Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The molecular mechanisms and causes of primary sclerosis cholangitis (PSC) post-liver transplantation are still unclear. PSC is a progressive cholestatic hepatobiliary disease that happens in about 25% of patients post-liver transplantation and requires re- transplantation. Nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase or Nox) is a family of transmembrane proteins whose main function is producing reactive oxygen species (ROS). ROS generation as a result of NADPH oxidase activity of Kupffer cells and polymorphonuclear leukocytes has been implicated in the pathogenesis of ischemia-reperfusion injuries after liver transplantation, and is related to intra- and/or extrahepatic non-anastomotic biliary stenosis or PSC. In addition, Nox-derived ROS upregulates several molecular pathways to induce hepatocyte apoptosis and hepatic stellate cell (HSC) activation to promote hepatobiliary fibrogenesis. Understanding the multiple molecular aspects of Nox in the development of PSC post-transplantation may help identify new drugs to prevent this disorder.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673356252250213105931
2025-02-26
2025-11-01
Loading full text...

Full text loading...

References

  1. RabieeA. SilveiraM.G.J.T.g. Primary sclerosing cholangitis.Transl. Gastroenterol. Hepatol.2021629
    [Google Scholar]
  2. KimY.S. Primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD): A condition exemplifying the crosstalk of the gut–liver axis.Exp. Mol. Med.202355713801387
    [Google Scholar]
  3. TakinamiM. Comparison of clinical features between immune-related sclerosing cholangitis and hepatitis.Invest. New. Drugs.20213961716172310.1007/s10637‑021‑01136‑z
    [Google Scholar]
  4. RoncaV. Immune system and cholangiocytes: A puzzling affair in primary biliary cholangitis.J. Leukoc. Biol.2020108268967110.1002/JLB.5MR0320‑200R
    [Google Scholar]
  5. DysonJ.K. BeuersU. JonesD.E.J. LohseA.W. HudsonM. Primary sclerosing cholangitis.Lancet2018391101392547255910.1016/S0140‑6736(18)30300‑329452711
    [Google Scholar]
  6. EgawaH. UedaY. IchidaT. TeramukaiS. NakanumaY. OnishiS. TsubouchiH. Risk factors for recurrence of primary sclerosing cholangitis after living donor liver transplantation in Japanese registry.Am. J. Transplant.201111351852710.1111/j.1600‑6143.2010.03402.x21219581
    [Google Scholar]
  7. AlexanderJ. LordJ.D. YehM.M. CuevasC. BakthavatsalamR. KowdleyK.V. Risk factors for recurrence of primary sclerosing cholangitis after liver transplantation.Liver Transpl.200814224525110.1002/lt.2139418236405
    [Google Scholar]
  8. MikiC. HarrisonJ.D. GunsonB.K. BuckelsJ A C. McMasterP. MayerA.D. Inflammatory bowel disease in primary sclerosing cholangitis: An analysis of patients undergoing liver transplantation.Br. J. Surg.19958281114111710.1002/bjs.18008208367648169
    [Google Scholar]
  9. TrivediP.J. AdamsD.H. Mucosal immunity in liver autoimmunity: A comprehensive review.J. Autoimmun.2013469711110.1016/j.jaut.2013.06.01323891169
    [Google Scholar]
  10. GoldaracenaN. GorgenA. SapisochinG. Current status of liver transplantation for cholangiocarcinoma.Liver Transpl.201824229430310.1002/lt.2495529024405
    [Google Scholar]
  11. LambethJ.D. NOX enzymes and the biology of reactive oxygen.Nat. Rev. Immunol.20044318118910.1038/nri131215039755
    [Google Scholar]
  12. CrossA.R. SegalA.W. The NADPH oxidase of professional phagocytes—prototype of the NOX electron transport chain systems.Biochim. Biophys. Acta Bioenerg.20041657112210.1016/j.bbabio.2004.03.00815238208
    [Google Scholar]
  13. GoughD.R. CotterT.G. Hydrogen peroxide: A Jekyll and Hyde signalling molecule.Cell Death Dis.2011210e21310.1038/cddis.2011.9621975295
    [Google Scholar]
  14. KoulisC. WatsonA.M.D. GrayS.P. Jandeleit-DahmK.A. Linking RAGE and Nox in diabetic micro- and macrovascular complications.Diabetes Metab.201541427228110.1016/j.diabet.2015.01.00626323666
    [Google Scholar]
  15. ZulatoE. CiccareseF. NardoG. PinazzaM. AgnusdeiV. Silic-BenussiM. CiminaleV. IndraccoloS. Involvement of NADPH oxidase 1 in liver kinase b1-mediated effects on tumor angiogenesis and growth.Front. Oncol.2018819510.3389/fonc.2018.0019529915721
    [Google Scholar]
  16. PaikY.H. KimJ. AoyamaT. MinicisD.S. BatallerR. BrennerD.A. Role of NADPH oxidases in liver fibrosis.Antioxid. Redox Signal.201420172854287210.1089/ars.2013.561924040957
    [Google Scholar]
  17. InvernizziP. CarboneM. JonesD. LevyC. LittleN. WieselP. NevensF. study investigators Setanaxib, a first-in-class selective NADPH oxidase 1/4 inhibitor for primary biliary cholangitis: A randomized, placebo-controlled, phase 2 trial.Liver Int.20234371507152210.1111/liv.1559637183520
    [Google Scholar]
  18. PandayA. SahooM.K. OsorioD. BatraS. NADPH oxidases: An overview from structure to innate immunity-associated pathologies.Cell. Mol. Immunol.201512152310.1038/cmi.2014.8925263488
    [Google Scholar]
  19. BedardK. LardyB. KrauseK. NOX family NADPH oxidases: Not just in mammals.Biochimie20078991107111210.1016/j.biochi.2007.01.01217400358
    [Google Scholar]
  20. LapougeK. SmithS.J. GroempingY. RittingerK. Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox.J. Biol. Chem.200227712101211012810.1074/jbc.M11206520011796733
    [Google Scholar]
  21. GuichardC. MoreauR. PessayreD. EppersonT.K. KrauseK.H. NOX family NADPH oxidases in liver and in pancreatic islets: A role in the metabolic syndrome and diabetes?Biochem. Soc. Trans.200836592092910.1042/BST036092018793162
    [Google Scholar]
  22. KabirifarR. GhoreshiZ. SafariF. KarimollahA. MoradiA. Eskandari-nasabE. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats.Hepatob. Pancreat. Dis. Int.2017161889510.1016/S1499‑3872(16)60164‑928119263
    [Google Scholar]
  23. WangF.T. HassanM. AnsariK. XuG.L. LiX.P. FanY.Z. Upregulated NOX1 expression in gallbladder cancer-associated fibroblasts predicts a poor prognosis.Oncol. Rep.20194241475148610.3892/or.2019.724931364740
    [Google Scholar]
  24. ZhanM. WangH. ChenT. ChenW. YangL. HeM. XuS. WangJ. NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer.Biochem. Biophys. Res. Commun.20154681-2798510.1016/j.bbrc.2015.10.16126545779
    [Google Scholar]
  25. DarW.A. SullivanE. BynonJ.S. EltzschigH. JuC. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms.Liver Int.201939578880110.1111/liv.1409130843314
    [Google Scholar]
  26. EpsteinF.H. McCordJ.M. Oxygen-derived free radicals in postischemic tissue injury.N. Engl. J. Med.1985312315916310.1056/NEJM1985011731203052981404
    [Google Scholar]
  27. LemastersJ.J. DiGuiseppiJ. NieminenA.L. HermanB. Blebbing, free Ca2+ and mitochondrial membrane potential preceding cell death in hepatocytes.Nature19873256099788110.1038/325078a03099216
    [Google Scholar]
  28. PretzschE. NießH. KhaledN.B. BöschF. GubaM. WernerJ. AngeleM. ChaudryI.H. Molecular mechanisms of ischaemia-reperfusion injury and regeneration in the liver-shock and surgery-associated changes.Int. J. Mol. Sci.202223211294210.3390/ijms23211294236361725
    [Google Scholar]
  29. KaltenmeierC. WangR. PoppB. GellerD. TohmeS. YazdaniH.O. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury.Cells20221114222210.3390/cells1114222235883665
    [Google Scholar]
  30. ChoiE.K. LimD.G.J.J.o.Y.M.S. Hepatic ischemia-reperfusion injury with respect to oxidative stress and inflammatory response: A narrative review.J. Yeungnam. Med. Sci.2022402115122
    [Google Scholar]
  31. JaeschkeH. FarhoodA. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver.Am. J. Physiol.19912603 Pt 1G355G3622003603
    [Google Scholar]
  32. TangS. MaoX. ChenY. YanL. YeL. LiS. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death.Front. Immunol.20221387023910.3389/fimmu.2022.87023935572532
    [Google Scholar]
  33. LiuY. QinX. LeiZ. ChaiH. HuangZ. WuZ. Tetramethylpyrazine inhibits neutrophil extracellular traps formation and alleviates hepatic ischemia/reperfusion injury in rat liver transplantation.Exp. Cell Res.2021406111271910.1016/j.yexcr.2021.11271934273405
    [Google Scholar]
  34. MardenJ.J. ZhangY. OakleyF.D. ZhouW. LuoM. JiaH.P. McCrayP.B.Jr YanivM. WeitzmanJ.B. EngelhardtJ.F. JunD protects the liver from ischemia/reperfusion injury by dampening AP-1 transcriptional activation.J. Biol. Chem.2008283116687669510.1074/jbc.M70560620018182393
    [Google Scholar]
  35. BengtssonS.H.M. GulluyanL.M. DustingG.J. DrummondG.R. Novel isoforms of NADPH oxidase in vascular physiology and pathophysiology.Clin. Exp. Pharmacol. Physiol.2003301184985410.1046/j.1440‑1681.2003.03929.x14678249
    [Google Scholar]
  36. EllmarkS. DustingG. NgtangfuiM. GuzzopernellN. DrummondG. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle.Cardiovasc. Res.200565249550410.1016/j.cardiores.2004.10.02615639489
    [Google Scholar]
  37. KimuraK. ShirabeK. YoshizumiT. TakeishiK. ItohS. HarimotoN. IkegamiT. UchiyamaH. OkanoS. MaeharaY. Ischemia-reperfusion injury in fatty liver is mediated by activated NADPH oxidase 2 in rats.Transplantation2016100479180010.1097/TP.000000000000113026950726
    [Google Scholar]
  38. HaradaH. HinesI.N. FloresS. GaoB. McCordJ. ScheerensH. GrishamM.B. Role of NADPH oxidase-derived superoxide in reduced size liver ischemia and reperfusion injury.Arch. Biochem. Biophys.2004423110310810.1016/j.abb.2003.08.03514871473
    [Google Scholar]
  39. GuichelaarM.M.J. BensonJ.T. MalinchocM. KromR.A.F. WiesnerR.H. CharltonM.R. Risk factors for and clinical course of non-anastomotic biliary strictures after liver transplantation.Am. J. Transplant.20033788589010.1034/j.1600‑6143.2003.00165.x12814481
    [Google Scholar]
  40. DeOliveiraM.L. JassemW. ValenteR. KhorsandiS.E. SantoriG. PrachaliasA. SrinivasanP. RelaM. HeatonN. Biliary complications after liver transplantation using grafts from donors after cardiac death: Results from a matched control study in a single large volume center.Ann. Surg.2011254571672310.1097/SLA.0b013e318235c57222042467
    [Google Scholar]
  41. HeidenhainC. PratschkeJ. PuhlG. NeumannU. PascherA. Veltzke-SchliekerW. NeuhausP. Incidence of and risk factors for ischemic-type biliary lesions following orthotopic liver transplantation.Transpl. Int.2010231142210.1111/j.1432‑2277.2009.00947.x19691661
    [Google Scholar]
  42. JaeschkeH. FarhoodA. Kupffer cell activation after no-flow ischemia versus hemorrhagic shock.Free Radic. Biol. Med.200233221021910.1016/S0891‑5849(02)00867‑512106817
    [Google Scholar]
  43. McKeownC.M.B. EdwardsV. PhillipsM.J. HarveyP.R.C. PetrunkaC.N. StrasbergS.M. Sinusoidal lining cell damage: The critical injury in cold preservation of liver allografts in the rat.Transplantation198846217819010.1097/00007890‑198808000‑000013043774
    [Google Scholar]
  44. CursioR. GugenheimJ. Panaia-FerrariP. LasfarA. ToveyM. ChastanetS. Saint-PaulM.C. FerréC. MouielJ. Improvement of normothermic rat liver ischemia/reperfusion by muramyl dipeptide.J. Surg. Res.199880233934410.1006/jsre.1998.54459878335
    [Google Scholar]
  45. PirenneJ. GelderV.F. CoosemansW. AertsR. GunsonB. KoshibaT. FourneauI. MirzaD. SteenbergenV.W. FeveryJ. NevensF. McMasterP. Type of donor aortic preservation solution and not cold ischemia time is a major determinant of biliary strictures after liver transplantation.Liver Transpl.20017654054510.1053/jlts.2001.2464111443584
    [Google Scholar]
  46. op den DriesS. SuttonM.E. LismanT. PorteR.J. Protection of bile ducts in liver transplantation: Looking beyond ischemia.Transplantation201192437337910.1097/TP.0b013e318223a38421629175
    [Google Scholar]
  47. FoleyD.P. FernandezL.A. LeversonG. ChinL.T. KriegerN. CooperJ.T. ShamesB.D. BeckerY.T. OdoricoJ.S. KnechtleS.J. SollingerH.W. KalayogluM. D’AlessandroA.M. Donation after cardiac death: The University of Wisconsin experience with liver transplantation.Ann. Surg.2005242572473110.1097/01.sla.0000186178.07110.9216244547
    [Google Scholar]
  48. BuisC.I. VerdonkR.C. Van der JagtE.J. van der HilstC.S. SlooffM.J.H. HaagsmaE.B. PorteR.J. Nonanastomotic biliary strictures after liver transplantation, part 1: Radiological features and risk factors for early vs. Late presentation.Liver Transpl.200713570871810.1002/lt.2116617457932
    [Google Scholar]
  49. CursioR. GugenheimJ. Ischemia-reperfusion injury and ischemic-type biliary lesions following liver transplantation.J. Transplant.2012201211710.1155/2012/16432922530107
    [Google Scholar]
  50. BusquetsJ. FiguerasJ. SerranoT. TorrasJ. RamosE. RafecasA. FabregatJ. LamaC. XiolX. BaliellasC. JaurrietaE. Postreperfusion biopsy changes predict biliary complications after liver transplantation.Transplant. Proc.200234125625810.1016/S0041‑1345(01)02750‑611959272
    [Google Scholar]
  51. MinicisD.S. SekiE. PaikY.H. ÖsterreicherC.H. KodamaY. KluweJ. TorozziL. MiyaiK. BenedettiA. SchwabeR.F. BrennerD.A. Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis.Hepatology20105241420143010.1002/hep.2380420690191
    [Google Scholar]
  52. PaikY.H. IwaisakoK. SekiE. InokuchiS. SchnablB. ÖsterreicherC.H. KisselevaT. BrennerD.A. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91phox mediate hepatic fibrosis in mice.Hepatology20115351730174110.1002/hep.2428121384410
    [Google Scholar]
  53. FriedmanS.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver.Physiol. Rev.200888112517210.1152/physrev.00013.200718195085
    [Google Scholar]
  54. JiangJ.X. ChenX. SerizawaN. SzyndralewiezC. PageP. SchröderK. BrandesR.P. DevarajS. TörökN.J. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831, a novel Nox4/NOX1 inhibitor in vivo.Free Radic. Biol. Med.201253228929610.1016/j.freeradbiomed.2012.05.00722618020
    [Google Scholar]
  55. SanchoP. MainezJ. Crosas-MolistE. RonceroC. Fernández-RodriguezC.M. PinedoF. HuberH. EferlR. MikulitsW. FabregatI. NADPH oxidase Nox4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development.PLoS One201279e4528510.1371/journal.pone.004528523049784
    [Google Scholar]
  56. BettaiebA. JiangJ.X. SasakiY. ChaoT.I. KissZ. ChenX. TianJ. KatsuyamaM. Yabe-NishimuraC. XiY. SzyndralewiezC. SchröderK. ShahA. BrandesR.P. HajF.G. TörökN.J. Hepatocyte nicotinamide adenine dinucleotide phosphate reduced oxidase 4 regulates stress signaling, fibrosis, and insulin sensitivity during development of steatohepatitis in mice.Gastroenterology20151492468480.e1010.1053/j.gastro.2015.04.00925888330
    [Google Scholar]
  57. JiangJ.X. VenugopalS. SerizawaN. ChenX. ScottF. LiY. AdamsonR. DevarajS. ShahV. GershwinM.E. FriedmanS.L. TörökN.J. Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellate cell activation and liver fibrogenesis in vivo.Gastroenterology2010139413751384.e410.1053/j.gastro.2010.05.07420685364
    [Google Scholar]
  58. CuiW. MatsunoK. IwataK. IbiM. MatsumotoM. ZhangJ. ZhuK. KatsuyamaM. TorokN.J. Yabe-NishimuraC. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation.Hepatology201154394995810.1002/hep.2446521618578
    [Google Scholar]
  59. BatallerR. SchwabeR.F. ChoiY.H. YangL. PaikY.H. LindquistJ. QianT. SchoonhovenR. HagedornC.H. LemastersJ.J. BrennerD.A. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis.J. Clin. Invest.200311291383139410.1172/JCI1821214597764
    [Google Scholar]
  60. Espinosa-SoteloR. FustéN.P. Peñuelas-HaroI. AlayA. PonsG. AlmodóvarX. AlbaladejoJ. Sánchez-VeraI. Bonilla-AmadeoR. DituriF. SerinoG. RamosE. SerranoT. CalvoM. Martínez-ChantarM.L. GiannelliG. BertranE. FabregatI. Dissecting the role of the NADPH oxidase Nox4 in TGF-beta signaling in hepatocellular carcinoma.Redox Biol.20236510281810.1016/j.redox.2023.10281837463530
    [Google Scholar]
  61. Carmona-CuencaI. RonceroC. SanchoP. CajaL. FaustoN. FernándezM. FabregatI. Upregulation of the NADPH oxidase Nox4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity.J. Hepatol.200849696597610.1016/j.jhep.2008.07.02118845355
    [Google Scholar]
  62. HerreraB. FernándezM. ÁlvarezA.M. RonceroC. BenitoM. GilJ. FabregatI. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor β in rat fetal hepatocytes.Hepatology200134354855610.1053/jhep.2001.2744711526541
    [Google Scholar]
  63. RamjaunA.R. TomlinsonS. EddaoudiA. DownwardJ. Upregulation of two BH3-only proteins, BMF and BIM, during TGFβ-induced apoptosis.Oncogene200726797098110.1038/sj.onc.120985216909112
    [Google Scholar]
  64. CajaL. SanchoP. BertranE. Iglesias-SerretD. GilJ. FabregatI. Overactivation of the MEK/ERK pathway in liver tumor cells confers resistance to TGF-beta-induced cell death through impairing up-regulation of the NADPH oxidase Nox4.Cancer Res.200969197595760210.1158/0008‑5472.CAN‑09‑148219773433
    [Google Scholar]
  65. VlăduţC. An overview on primary sclerosing cholangitis.J. Clin. Med.202093784
    [Google Scholar]
  66. AoyamaT. PaikY.H. WatanabeS. LaleuB. GagginiF. Fioraso-CartierL. MolangoS. HeitzF. MerlotC. SzyndralewiezC. PageP. BrennerD.A. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent.Hepatology20125662316232710.1002/hep.2593822806357
    [Google Scholar]
  67. HeckerL. VittalR. JonesT. JagirdarR. LuckhardtT.R. HorowitzJ.C. PennathurS. MartinezF.J. ThannickalV.J. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury.Nat. Med.20091591077108110.1038/nm.200519701206
    [Google Scholar]
  68. GreenD.E. MurphyT.C. KangB.Y. KleinhenzJ.M. SzyndralewiezC. PageP. SutliffR.L. HartC.M. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation.Am. J. Respir. Cell Mol. Biol.201247571872610.1165/rcmb.2011‑0418OC22904198
    [Google Scholar]
  69. YoshidaT. Apocynin and enzymatically modified isoquercitrin suppress the expression of a NADPH oxidase subunit p22phox in steatosis-related preneoplastic liver foci of rats.Exp. Toxicol. Pathol.201769191610.1016/j.etp.2016.10.003
    [Google Scholar]
  70. WagnerA.H. KöhlerT. RückschlossU. JustI. HeckerM. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation.Arterioscler. Thromb. Vasc. Biol.2000201616910.1161/01.ATV.20.1.6110634801
    [Google Scholar]
  71. LanT. KisselevaT. BrennerD.A. Deficiency of NOX1 or Nox4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation.PLoS One2015107e012974310.1371/journal.pone.012974326222337
    [Google Scholar]
  72. VandierendonckA. DegrooteH. VanderborghtB. VerhelstX. GeertsA. DevisscherL. VlierbergheV.H. NOX1 inhibition attenuates the development of a pro-tumorigenic environment in experimental hepatocellular carcinoma.J. Exp. Clin. Cancer Res.20214014010.1186/s13046‑021‑01837‑633485364
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673356252250213105931
Loading
/content/journals/cmc/10.2174/0109298673356252250213105931
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test