Skip to content
2000
image of Target Selectivity of Cysteine Protease Inhibitors: A Strategy to Address Neglected Tropical Diseases

Abstract

Neglected tropical diseases (NTDs) are a group of infectious diseases that mainly affect the population living in poverty and without basic sanitation, causing severe damage to countries' economies. Among them, Leishmaniasis, Chagas disease, sleeping sickness, and related diseases such as Malaria stand out, which, despite being well known, have limited treatments based on old drugs and have high rates of parasite resistance. In addition, current drugs have an uncertain mechanism of action, and there is a need to identify new mechanisms to overcome problems related to side effects and resistance. In a sense, exploring cysteine ​​proteases (CPs) may be a promising alternative that can lead to discovering innovative drugs that may be useful against these diseases. However, exploring CPs in drug discovery should be a cautious and rational process since parasitic CPs show a high degree of homology with human CPs, raising the need to identify increasingly specific patterns of target selectivity to identify safer drugs with fewer side effects. Finally, in this review, we present the main aspects related to the design of CP inhibitor drugs, highlighting structural features of ligands and targets that can be used in the design of new compounds against Leishmaniasis (LCPB), Chagas disease (Cruzain), sleeping sickness (rhodesain) and malaria (falcipain). We hope our findings can guide researchers in searching for an innovative drug that can be used against these diseases that threaten the world population's health.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673359768250317055418
2025-03-25
2025-11-03
Loading full text...

Full text loading...

References

  1. Dodson S. Martin D.L. Turner C.M.R. Daalen K.R. Van Abela B. Shott J.P. Tidman R. Tribe L. Turner J. Vaz S. Velayudhan R. Climate change, malaria and neglected tropical diseases: A scoping review. Trans. R. Soc. Trop. Med. Hyg. 2024 118 79 561 579
    [Google Scholar]
  2. CA J. Kumar P. V.B. Kandi V. Neglected tropical diseases: A comprehensive review. Cureus 2024 16 2 e53933 10.7759/cureus.53933
    [Google Scholar]
  3. Engels D. Zhou X.N. Neglected tropical diseases: An effective global response to local poverty-related disease priorities. Infect. Dis. Pov. 2020 9 1 10 10.1186/s40249‑020‑0630‑9 31987053
    [Google Scholar]
  4. Yajima A. Lin Z. Mohamed A.J. Dash A.P. Rijal S. Finishing the task of eliminating neglected tropical diseases (NTDs) in WHO South-East Asia Region: Promises kept, challenges, and the way forward. Lancet Reg. Health Southeast Asia 2023 18 100302 10.1016/j.lansea.2023.100302 38028173
    [Google Scholar]
  5. Nascimento I.J.S. Cavalcanti M.A.T. Moura d.R.O. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur. J. Med. Chem. 2023 258 115550 10.1016/j.ejmech.2023.115550 37336067
    [Google Scholar]
  6. Souza D.M. Medeiros D.C. Moura d.R.O. dos Santos Nascimento I.J. Pharmacokinetic limitations to overcome and enable k777 as a potential drug against chagas disease. Curr. Pharm. Des. 2023 29 30 2359 2360 10.2174/0113816128267517231010061552 37828665
    [Google Scholar]
  7. dos Santos Nascimento I.J. Moura d.R.O. Targeting cysteine and serine proteases to discover new drugs against neglected tropical diseases. Curr. Med. Chem. 2024 31 16 2133 2134 10.2174/092986733116240214143511 38785275
    [Google Scholar]
  8. Nascimento I. Albino S. Menezes K. Cavalcanti M. Oliveira M. Mali S. Moura R. Targeting SmCB1: Perspectives and insights to design antischistosomal drugs. Curr. Med. Chem. 2023 31 16 2264 84
    [Google Scholar]
  9. Molyneux D.H. Dean L. Adekeye O. Stothard J.R. Theobald S. The changing global landscape of health and disease: Addressing challenges and opportunities for sustaining progress towards control and elimination of neglected tropical diseases (NTDs). Parasitology 2018 145 13 1647 1654 10.1017/S0031182018000069 29547362
    [Google Scholar]
  10. Nieto-Sanchez C. Hatley D.M. II Grijalva M.J. Grietens P.K. Bates B.R. Communication in neglected tropical diseases’ elimination: A scoping review and call for action. PLoS Negl. Trop. Dis. 2022 16 10 e0009774 10.1371/journal.pntd.0009774 36228006
    [Google Scholar]
  11. dos Santos Nascimento I.J. Silva Santos-Júnior d.P.F. Araújo-Júnior d.J.X. Silva-Júnior d.E.F. Strategies in medicinal chemistry to discover new hit compounds against ebola virus: Challenges and perspectives in drug discovery. Mini Rev. Med. Chem. 2022 22 22 2896 2924 10.2174/1389557522666220404085858 35379146
    [Google Scholar]
  12. dos Santos Nascimento I.J. Silva-Júnior d.E.F. Aquino d.T.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses. Curr. Drug Targets 2021 23 3 240 59 34370633
    [Google Scholar]
  13. dos Santos Nascimento I.J. Aquino d.T.M. Júnior S.d.E.F. Moura d.R.O. Insights on microsomal prostaglandin E2 synthase 1 (MPGES-1) inhibitors using molecular dynamics and MM/PBSA calculations. Lett. Drug Des. Discov. 2024 21 6 1033 1047 10.2174/1570180820666230228105833
    [Google Scholar]
  14. dos Santos Nascimento I.J. Aquino d.T.M. Silva-Júnior d.E.F. Molecular docking and dynamics simulations studies of a dataset of NLRP3 inflammasome inhibitors. Recent Adv. Inflamm. Allergy Drug Discov. 2022 15 2 80 86
    [Google Scholar]
  15. Nascimento d.S.I.J. Silva-Júnior d.E.F. TNF-α inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen. 2021 25 14 2317 2340 34269666
    [Google Scholar]
  16. Luna E.J.A. Campos S.R.S.L.D.C. Vaccine development against neglected tropical diseases. Cad. Saude Publica 2020 36 e00215720 10.1590/0102‑311x00215720 33237199
    [Google Scholar]
  17. Kumi R.O. Oti B. Abo-Dya N.E. Alahmdi M.I. Soliman M.E.S. Bridging the gap in malaria parasite resistance, current interventions, and the way forward from in silico perspective: A review. Molecules 2022 27 22 7915 10.3390/molecules27227915 36432016
    [Google Scholar]
  18. Aquino d.T.M. França P.H.B. Rodrigues É.E.E.S. Nascimento I.J.S. Santos-Júnior P.F.S. Aquino P.G.V. Santos M.S. Queiroz A.C. Araújo M.V. Alexandre-Moreira M.S. Rodrigues R.R.L. Rodrigues K.A.F. Freitas J.D. Bricard J. Meneghetti M.R. Bourguignon J.J. Schmitt M. Silva-Júnior d.E.F. Araújo-Júnior d.J.X. Synthesis, antileishmanial activity and in silico studies of aminoguanidine hydrazones (AGH) and thiosemicarbazones (TSC) against Leishmania chagasi amastigotes. Med. Chem. 2022 18 2 151 169 10.2174/1573406417666210216154428 33593264
    [Google Scholar]
  19. Silva L.R. Guimarães A.S. Nascimento d.J. Nascimento S.d.I.J. Silva d.E.B. McKerrow J.H. Cardoso S.H. Silva-Júnior d.E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem. 2021 41 116213 10.1016/j.bmc.2021.116213 33992862
    [Google Scholar]
  20. Forbes K. Basáñez M.G. Hollingsworth T.D. Anderson R.M. Introduction to the special issue: Challenges and opportunities in the fight against neglected tropical diseases: A decade from the London Declaration on NTDs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023 378 1887 20220272 10.1098/rstb.2022.0272 37598699
    [Google Scholar]
  21. Judice W.A.S. Ferraz L.S. Lopes R.M. Vianna L.S. Siqueira F.S. Iorio D.J.F. Dalzoto L.A.M. Trujilho M.N.R. Santos T.R. Machado M.F.M. Rodrigues T. Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg. Med. Chem. 2021 46 116365 10.1016/j.bmc.2021.116365 34419821
    [Google Scholar]
  22. Nascimento J.d.S.I. Aquino M.d.T. Júnior F.d.S.S.P. Júnior X.d.A.J. Júnior F.d.S.E. Molecular modeling applied to design of cysteine protease inhibitors – a powerful tool for the identification of hit compounds against neglected tropical diseases. Front. Comput. Chem. 2020 5 63 110
    [Google Scholar]
  23. dos Santos Nascimento I.J. Rodrigues S.d.É.E. Silva d.M.F. Araújo-Júnior d.J.X. Moura d.R.O. Advances in computational methods to discover new NS2B-NS3 inhibitors useful against dengue and zika viruses. Curr. Top. Med. Chem. 2022 22 29 2435 2462 10.2174/1568026623666221122121330 36415099
    [Google Scholar]
  24. Maddren R. Phillips A. Gomez R.S. Forbes K. Collyer B.S. Kura K. Anderson R. Individual longitudinal compliance to neglected tropical disease mass drug administration programmes, a systematic review. PLoS Negl. Trop. Dis. 2023 17 7 e0010853 10.1371/journal.pntd.0010853 37459369
    [Google Scholar]
  25. Nascimento d.S.I.J. Gomes S.J.N. Viana O.d.J. The power of molecular dynamics simulations and their applications to discover cysteine protease inhibitors. Mini-Reviews. Med. Chem. 2023 24 11 1125 1146 10.2174/1389557523666230901152257
    [Google Scholar]
  26. Albino S.L. Moura S.d.W.C. Reis M.M.L. Sousa G.L.S. Silva d.P.R. Oliveira d.M.G.C. Borges T.K.S. Albuquerque L.F.F. Almeida d.S.M.V. Lima d.M.C.A. Kuckelhaus S.A.S. Nascimento I.J.S. Junior F.J.B.M. Silva d.T.G. Moura d.R.O. ACW-02 an acridine triazolidine derivative presents antileishmanial activity mediated by DNA interaction and immunomodulation. Pharmaceuticals 2023 16 2 204 10.3390/ph16020204 37259353
    [Google Scholar]
  27. Nascimento I.J. dos S. Santos M.B. Marinho W.P.D.J. Moura d.R.O. Insights to design new drugs against human african trypanosomiasis targeting rhodesain using covalent docking, molecular dynamics simulations, and mm-pbsa calculations. Curr. Comput. Aided. Drug Des. 2025 21 1 67 82
    [Google Scholar]
  28. Nascimento S.I.J. Aquino T.M. Silva-Júnior E.F. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro : A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking. Lett. Drug Des. Discov. 2022 19 7 637 653 10.2174/1570180819666220106110133
    [Google Scholar]
  29. dos Santos Nascimento I.J. Aquino d.T.M. Silva-Júnior d.E.F. Cruzain and rhodesain inhibitors: Last decade of advances in seeking for new compounds against american and african trypanosomiases. Curr. Top. Med. Chem. 2021 21 21 1871 1899 10.2174/18734294MTE10MTEoz 33797369
    [Google Scholar]
  30. McKerrow J.H. Update on drug development targeting parasite cysteine proteases. PLoS Negl. Trop. Dis. 2018 12 8 e0005850 10.1371/journal.pntd.0005850 30138309
    [Google Scholar]
  31. Giroud M. Kuhn B. Haap W. Drug discovery efforts to identify novel treatments for neglected tropical diseases - cysteine protease inhibitors. Curr. Med. Chem. 2024 31 16 2170 94
    [Google Scholar]
  32. Vieira R.P. Santos V.C. Ferreira R.S. Structure-based approaches targeting parasite cysteine proteases. Curr. Med. Chem. 2019 26 23 4435 4453 10.2174/0929867324666170810165302 28799498
    [Google Scholar]
  33. Saha A. Targeting cysteine proteases and their inhibitors to combat trypanosomiasis. Curr. Med. Chem. 2023 31 16 2135 2169 10.2174/0929867330666230619160509
    [Google Scholar]
  34. Bekono B.D. Ntie-Kang F. Owono O.L.C. Megnassan E. Targeting cysteine proteases from plasmodium falciparum: A general overview, rational drug design and computational approaches for drug discovery. Curr. Drug Targets 2018 19 5 501 526 10.2174/1389450117666161221122432 28003005
    [Google Scholar]
  35. Lindvall M. Molecular modeling in cysteine protease inhibitor design. Curr. Pharm. Des. 2002 8 18 1673 1681 10.2174/1381612023394142 12132998
    [Google Scholar]
  36. Calkins C.C. Sameni M. Koblinski J. Sloane B.F. Moin K. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. J. Histochem. Cytochem. 1998 46 6 745 751 10.1177/002215549804600607 9603786
    [Google Scholar]
  37. J B. M B.M. Chanda K. An overview on the therapeutics of neglected infectious diseases—leishmaniasis and chagas diseases. Front Chem. 2021 9 622286
    [Google Scholar]
  38. Siqueira-Neto J.L. Debnath A. McCall L.I. Bernatchez J.A. Ndao M. Reed S.L. Rosenthal P.J. Cysteine proteases in protozoan parasites. PLoS Negl. Trop. Dis. 2018 12 8 e0006512 10.1371/journal.pntd.0006512 30138453
    [Google Scholar]
  39. Rosenthal P.J. Falcipain cysteine proteases of malaria parasites: An update. Biochim. Biophys. Acta. Proteins Proteomics 2020 1868 3 140362 10.1016/j.bbapap.2020.140362 31927030
    [Google Scholar]
  40. Rosenthal P.J. Cysteine proteases of malaria parasites. Int. J. Parasitol. 2004 34 13-14 1489 1499 10.1016/j.ijpara.2004.10.003 15582526
    [Google Scholar]
  41. Chakravorty D. Singh S. Saravanan P. Patra S. Design of lead peptide drugs from mushroom targeting cysteine proteases. Med. Chem. Res. 2013 22 4 2038 2049 10.1007/s00044‑012‑0196‑6
    [Google Scholar]
  42. Ribeiro J.F.R. Cianni L. Li C. Warwick T.G. Vita d.D. Rosini F. dos Reis Rocho F. Martins F.C.P. Kenny P.W. Lameira J. Leitão A. Emsley J. Montanari C.A. Crystal structure of Leishmania mexicana cysteine protease B in complex with a high-affinity azadipeptide nitrile inhibitor. Bioorg. Med. Chem. 2020 28 22 115743 10.1016/j.bmc.2020.115743 33038787
    [Google Scholar]
  43. Wang S.X. Pandey K.C. Somoza J.R. Sijwali P.S. Kortemme T. Brinen L.S. Fletterick R.J. Rosenthal P.J. McKerrow J.H. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc. Natl. Acad. Sci. USA 2006 103 31 11503 11508 10.1073/pnas.0600489103 16864794
    [Google Scholar]
  44. Kerr I.D. Lee J.H. Farady C.J. Marion R. Rickert M. Sajid M. Pandey K.C. Caffrey C.R. Legac J. Hansell E. McKerrow J.H. Craik C.S. Rosenthal P.J. Brinen L.S. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J. Biol. Chem. 2009 284 38 25697 25703 10.1074/jbc.M109.014340 19620707
    [Google Scholar]
  45. Schröder J. Noack S. Marhöfer R.J. Mottram J.C. Coombs G.H. Selzer P.M. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB. PLoS One 2013 8 10 e77460 10.1371/journal.pone.0077460 24146999
    [Google Scholar]
  46. Machin J.M. Kantsadi A.L. Vakonakis I. The complex of Plasmodium falciparum falcipain-2 protease with an (E)-chalcone-based inhibitor highlights a novel, small, molecule-binding site. Malar. J. 2019 18 1 388 10.1186/s12936‑019‑3043‑0 31791339
    [Google Scholar]
  47. Siklos M. BenAissa M. Thatcher G.R.J. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B 2015 5 6 506 519 10.1016/j.apsb.2015.08.001 26713267
    [Google Scholar]
  48. Fischer T. Gazzola S. Riedl R. Approaching target selectivity by de novo drug design. Expert Opin. Drug Discov. 2019 14 8 791 803 10.1080/17460441.2019.1615435 31179763
    [Google Scholar]
  49. Nascimento I.J.S. Aquino d.T.M. Silva-Júnior d.E.F. The new era of drug discovery: The power of computer-aided drug design (CADD). Lett. Drug Des. Discov. 2022 19 11 951 955 10.2174/1570180819666220405225817
    [Google Scholar]
  50. dos Santos Nascimento I.J. Aquino d.T.M. Silva-Júnior d.E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem. 2021 28 15 2887 2942 10.2174/1875533XMTA5rMDYp5 32787752
    [Google Scholar]
  51. dos Santos Nascimento I.J. Aquino d.T.M. Júnior S.d.E.F. Computer-aided drug design of anti-inflammatory agents targeting microsomal prostaglandin E 2 synthase-1 (mPGES-1). Curr. Med. Chem. 2022 29 33 5397 5419 10.2174/0929867329666220317122948 35301943
    [Google Scholar]
  52. Nascimento I.J.S. Santos-Júnior P.F.S. Aquino T.M. Araújo-Júnior J.X. Silva-Júnior E.F. Insights on dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur. J. Med. Chem. 2021 224 113698 10.1016/j.ejmech.2021.113698 34274831
    [Google Scholar]
  53. Avelar L.A.A. Camilo C.D. Albuquerque d.S. Fernandes W.B. Gonçalez C. Kenny P.W. Leitão A. McKerrow J.H. Montanari C.A. Orozco E.V.M. Ribeiro J.F.R. Rocha J.R. Rosini F. Saidel M.E. Molecular design, synthesis and trypanocidal activity of dipeptidyl nitriles as cruzain inhibitors. PLoS Negl. Trop. Dis. 2015 9 7 e0003916 10.1371/journal.pntd.0003916 26173110
    [Google Scholar]
  54. Chenna B.C. Li L. Mellott D.M. Zhai X. Siqueira-Neto J.L. Alvarez C.C. Bernatchez J.A. Desormeaux E. Hernandez A.E. Gomez J. McKerrow J.H. Cruz-Reyes J. Meek T.D. Peptidomimetic vinyl heterocyclic inhibitors of cruzain effect antitrypanosomal activity. J. Med. Chem. 2020 63 6 3298 3316 10.1021/acs.jmedchem.9b02078 32125159
    [Google Scholar]
  55. Gomes J.C. Cianni L. Ribeiro J. dos Reis Rocho F. Costa Martins Silva d.S. Batista P.H.J. Moraes C.B. Franco C.H. Freitas-Junior L.H.G. Kenny P.W. Leitão A. Burtoloso A.C.B. Vita d.D. Montanari C.A. Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorg. Med. Chem. 2019 27 22 115083 10.1016/j.bmc.2019.115083 31561938
    [Google Scholar]
  56. Santos V.C. Leite P.G. Santos L.H. Pascutti P.G. Kolb P. Machado F.S. Ferreira R.S. Structure-based discovery of novel cruzain inhibitors with distinct trypanocidal activity profiles. Eur. J. Med. Chem. 2023 257 115498 10.1016/j.ejmech.2023.115498 37290182
    [Google Scholar]
  57. Arafet K. Royo S. Schirmeister T. Barthels F. González F.V. Moliner V. Impact of the recognition part of dipeptidyl nitroalkene compounds on the inhibition mechanism of cysteine proteases cruzain and cathepsin l. ACS Catal. 2023 13 9 6289 6300 10.1021/acscatal.3c01035 37180968
    [Google Scholar]
  58. Schirmeister T. Schmitz J. Jung S. Schmenger T. Krauth-Siegel R.L. Gütschow M. Evaluation of dipeptide nitriles as inhibitors of rhodesain, a major cysteine protease of Trypanosoma brucei. Bioorg. Med. Chem. Lett. 2017 27 1 45 50 10.1016/j.bmcl.2016.11.036 27890381
    [Google Scholar]
  59. Braga S.F.P. Martins L.C. Silva d.E.B. Júnior S.P.A. Murta S.M.F. Romanha A.J. Soh W.T. Brandstetter H. Ferreira R.S. Oliveira d.R.B. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg. Med. Chem. 2017 25 6 1889 1900 10.1016/j.bmc.2017.02.009 28215783
    [Google Scholar]
  60. Giroud M. Kuhn B. Saint-Auret S. Kuratli C. Martin R.E. Schuler F. Diederich F. Kaiser M. Brun R. Schirmeister T. Haap W. 2 H -1,2,3-Triazole-based dipeptidyl nitriles: Potent, selective, and trypanocidal rhodesain inhibitors by structure-based design. J. Med. Chem. 2018 61 8 3370 3388 10.1021/acs.jmedchem.7b01870 29590751
    [Google Scholar]
  61. Jung S. Fuchs N. Johe P. Wagner A. Diehl E. Yuliani T. Zimmer C. Barthels F. Zimmermann R.A. Klein P. Waigel W. Meyr J. Opatz T. Tenzer S. Distler U. Räder H.J. Kersten C. Engels B. Hellmich U.A. Klein J. Schirmeister T. Fluorovinylsulfones and -sulfonates as potent covalent reversible inhibitors of the trypanosomal cysteine protease rhodesain: Structure–activity relationship, inhibition mechanism, metabolism, and in vivo studies. J. Med. Chem. 2021 64 16 12322 12358 10.1021/acs.jmedchem.1c01002 34378914
    [Google Scholar]
  62. Jung S. Fuchs N. Grathwol C. Hellmich U.A. Wagner A. Diehl E. Willmes T. Sotriffer C. Schirmeister T. New peptidomimetic rhodesain inhibitors with improved selectivity towards human cathepsins. Eur. J. Med. Chem. 2022 238 114460 10.1016/j.ejmech.2022.114460 35597010
    [Google Scholar]
  63. Scala A. Micale N. Piperno A. Rescifina A. Schirmeister T. Kesselring J. Grassi G. Targeting of the Leishmania mexicana cysteine protease CPB2.8ΔCTE by decorated fused benzo[b]thiophene scaffold. RSC Advances 2016 6 36 30628 30635 10.1039/C6RA05557E
    [Google Scholar]
  64. Luca D.L. Ferro S. Buemi M.R. Monforte A.M. Gitto R. Schirmeister T. Maes L. Rescifina A. Micale N. Discovery of benzimidazole-based Leishmania mexicana cysteine protease CPB 2.8Δ CTE inhibitors as potential therapeutics for leishmaniasis. Chem. Biol. Drug Des. 2018 92 3 1585 1596 10.1111/cbdd.13326 29729080
    [Google Scholar]
  65. Fey P. Chartomatsidou R. Kiefer W. Mottram J.C. Kersten C. Schirmeister T. New aziridine-based inhibitors of cathepsin L-like cysteine proteases with selectivity for the Leishmania cysteine protease LmCPB2.8. Eur. J. Med. Chem. 2018 156 587 597 10.1016/j.ejmech.2018.07.012 30029081
    [Google Scholar]
  66. Ettari R. Nizi E. Francesco D.M.E. Dude M.A. Pradel G. Vičík R. Schirmeister T. Micale N. Grasso S. Zappalà M. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors. J. Med. Chem. 2008 51 4 988 996 10.1021/jm701141u 18232656
    [Google Scholar]
  67. Shah F. Mukherjee P. Gut J. Legac J. Rosenthal P.J. Tekwani B.L. Avery M.A. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library. J. Chem. Inf. Model. 2011 51 4 852 864 10.1021/ci200029y 21428453
    [Google Scholar]
  68. Previti S. Ettari R. Cosconati S. Amendola G. Chouchene K. Wagner A. Hellmich U.A. Ulrich K. Krauth-Siegel R.L. Wich P.R. Schmid I. Schirmeister T. Gut J. Rosenthal P.J. Grasso S. Zappalà M. Development of novel peptide-based michael acceptors targeting rhodesain and falcipain-2 for the treatment of neglected tropical diseases (NTDs). J. Med. Chem. 2017 60 16 6911 6923 10.1021/acs.jmedchem.7b00405 28763614
    [Google Scholar]
  69. Hernández-González J.E. Salas-Sarduy E. Ramírez H.L.F. Pascual M.J. Álvarez D.E. Pabón A. Leite V.B.P. Pascutti P.G. Valiente P.A. Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochim. Biophys. Acta, Gen. Subj. 2018 1862 12 2911 2923 10.1016/j.bbagen.2018.09.015 30253205
    [Google Scholar]
  70. Nizi E. Sferrazza A. Fabbrini D. Nardi V. Andreini M. Graziani R. Gennari N. Bresciani A. Paonessa G. Harper S. Peptidomimetic nitrile inhibitors of malarial protease falcipain-2 with high selectivity against human cathepsins. Bioorg. Med. Chem. Lett. 2018 28 9 1540 1544 10.1016/j.bmcl.2018.03.069 29615344
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673359768250317055418
Loading
/content/journals/cmc/10.2174/0109298673359768250317055418
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: leishmaniasis ; rhodesain ; lmcpb ; Cruzain ; falcipain ; sleeping sickness ; chagas disease ; malaria
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test