Skip to content
2000
Volume 33, Issue 1
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Endothelial dysfunction (ED) results from impaired vascular endothelial cell function, disrupting key processes such as hemostasis, vascular tone regulation, vasculogenesis, angiogenesis, and inflammation. These processes are mediated by a complex signaling network involving hormones, cytokines, and chemokines. ED is recognized as a major contributor to the onset and progression of several micro- and macrovascular diseases, including diabetes. Our previous study demonstrated that the polyphenol Rosolic acid (RA) protects against endoplasmic reticulum (ER) stress-induced ED by activating nuclear factor erythroid 2-related factor 2 (Nrf2). Additionally, RA enhanced the proliferation and survival of pancreatic β-cells in a co-culture model with endothelial cells under ER stress conditions.

Methods

In this study, we investigated RA's protective effects against diabetes-induced ED using high-fat diet (HFD)-fed and streptozotocin-induced type-2 diabetic rat models. We evaluated RA’s impact on vascular function and metabolic parameters in these models.

Results

RA significantly mitigated diabetes-induced ED in the aortic tissues of HFD-fed diabetic Wistar rats. RA treatment improved glucose tolerance and reduced hyperlipidemia, showing efficacy comparable to the anti-diabetic drug Gliclazide. Moreover, RA elevated Nrf2 levels and its downstream target genes in aortic tissues while reducing ED markers such as Intercellular Adhesion Molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), and endothelin-1.

Conclusion

These findings highlight RA as a promising therapeutic agent for diabetes and its associated vascular complications, with potential for broader clinical applications.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673358006250213053647
2025-02-24
2025-12-31
Loading full text...

Full text loading...

References

  1. TomaL. StancuC.S. SimaA.V. Endothelial dysfunction in diabetes is aggravated by glycated lipoproteins; Novel molecular therapies.Biomedicines2020911810.3390/biomedicines901001833375461
    [Google Scholar]
  2. AmbrosinoP. GrassiG. ManiscalcoM. Endothelial dysfunction: From a pathophysiological mechanism to a potential therapeutic target.Biomedicines20211017810.3390/biomedicines1001007835052760
    [Google Scholar]
  3. MarcuR. ChoiY.J. XueJ. FortinC.L. WangY. NagaoR.J. XuJ. MacDonaldJ.W. BammlerT.K. MurryC.E. MuczynskiK. StevensK.R. HimmelfarbJ. SchwartzS.M. ZhengY. Human organ-specific endothelial cell heterogeneity.iScience20184203510.1016/j.isci.2018.05.00330240741
    [Google Scholar]
  4. De Pablo-MorenoJ.A.D. SerranoL.J. RevueltaL. SánchezM.J. LirasA. The vascular endothelium and coagulation: Homeostasis, disease, and treatment, with a focus on the von willebrand factor and factors VIII and V.Int. J. Mol. Sci.20222315828310.3390/ijms2315828335955419
    [Google Scholar]
  5. FeletouM. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells—Focus on Endothelium-Derived Vasoactive MediatorsMorgan & Claypool Life SciencesSan Rafael (CA)2011
    [Google Scholar]
  6. YauJ.W. TeohH. VermaS. Endothelial cell control of thrombosis.BMC Cardiovasc. Disord.201515113010.1186/s12872‑015‑0124‑z26481314
    [Google Scholar]
  7. CoradaM. MoriniM.F. DejanaE. Signaling pathways in the specification of arteries and veins.Arterioscler. Thromb. Vasc. Biol.201434112372237710.1161/ATVBAHA.114.30321825169934
    [Google Scholar]
  8. McCarronJ.G. LeeM.D. WilsonC. The endothelium solves problems that endothelial cells do not know exist.Trends Pharmacol. Sci.201738432233810.1016/j.tips.2017.01.00828214012
    [Google Scholar]
  9. McCarronJ.G. WilsonC. HeathcoteH.R. ZhangX. BuckleyC. LeeM.D. Heterogeneity and emergent behaviour in the vascular endothelium.Curr. Opin. Pharmacol.201945233210.1016/j.coph.2019.03.00831005824
    [Google Scholar]
  10. RicardN. BaillyS. GuignabertC. SimonsM. The quiescent endothelium: Signalling pathways regulating organ-specific endothelial normalcy.Nat. Rev. Cardiol.202118856558010.1038/s41569‑021‑00517‑433627876
    [Google Scholar]
  11. FunkS.D. YurdagulA.Jr OrrA.W. Hyperglycemia and endothelial dysfunction in atherosclerosis: Lessons from type 1 diabetes.Int. J. Vasc. Med.2012201211910.1155/2012/56965422489274
    [Google Scholar]
  12. LiY. LiuY. LiuS. GaoM. WangW. ChenK. HuangL. LiuY. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies.Signal Transduct. Target. Ther.20238115210.1038/s41392‑023‑01400‑z37037849
    [Google Scholar]
  13. GilbertR.E. Endothelial loss and repair in the vascular complications of diabetes: Pathogenetic mechanisms and therapeutic implications.Circ. J.201377484985610.1253/circj.CJ‑13‑023623503045
    [Google Scholar]
  14. GryszczyńskaB. BudzyńM. Begier-KrasińskaB. OsińskaA. BoruczkowskiM. KaczmarekM. BukowskaA. IskraM. KasprzakM.P. Association between advanced glycation end products, soluble rage receptor, and endothelium dysfunction, evaluated by circulating endothelial cells and endothelial progenitor cells in patients with mild and resistant hypertension.Int. J. Mol. Sci.20192016394210.3390/ijms2016394231412635
    [Google Scholar]
  15. BackS.H. KaufmanR.J. Endoplasmic reticulum stress and type 2 diabetes.Annu. Rev. Biochem.201281176779310.1146/annurev‑biochem‑072909‑09555522443930
    [Google Scholar]
  16. NiL. YangL. LinY. Recent progress of endoplasmic reticulum stress in the mechanism of atherosclerosis.Front. Cardiovasc. Med.202411141344110.3389/fcvm.2024.141344139070554
    [Google Scholar]
  17. SchönthalA.H. Endoplasmic reticulum stress: Its role in disease and novel prospects for therapy.Scientifica2012201212610.6064/2012/85751624278747
    [Google Scholar]
  18. MaamounH. AbdelsalamS.S. ZeidanA. KorashyH.M. AgouniA. Endoplasmic reticulum stress: A critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes.Int. J. Mol. Sci.2019207165810.3390/ijms2007165830987118
    [Google Scholar]
  19. BholN.K. BhanjadeoM.M. SinghA.K. DashU.C. OjhaR.R. MajhiS. DuttaroyA.K. JenaA.B. The interplay between cytokines, inflammation, and antioxidants: Mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds.Biomed. Pharmacother.202417811717710.1016/j.biopha.2024.11717739053423
    [Google Scholar]
  20. LennaS. HanR. TrojanowskaM. Endoplasmic reticulum stress and endothelial dysfunction.IUBMB Life201466853053710.1002/iub.129225130181
    [Google Scholar]
  21. BhakkiyalakshmiE. SireeshD. RajaguruP. PaulmuruganR. RamkumarK.M. The emerging role of redox-sensitive Nrf2–Keap1 pathway in diabetes.Pharmacol. Res.20159110411410.1016/j.phrs.2014.10.00425447793
    [Google Scholar]
  22. KaranA. BhakkiyalakshmiE. JayasuriyaR. SaradaD.V.L. RamkumarK.M. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction.Pharmacol. Res.202015310460110.1016/j.phrs.2019.10460131838079
    [Google Scholar]
  23. VictorP. SaradaD. RamkumarK.M. Pharmacological activation of Nrf2 promotes wound healing.Eur. J. Pharmacol.202088617339510.1016/j.ejphar.2020.17339532710954
    [Google Scholar]
  24. PadmavathiG. RamkumarK.M. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury.Arch. Biochem. Biophys.202169810872510.1016/j.abb.2020.10872533326800
    [Google Scholar]
  25. SireeshD. DhamodharanU. EzhilarasiK. VijayV. RamkumarK.M. Association of NF-E2 related factor 2 (Nrf2) and inflammatory cytokines in recent onset type 2 diabetes mellitus.Sci. Rep.201881512610.1038/s41598‑018‑22913‑629572460
    [Google Scholar]
  26. SuganyaN. DornadulaS. ChatterjeeS. RamkumarK.M. Quercetin improves endothelial function in diabetic rats through inhibition of endoplasmic reticulum stress-mediated oxidative stress.Eur. J. Pharmacol.2018819808810.1016/j.ejphar.2017.11.03429169872
    [Google Scholar]
  27. Medina-LeyteD.J. Zepeda-GarcíaO. Domínguez-PérezM. González-GarridoA. Villarreal-MolinaT. Jacobo-AlbaveraL. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches.Int. J. Mol. Sci.2021228385010.3390/ijms2208385033917744
    [Google Scholar]
  28. FauzyF.H. ZainudinM.M. IsmawiH.R. ElshamiT.F.T. Piper sarmentosum leaves aqueous extract attenuates vascular endothelial dysfunction in spontaneously hypertensive rats.Evid. Based Complement. Alternat. Med.201920191810.1155/2019/719859231485247
    [Google Scholar]
  29. AkinyemiA.J. ObohG. AdemiluyiA.O. BoligonA.A. AthaydeM.L. Effect of two ginger varieties on arginase activity in hypercholesterolemic rats.J. Acupunct. Meridian Stud.201692808710.1016/j.jams.2015.03.00327079229
    [Google Scholar]
  30. ForestiR. HoqueM. MontiD. GreenC.J. MotterliniR. Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells.J. Pharmacol. Exp. Ther.2005312268669310.1124/jpet.104.07415315537827
    [Google Scholar]
  31. TongR.C. QiM. YangQ.M. LiP.F. WangD.D. LanJ.P. WangZ.T. YangL. Extract of Plantago asiatica L. seeds ameliorates hypertension in spontaneously hypertensive rats by inhibition of angiotensin converting enzyme.Front. Pharmacol.20191040310.3389/fphar.2019.0040331114496
    [Google Scholar]
  32. AminK.N. RajagruP. SarkarK. GaneshM.R. SuzukiT. AliD. MohanramR.K. Pharmacological activation of Nrf2 by rosolic acid attenuates endoplasmic reticulum stress in endothelial cells.Oxid. Med. Cell. Longev.202120211273243510.1155/2021/273243533897939
    [Google Scholar]
  33. AminK.N. PalanisamyR. SaradaD.V.L. AliD. SuzukiT. RamkumarK.M. Effect of Rosolic acid on endothelial dysfunction under ER stress in pancreatic microenvironment.Free Radic. Res.202155888790210.1080/10715762.2021.189209033788639
    [Google Scholar]
  34. SrinivasanK. ViswanadB. AsratL. KaulC.L. RamaraoP. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening.Pharmacol. Res.200552431332010.1016/j.phrs.2005.05.00415979893
    [Google Scholar]
  35. JungM. KimS. KimY. KimM.R. The efficacy of Plantago asiatica L. water extract on lipid metabolism in a high-fat diet-induced obese C57BL/6 mice.Mol. Cell. Toxicol.202420239940810.1007/s13273‑023‑00355‑0
    [Google Scholar]
  36. ChungM.J. Woo ParkK. Heon KimK. KimC.T. Pill BaekJ. BangK.H. ChoiY.M. LeeS.J. Asian plantain (Plantago asiatica) essential oils suppress 3-hydroxy-3-methyl-glutaryl-co-enzyme A reductase expression in vitro and in vivo and show hypocholesterolaemic properties in mice.Br. J. Nutr.2008991677510.1017/S000711450779892617697428
    [Google Scholar]
  37. GokdemirG. Importance of curcumin effect and asprosin level on glucose metabolism in diabetic rats.Med Science.2023121167174
    [Google Scholar]
  38. QuQ. GaoY. HuoY. ZhangC. YangJ. ZhangH. LongQ. Characterization of antihyperglycemic constituents and their cytotoxicity from the fruits of Rosa davurica Pall.Appl. Nanosci.20231342969297510.1007/s13204‑022‑02349‑1
    [Google Scholar]
  39. SenaC.M. LouroT. MatafomeP. NunesE. MonteiroP. SeiçaR. Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-at diet.Physiol. Res.200958220320910.33549/physiolres.93148018380531
    [Google Scholar]
  40. MustaphaS. MohammedM. AzemiA.K. JatauA.I. ShehuA. MustaphaL. AliyuI.M. DanrakaR.N. AminA. BalaA.A. AhmadW.A.N.W. RasoolA.H.G. MustafaM.R. MokhtarS.S. Current status of endoplasmic reticulum stress in type II diabetes.Molecules20212614436210.3390/molecules2614436234299638
    [Google Scholar]
  41. AminA. ChoiS. GalanM. KassanM. PartykaM. KadowitzP. HenrionD. TrebakM. BelmadaniS. MatrouguiK. Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemia-induced vascular pathology in type II diabetic mice.J. Pathol.2012227216517410.1002/path.396022081301
    [Google Scholar]
  42. SuganyaN. BhakkiyalakshmiE. SuriyanarayananS. PaulmuruganR. RamkumarK.M. Quercetin ameliorates tunicamycin-induced endoplasmic reticulum stress in endothelial cells.Cell Prolif.201447323124010.1111/cpr.1210224666891
    [Google Scholar]
  43. DongY. ZhangM. WangS. LiangB. ZhaoZ. LiuC. WuM. ChoiH.C. LyonsT.J. ZouM.H. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo.Diabetes20105961386139610.2337/db09‑163720299472
    [Google Scholar]
  44. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  45. RohmT.V. MeierD.T. OlefskyJ.M. DonathM.Y. Inflammation in obesity, diabetes, and related disorders.Immunity2022551315510.1016/j.immuni.2021.12.01335021057
    [Google Scholar]
  46. HammadM. RaftariM. CesárioR. SalmaR. GodoyP. EmamiS.N. HaghdoostS. Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: A possible general mechanism of resistance to therapy.Antioxidants2023127137110.3390/antiox1207137137507911
    [Google Scholar]
  47. NguyenT. NioiP. PickettC.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.J. Biol. Chem.200928420132911329510.1074/jbc.R90001020019182219
    [Google Scholar]
  48. VictorP. SaradaD. RamkumarK.M. Crosstalk between endoplasmic reticulum stress and oxidative stress: Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1.Eur. J. Pharmacol.202189217374910.1016/j.ejphar.2020.17374933245896
    [Google Scholar]
  49. MaamounH. BenameurT. PintusG. MunusamyS. AgouniA. Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: A focus on the protective roles of heme oxygenase (HO)-1.Front. Physiol.2019107010.3389/fphys.2019.0007030804804
    [Google Scholar]
  50. VictorP. UmapathyD. GeorgeL. JuttadaU. GaneshG.V. AminK.N. ViswanathanV. RamkumarK.M. Crosstalk between endoplasmic reticulum stress and oxidative stress in the progression of diabetic nephropathy.Cell Stress Chaperones202126231132110.1007/s12192‑020‑01176‑z33161510
    [Google Scholar]
  51. AminK.N. RajaguruP. SuzukiT. SarkarK. GanesanK. RamkumarK.M. Quantitative proteomic analyses uncover regulatory roles of Nrf2 in human endothelial cells.Cell Stress Chaperones202328673174710.1007/s12192‑023‑01366‑537488350
    [Google Scholar]
  52. JayasuriyaR. RamkumarK.M. Mangiferin alleviates hyperglycemia-induced endothelial impairment via Nrf2 signaling pathway.Eur. J. Pharmacol.202293617535910.1016/j.ejphar.2022.17535936332683
    [Google Scholar]
  53. LeeE.S. KimH.M. KangJ.S. LeeE.Y. YadavD. KwonM.H. KimY.M. KimH.S. ChungC.H. Oleanolic acid and N -acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model.Nephrol. Dial. Transplant.201631339140010.1093/ndt/gfv37726567248
    [Google Scholar]
  54. MukherjeeA.G. GopalakrishnanA.V. Rosolic acid as a novel activator of the Nrf2/ARE pathway in arsenic-induced male reproductive toxicity: An in silico study.Biochem. Biophys. Rep.20243910180110.1016/j.bbrep.2024.10180139175663
    [Google Scholar]
  55. SiddiquiK. GeorgeT.P. MujammamiM. IsnaniA. AlfaddaA.A. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: A follow-up study.Front. Endocrinol. (Lausanne)202314107228810.3389/fendo.2023.107228836843591
    [Google Scholar]
  56. MeigsJ.B. HuF.B. RifaiN. MansonJ.E. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus.JAMA2004291161978198610.1001/jama.291.16.197815113816
    [Google Scholar]
  57. AltannavchT.S. RoubalováK. KučeraP. AndělM. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation.Physiol. Res.2004531778210.33549/physiolres.93034314984317
    [Google Scholar]
  58. KaurP. DahiyaR. NandaveM. SharmaK. GoyalR.K. Unveiling the crucial role of intercellular adhesion molecule-1 in secondary diabetic complications.Cell Biochem. Funct.2024424e403710.1002/cbf.403738736204
    [Google Scholar]
  59. Idris-KhodjaN. OuerdS. MianM.O.R. GornitskyJ. BarhoumiT. ParadisP. SchiffrinE.L. Endothelin-1 overexpression exaggerates diabetes-induced endothelial dysfunction by altering oxidative stress.Am. J. Hypertens.201629111245125110.1093/ajh/hpw07827465439
    [Google Scholar]
  60. ErgulA. Endothelin-1 and diabetic complications: Focus on the vasculature.Pharmacol. Res.201163647748210.1016/j.phrs.2011.01.01221292003
    [Google Scholar]
  61. SettergrenM. PernowJ. BrismarK. JörneskogG. KalaniM. Endothelin-A receptor blockade increases nutritive skin capillary circulation in patients with type 2 diabetes and microangiopathy.J. Vasc. Res.200845429530210.1159/00011360118212505
    [Google Scholar]
  62. ConsoliV. SorrentiV. BuròI. ModicaM.N. VanellaL. Antiproliferative effect of plant-derived bioactive compounds endowed with antioxidant activity on breast cancer cells.Nutraceuticals20222324625210.3390/nutraceuticals2030018
    [Google Scholar]
  63. DavisA.L. QiaoS. LessonJ.L. Rojo de la VegaM. ParkS.L. SeanezC.M. GokhaleV. CabelloC.M. WondrakG.T. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.J. Biol. Chem.201529031623163810.1074/jbc.M114.59262625477506
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673358006250213053647
Loading
/content/journals/cmc/10.2174/0109298673358006250213053647
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test