pharmacol. 2012 165 5 1288 1305 10.1111/j.1476‑5381.2011.01729.x 22014080
    [Google Scholar]
  89. Undheim K. cAMPS derivatives. A minireview over synthetic medicinal chemistry. Bioorg. Chem. 2019 91 103152 10.1016/j.bioorg.2019.103152 31419644
    [Google Scholar]
  90. Eckstein F. Simonson L.P. Baer H.P. Adenosine 3′,5′-cyclic phosphorothioate. Synthesis and biological properties. Biochemistry 1974 13 18 3806 3810 10.1021/bi00715a029 4368374
    [Google Scholar]
  91. Baraniak J. Kinas R.W. Lesiak K. Stec W.J. Stereospecific synthesis of adenosine 3′,5′-(SP- and -(RP)-cyclic phosphorothioates (cAMPS). J. Chem. Soc. Chem. Commun. 1979 0 21 940 941 10.1039/C39790000940
    [Google Scholar]
  92. Genieser H.G. Dostmann W. Bottin U. Butt E. Jastorff B. Synthesis of nucleoside-3′, 5′-cyclic phosphorothioates by cyclothiophosphorylation of unprotected nucleosides. Tetrahedron Lett. 1988 29 23 2803 2804 10.1016/0040‑4039(88)85214‑6
    [Google Scholar]
  93. de WIT R.J.W. Hoppe J. Stec W.J. Baraniak J. Jastorff B. Interaction of cAMP derivatives with the ‘stable’ cAMP-binding site in the cAMP-dependent protein kinase type I. Eur. J. Biochem. 1982 122 1 95 99 10.1111/j.1432‑1033.1982.tb05852.x 6277633
    [Google Scholar]
  94. O’Brian C.A. Roczniak S.O. Bramson H.N. Baraniak J. Stec W.J. Kaiser E.T. A kinetic study of interactions of (RP)- and (SP)-adenosine cyclic 3′,5′-phosphorothioates with type II bovine cardiac muscle adenosine cyclic 3′,5′-phosphate dependent protein kinase. Biochemistry 1982 21 18 4371 4376 10.1021/bi00261a028 6289880
    [Google Scholar]
  95. Dostmann W.R.G. Taylor S.S. Identifying the molecular switches that determine whether (Rp)-cAMPS functions as an antagonist or an agonist in the activation of cAMP-dependent protein kinase I. Biochemistry 1991 30 35 8710 8716 10.1021/bi00099a032 1653606
    [Google Scholar]
  96. Dostmann W.R. Taylor S.S. Genieser H.G. Jastorff B. Døskeland S.O. Ogreid D. Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinases I and II with analogs of adenosine 3′,5′-cyclic phosphorothioates. J. Biol. Chem. 1990 265 18 10484 10491 10.1016/S0021‑9258(18)86973‑3 2162349
    [Google Scholar]
  97. Rothermel J.D. Stec W.J. Baraniak J. Jastorff B. Botelho L.H. Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3‘,5‘-phosphorothioate. J. Biol. Chem. 1983 258 20 12125 12128 10.1016/S0021‑9258(17)44142‑1 6313639
    [Google Scholar]
  98. Rothermel J.D. Perillo N.L. Marks J.S. Botelho L.H. Effects of the specific cAMP antagonist, (Rp)-adenosine cyclic 3‘,5‘-phosphorothioate, on the cAMP-dependent protein kinase-induced activity of hepatic glycogen phosphorylase and glycogen synthase. J. Biol. Chem. 1984 259 24 15294 15300 10.1016/S0021‑9258(17)42548‑8 6096366
    [Google Scholar]
  99. Schwede F. Maronde E. Genieser H.G. Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol. Ther. 2000 87 2-3 199 226 10.1016/S0163‑7258(00)00051‑6 11008001
    [Google Scholar]
  100. Van Haastert P.J. Van Driel R. Jastorff B. Baraniak J. Stec W.J. De Wit R.J. Competitive cAMP antagonists for cAMP-receptor proteins. J. Biol. Chem. 1984 259 16 10020 10024 10.1016/S0021‑9258(18)90920‑8 6088478
    [Google Scholar]
  101. Van Haastert P.J.M. Dijkgraaf P.A.M. Konijn T.M. Abbad E.G. Petridis G. Jastorff B. Substrate specificity of cyclic nucleotide phosphodiesterase from beef heart and from Dictyostelium discoideum. Eur. J. Biochem. 1983 131 3 659 665 10.1111/j.1432‑1033.1983.tb07314.x 6301815
    [Google Scholar]
  102. Soderling S.H. Beavo J.A. Regulation of cAMP and cGMP signaling: New phosphodiesterases and new functions. Curr. Opin. Cell Biol. 2000 12 2 174 179 10.1016/S0955‑0674(99)00073‑3 10712916
    [Google Scholar]
  103. Lusardi M. Rapetti F. Spallarossa A. Brullo C. PDE4D: A multipurpose pharmacological target. Int. J. Mol. Sci. 2024 25 15 8052 10.3390/ijms25158052 39125619
    [Google Scholar]
  104. Jang I.S. Nakamura M. Nonaka K. Noda M. Kotani N. Katsurabayashi S. Nagami H. Akaike N. Protein kinase a is responsible for the presynaptic inhibition of glycinergic and glutamatergic transmissions by xenon in rat spinal cord and hippocampal CA3 neurons. J. Pharmacol. Exp. Ther. 2023 386 3 331 343 10.1124/jpet.123.001599 37391223
    [Google Scholar]
  105. Khairullin A.E. Grishin S.N. Ziganshin A.U. Presynaptic purinergic modulation of the rat neuro-muscular transmission. Curr. Issues Mol. Biol. 2023 45 10 8492 8501 10.3390/cimb45100535 37886978
    [Google Scholar]
  106. Kokane S.S. Cole R.D. Bordieanu B. Ray C.M. Haque I.A. Otis J.M. McGinty J.F. Increased excitability and synaptic plasticity of Drd1- and Drd2-expressing prelimbic neurons projecting to nucleus accumbens after heroin abstinence are reversed by Cue-induced relapse and protein kinase A inhibition. J. Neurosci. 2023 43 22 4019 4032 10.1523/JNEUROSCI.0108‑23.2023 37094933
    [Google Scholar]
  107. Andrei M. Bjørnstad V. Langli G. Rømming C. Klaveness J. Taskén K. Undheim K. Stereoselective preparation of (RP)-8-hetaryladenosine-3′,5′-cyclic phosphorothioic acids. Org. Biomol. Chem. 2007 5 13 2070 2080 10.1039/B702403G 17581650
    [Google Scholar]
  108. Aandahl E.M. Aukrust P. Müller F. Hansson V. Taskén K. Frøland S.S. Additive effects of IL-2 and protein kinase A type I antagonist on function of T cells from HIV-infected patients on HAART. FASEB J. 1998 12 855 862 10.1096/fasebj.12.10.855 9657525
    [Google Scholar]
  109. Schwede F. Chepurny O.G. Kaufholz M. Bertinetti D. Leech C.A. Cabrera O. Zhu Y. Mei F. Cheng X. Manning Fox J.E. MacDonald P.E. Genieser H.G. Herberg F.W. Holz G.G. Rp-cAMPS prodrugs reveal the cAMP dependence of first-phase glucose-stimulated insulin secretion. Mol. Endocrinol. 2015 29 7 988 1005 10.1210/me.2014‑1330 26061564
    [Google Scholar]
  110. Schwede F. Bertinetti D. Langerijs C.N. Hadders M.A. Wienk H. Ellenbroek J.H. de Koning E.J.P. Bos J.L. Herberg F.W. Genieser H.G. Janssen R.A.J. Rehmann H. Structure-guided design of selective Epac1 and Epac2 agonists. PLoS Biol. 2015 13 1 e1002038 10.1371/journal.pbio.1002038 25603503
    [Google Scholar]
  111. Poppe H. Rybalkin S.D. Rehmann H. Hinds T.R. Tang X.B. Christensen A.E. Schwede F. Genieser H.G. Bos J.L. Doskeland S.O. Beavo J.A. Butt E. Cyclic nucleotide analogs as probes of signaling pathways. Nat. Methods 2008 5 4 277 278 10.1038/nmeth0408‑277 18376388
    [Google Scholar]
  112. de Vries T. Labruijere S. Rivera-Mancilla E. Garrelds I.M. de Vries R. Schutter D. van den Bogaerdt A. Poyner D.R. Ladds G. Danser A.H.J. MaassenVanDenBrink A. Intracellular pathways of calcitonin gene-related peptide-induced relaxation of human coronary arteries: A key role for Gβγ subunit instead of cAMP. Br. J. Pharmacol. 2024 181 15 2478 2491 10.1111/bph.16372 38583945
    [Google Scholar]
  113. Fan X. Yang G. Yang Z. Uhlig S. Sattler K. Bieback K. Hamdani N. El-Battrawy I. Duerschmied D. Zhou X. Akin I. Catecholamine induces endothelial dysfunction via Angiotensin II and intermediate conductance calcium activated potassium channel. Biomed. Pharmacother. 2024 177 116928 10.1016/j.biopha.2024.116928 38889637
    [Google Scholar]
  114. Butt E. Van Bemmelen M. Fischer L. Walter U. Jastorff B. Inhibition of cGMP-dependent protein kinase by (Rp)-guanosine 3′,5′-monophosphorothioates. FEBS Lett. 1990 263 1 47 50 10.1016/0014‑5793(90)80702‑K 2158906
    [Google Scholar]
  115. Butt E. Pöhler D. Genieser H.G. Huggins J.P. Bucher B. Inhibition of cyclic GMP-dependent protein kinase-mediated effects by (Rp)-8-bromo-PET-cyclic GMPS. Br. J. Pharmacol. 1995 116 8 3110 3116 10.1111/j.1476‑5381.1995.tb15112.x 8719784
    [Google Scholar]
  116. Kramer R.H. Tibbs G.R. Antagonists of cyclic nucleotide-gated channels and molecular mapping of their site of action. J. Neurosci. 1996 16 4 1285 1293 10.1523/JNEUROSCI.16‑04‑01285.1996 8778280
    [Google Scholar]
  117. An Y. Hu S. Zhang Y. Song Z. Li R. Li Y. Li Y. Ren W. Wan P. Knockdown of miR-19a suppresses gastrointestinal dysmotility diarrhea after TBI by regulating VIP expression. Brain Behav. 2023 13 7 e3071 10.1002/brb3.3071 37218372
    [Google Scholar]
  118. Vighi E. Trifunović D. Veiga-Crespo P. Rentsch A. Hoffmann D. Sahaboglu A. Strasser T. Kulkarni M. Bertolotti E. van den Heuvel A. Peters T. Reijerkerk A. Euler T. Ueffing M. Schwede F. Genieser H.G. Gaillard P. Marigo V. Ekström P. Paquet-Durand F. Combination of cGMP analogue and drug delivery system provides functional protection in hereditary retinal degeneration. Proc. Natl. Acad. Sci. USA 2018 115 13 E2997 E3006 10.1073/pnas.1718792115 29531030
    [Google Scholar]
  119. Pérez O. Schipper N. Bollmark M. Preparative synthesis of an R P -Guanosine-3′,5′-Cyclic phosphorothioate analogue, a drug candidate for the treatment of retinal degenerations. Org. Process Res. Dev. 2021 25 11 2453 2460 10.1021/acs.oprd.1c00230 34840493
    [Google Scholar]
  120. Pliushcheuskaya P. Kesh S. Kaufmann E. Wucherpfennig S. Schwede F. Künze G. Nache V. Similar binding modes of cGMP analogues limit selectivity in modulating retinal CNG channels via the cyclic nucleotide-binding domain. ACS Chem. Neurosci. 2024 15 8 1652 1668 10.1021/acschemneuro.3c00665 38579109
    [Google Scholar]
  121. Pérez O. Stanzani A. Huang L. Schipper N. Loftsson T. Bollmark M. Marigo V. New improved cGMP analogues to target rod photoreceptor degeneration. J. Med. Chem. 2024 67 10 8396 8405 10.1021/acs.jmedchem.4c00586 38688030
    [Google Scholar]
  122. Zuliani J.P. Gutiérrez J.M. Teixeira C. Role of nitric oxide and signaling pathways modulating the stimulatory effect of snake venom secretory PLA2S on non-opsonized zymosan phagocytosis by macrophages. Toxicon 2024 243 107716 10.1016/j.toxicon.2024.107716 38614247
    [Google Scholar]
  123. Piazza G.A. Ward A. Chen X. Maxuitenko Y. Coley A. Aboelella N.S. Buchsbaum D.J. Boyd M.R. Keeton A.B. Zhou G. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov. Today 2020 25 8 1521 1527 10.1016/j.drudis.2020.06.008 32562844
    [Google Scholar]
  124. Lan T. Li Y. Wang Y. Wang Z.C. Mu C.Y. Tao A.B. Gong J.L. Zhou Y. Xu H. Li S.B. Gu B. Ma P. Luo L. Increased endogenous PKG I activity attenuates EGF-induced proliferation and migration of epithelial ovarian cancer via the MAPK/ERK pathway. Cell Death Dis. 2023 14 1 39 10.1038/s41419‑023‑05580‑y 36653376
    [Google Scholar]
  125. Flohé L. Andreesen J.R. Brigelius-Flohé R. Maiorino M. Ursini F. Selenium, the element of the moon, in life on earth. IUBMB Life 2000 49 5 411 420 10.1080/152165400410263 10902573
    [Google Scholar]
  126. Krakowiak A. Pietrasik S. New insights into oxidative and reductive stress responses and their relation to the anticancer activity of selenium-containing compounds as hydrogen selenide donors. Biology 2023 12 6 875 10.3390/biology12060875 37372159
    [Google Scholar]
  127. Fernandes A.P. Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta. Gen. Subj. 2015 1850 8 1642 1660 10.1016/j.bbagen.2014.10.008 25459512
    [Google Scholar]
  128. Du Q. Carrasco N. Teplova M. Wilds C.J. Egli M. Huang Z. Internal derivatization of oligonucleotides with selenium for X-ray crystallography using MAD. J. Am. Chem. Soc. 2002 124 1 24 25 10.1021/ja0171097 11772055
    [Google Scholar]
  129. Ogilvie K.K. Nemer M.J. The synthesis of phosphite analogues of ribonucleotides. Tetrahedron Lett. 1980 21 43 4145 4148 10.1016/S0040‑4039(00)93673‑6
    [Google Scholar]
  130. Tram K. Wang X. Yan H. Facile synthesis of oligonucleotide phosphoroselenoates. Org. Lett. 2007 9 24 5103 5106 10.1021/ol702305v 17973486
    [Google Scholar]
  131. Kalek M. Bartoszewicz A. Stawinski J. Synthesis of nucleoside phosphorothio-, phosphorodithio- and phosphoroselenoate diesters via oxidative esterification of the corresponding H-phosphonate analogues. Nucleic Acids Symp. Ser. 2008 52 1 285 286 10.1093/nass/nrn144 18776365
    [Google Scholar]
  132. (a) Stec W.J. Zon G. Egan W. Stec B. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc. 1984 106 20 6077 6079 10.1021/ja00332a054
    [Google Scholar]
  133. (b) Mori K. Boiziau C. Cazenave C. Matsukura M. Subasinghe C. Cohen J.S. Broder S. Toulmé J.J. Stein C.A. Phosphoroselenoate oligodeoxynucleotides: Synthesis, physico-chemical characterization, anti-sense inhibitory properties and anti-HIV activity. Nucleic Acids Res. 1989 17 20 8207 8219 10.1021/ja00332a054
    [Google Scholar]
  134. (c) Bollmark M. Stawiński J. A new selenium-transferring reagent—triphenylphosphine selenide. J. Chem. Commun. 2001 771 772 10.1093/nar/17.20.8207 2682524
    [Google Scholar]
  135. (d) Stawiński J. Thelin M. 3H-1,2-benzothiaselenol-3-one. A new selenizing reagent for nucleoside H-phosphonate and H-phosphonothioate diesters. Tetrahedron Lett. 1992 33 47 7255 7258 10.1016/S0040‑4039(00)60887‑0
    [Google Scholar]
  136. (e) Holloway G.A. Pavot C. Scaringe S.A. Lu Y. Rauchfuss T.B. An organometallic route to oligonucleotides containing phosphoroselenoate. ChemBioChem 2002 3 11 1061 1065 10.1002/1439‑7633(20021104)3:11<1061::AID‑CBIC1061>3.0.CO;2‑9 12404630
    [Google Scholar]
  137. (f) Potrzebowski M.J. Błaszczyk J. Majzner W.R. Wieczorek M.W. Baraniak J. Stec W.J. X-ray and high resolution selenium-77 solid state NMR spectroscopy as complementary probes to structural studies of organophosphorus diselenides. Solid State Nucl. Magn. Reson. 1998 11 3-4 215 224 10.1016/S0926‑2040(98)00030‑7 9694390
    [Google Scholar]
  138. (g) Baraniak J. Korczyński D. Kaczmarek R. Stec W.J. Tetra-thymidine phosphorofluoridates via tetra-thymidine phosphoro-selenoates: Synthesis and stability. Nucleosides Nucleotides 1999 18 10 2147 2154 10.1080/07328319908044872
    [Google Scholar]
  139. Wilds C.J. Pattanayek R. Pan C. Wawrzak Z. Egli M. Selenium-assisted nucleic acid crystallography: Use of phosphoroselenoates for MAD phasing of a DNA structure. J. Am. Chem. Soc. 2002 124 50 14910 14916 10.1021/ja021058b 12475332
    [Google Scholar]
  140. Guga P. Maciaszek A. Stec W.J. Oxathiaphospholane approach to the synthesis of oligodeoxyribonucleotides containing stereodefined internucleotide phosphoroselenoate function. Org. Lett. 2005 7 18 3901 3904 10.1021/ol051302e 16119927
    [Google Scholar]
  141. Carrasco N. Huang Z. Enzymatic synthesis of phosphoroselenoate DNA using thymidine 5′-(alpha-P-seleno)triphosphate and DNA polymerase for X-ray crystallography via MAD. J. Am. Chem. Soc. 2004 126 2 448 449 10.1021/ja0383221 14719925
    [Google Scholar]
  142. Eckstein F. Armstrong V.W. Sternbach H. Stereochemistry of polymerization by DNA-dependent RNA-polymerase from Escherichia coli: An investigation with a diastereomeric ATP-analogue. Proc. Natl. Acad. Sci. USA 1976 73 9 2987 2990 10.1073/pnas.73.9.2987 787980
    [Google Scholar]
  143. (a) Gupta A. DeBrosse C. Benkovic S.J. Template-prime-dependent turnover of (Sp)-dATP alpha S by T4 DNA polymerase. The stereochemistry of the associated 3′ goes to 5′-exonuclease. J. Biol. Chem. 1982 257 13 7689 7692 10.1016/S0021‑9258(18)34436‑3 6282851
    [Google Scholar]
  144. (b) He K. Porter K.W. Hasan A. Briley J.D. Shaw B.R. Synthesis of 5-substituted 2′-deoxycytidine 5′-( -P-borano)triphosphates, their incorporation into DNA and effects on exonuclease. Nucleic Acids Res. 1999 27 8 1788 1794 10.1093/nar/27.8.1788 10101185
    [Google Scholar]
  145. Ludwig J. Eckstein F. Rapid and efficient synthesis of nucleoside 5′-0-(1-thiotriphosphates), 5′-triphosphates and 2′,3′-cyclophosphorothioates using 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one. J. Org. Chem. 1989 54 3 631 635 10.1021/jo00264a024
    [Google Scholar]
  146. Krakowiak A. Czernek L. Pichlak M. Kaczmarek R. Intracellular HINT1-assisted hydrolysis of Nucleoside 5′-O-Selenophosphate leads to the release of hydrogen selenide that exhibits toxic effects in human cervical cancer cells. Int. J. Mol. Sci. 2022 23 2 607 10.3390/ijms23020607 35054788
    [Google Scholar]
  147. Radomska D. Czarnomysy R. Radomski D. Bielawski K. Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci. 2021 22 3 1009 10.3390/ijms22031009 33498364
    [Google Scholar]
  148. Kim S.J. Choi M.C. Park J.M. Chung A.S. Antitumor effects of selenium. Int. J. Mol. Sci. 2021 22 21 11844 10.3390/ijms222111844 34769276
    [Google Scholar]
  149. Golebiewska J. Sobkowski M. Stawinski J. Synthesis of nucleoside selenophosphoramidates via H-Phosphonate intermediates. J. Org. Chem. 2024 89 17 12032 12043 10.1021/acs.joc.4c00770 39167188
    [Google Scholar]
  150. Węgłowska E. Szustak M. Gendaszewska-Darmach E. Proangiogenic properties of nucleoside 5′-O-phosphorothioate analogues under hyperglycaemic conditions. Curr. Top. Med. Chem. 2015 15 23 2464 2474 10.2174/1568026615666150619142859 26088349
    [Google Scholar]
  151. Sun H.J. Lu Q.B. Zhu X.X. Ni Z.R. Su J.B. Fu X. Chen G. Zheng G.L. Nie X.W. Bian J.S. Pharmacology of hydrogen sulfide and its donors in cardiometabolic diseases. Pharmacol. Rev. 2024 76 5 846 895 10.1124/pharmrev.123.000928 38866561
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673361335250404171911
Loading
/content/journals/cmc/10.2174/0109298673361335250404171911
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test