Skip to content
2000
image of Variants of Visceral Adipocytokine Genes in Obesity and Coronary Atherosclerosis: A Review

Abstract

Adipocytokines secreted by adipokines can have both direct and indirect effects on the development of atherosclerosis progression. Research using modern high-tech methods of molecular genetic analysis, which make it possible to identify the influence of certain variants of regulatory genes on the course of the atherosclerotic process, is becoming increasingly relevant. The review examines variants of genes (ADIPOQ, RETN, ITLN1, PBEF1, SCT, LEP, and GHRL) associated with obesity and metabolic disorders, as well as atherosclerosis-associated cardiovascular diseases. The review also addresses the mechanisms underlying various variants of visceral adipocytokine genes, as well as the translational potential of understanding these variants for therapeutic advances. The variants studied in the context of obesity, metabolic disorders, and atherosclerosis-associated cardiovascular diseases included rs1501299 (276G/T), rs2241766 (45G/T), rs74577862, rs182052, and rs266729 for ADIPOQ gene; rs1862513 (-420C/G), rs3745367 (299 G/A) for RETN gene; rs2274907 (326A/T) for ITLN1 gene; rs1319501 (G-948T), rs2302559, rs1215113036, rs11977021 (−3187G>A), rs4730153, and rs9770242 for PBEF1 gene; rs7799039 (G2548A), rs2167270 G>A, rs12112075 (G-2548A) for LEP gene; rs696217 (+408C>A, c.214G>T, p.Leu72Met), rs27647 (A-604G) for GHRL gene. The missense variant rs376423879 in the SCT gene was the only variant that has been studied in association with overweight. The contribution of gene variants to the development of obesity, metabolic disorders, and CVD depends on many factors, including lifestyle, nutrition, and other genetic and environmental factors. For a more accurate understanding of the role of the genes presented in the review, more research is needed in different populations, both in terms of the nature of the variation of genes predisposing to diseases associated with overweight, dyslipidemia, and atherosclerosis and in terms of the characteristics of their phenotypic manifestation.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354993250402172930
2025-04-23
2025-09-08
Loading full text...

Full text loading...

References

  1. Vecchié A. Dallegri F. Carbone F. Bonaventura A. Liberale L. Portincasa P. Frühbeck G. Montecucco F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018 48 6 17 10.1016/j.ejim.2017.10.020 29100895
    [Google Scholar]
  2. An S.M. Cho S.H. Yoon J.C. Adipose tissue and metabolic health. Diabetes Metab. J. 2023 47 5 595 611 10.4093/dmj.2023.0011 37482656
    [Google Scholar]
  3. Luo J. He Z. Li Q. Lv M. Cai Y. Ke W. Niu X. Zhang Z. Adipokines in atherosclerosis: Unraveling complex roles. Front. Cardiovasc. Med. 2023 10 1235953 10.3389/fcvm.2023.1235953 37645520
    [Google Scholar]
  4. Koliaki C. Liatis S. Kokkinos A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019 92 98 107 10.1016/j.metabol.2018.10.011 30399375
    [Google Scholar]
  5. Würfel M. Blüher M. Stumvoll M. Ebert T. Kovacs P. Tönjes A. Breitfeld J. Adipokines as clinically relevant therapeutic targets in obesity. Biomedicines 2023 11 5 1427 10.3390/biomedicines11051427 37239098
    [Google Scholar]
  6. Henneman P. Aulchenko Y.S. Frants R.R. Zorkoltseva I.V. Zillikens M.C. Frolich M. Oostra B.A. van Dijk K.W. van Duijn C.M. Genetic architecture of plasma adiponectin overlaps with the genetics of metabolic syndrome-related traits. Diabetes Care 2010 33 4 908 913 10.2337/dc09‑1385 20067957
    [Google Scholar]
  7. Steppan C.M. Bailey S.T. Bhat S. Brown E.J. Banerjee R.R. Wright C.M. Patel H.R. Ahima R.S. Lazar M.A. The hormone resistin links obesity to diabetes. Nature 2001 409 6818 307 312 10.1038/35053000 11201732
    [Google Scholar]
  8. Yan J. Xu L. Zhang Y. Zhang C. Zhang C. Zhao F. Feng L. Comparative genomic and phylogenetic analyses of the intelectin gene family: Implications for their origin and evolution. Dev. Comp. Immunol. 2013 41 2 189 199 10.1016/j.dci.2013.04.016 23643964
    [Google Scholar]
  9. Yang R.Z. Lee M.J. Hu H. Pray J. Wu H.B. Hansen B.C. Shuldiner A.R. Fried S.K. McLenithan J.C. Gong D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006 290 6 E1253 E1261 10.1152/ajpendo.00572.2004 16531507
    [Google Scholar]
  10. Paval D.R. Di Virgilio T.G. Skipworth R.J.E. Gallagher I.J. The emerging role of intelectin-1 in cancer. Front. Oncol. 2022 12 767859 10.3389/fonc.2022.767859 35186726
    [Google Scholar]
  11. Varma V. Yao-Borengasser A. Rasouli N. Bodles A.M. Phanavanh B. Lee M.J. Starks T. Kern L.M. Spencer H.J. III McGehee R.E. Jr Fried S.K. Kern P.A. Human visfatin expression: Relationship to insulin sensitivity, intramyocellular lipids, and inflammation. J. Clin. Endocrinol. Metab. 2007 92 2 666 672 10.1210/jc.2006‑1303 17090638
    [Google Scholar]
  12. Whitmore T.E. Holloway J.L. Lofton-Day C.E. Maurer M.F. Chen L. Quinton T.J. Vincent J.B. Scherer S.W. Lok S. Human secretin (SCT): Gene structure, chromosome location, and distribution of mRNA. Cytogenet. Genome Res. 2000 90 1-2 47 52 10.1159/000015658 11060443
    [Google Scholar]
  13. Hamilton B.S. Paglia D. Kwan A.Y.M. Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat. Med. 1995 1 9 953 956 10.1038/nm0995‑953 7585224
    [Google Scholar]
  14. Tissue Expression of GHRL - Summary - The Human Protein Atlas. 2024 Available from: https://www.proteinatlas.org/ENSG00000157017-GHRL/tissue (Accessed on: 29 July 2024).
  15. Hotta K. Funahashi T. Arita Y. Takahashi M. Matsuda M. Okamoto Y. Iwahashi H. Kuriyama H. Ouchi N. Maeda K. Nishida M. Kihara S. Sakai N. Nakajima T. Hasegawa K. Muraguchi M. Ohmoto Y. Nakamura T. Yamashita S. Hanafusa T. Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 2000 20 6 1595 1599 10.1161/01.ATV.20.6.1595 10845877
    [Google Scholar]
  16. Saunders T.J. Davidson L.E. Janiszewski P.M. Després J.P. Hudson R. Ross R. Associations of the limb fat to trunk fat ratio with markers of cardiometabolic risk in elderly men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2009 64A 10 1066 1070 10.1093/gerona/glp079 19561143
    [Google Scholar]
  17. Achari A. Jain S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017 18 6 1321 10.3390/ijms18061321 28635626
    [Google Scholar]
  18. Shargorodsky M. Boaz M. Goldberg Y. Matas Z. Gavish D. Fux A. Wolfson N. Adiponectin and vascular properties in obese patients: Is it a novel biomarker of early atherosclerosis? Int. J. Obes. 2009 33 5 553 558 10.1038/ijo.2009.37 19238157
    [Google Scholar]
  19. Maahs D.M. Ogden L.G. Kinney G.L. Wadwa P. Snell-Bergeon J.K. Dabelea D. Hokanson J.E. Ehrlich J. Eckel R.H. Rewers M. Low plasma adiponectin levels predict progression of coronary artery calcification. Circulation 2005 111 6 747 753 10.1161/01.CIR.0000155251.03724.A5 15699257
    [Google Scholar]
  20. Christou G.A. Kiortsis D.N. Adiponectin and lipoprotein metabolism. Obes. Rev. 2013 14 12 939 949 10.1111/obr.12064 23957239
    [Google Scholar]
  21. Marso S.P. Mehta S.K. Frutkin A. House J.A. McCrary J.R. Kulkarni K.R. Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care 2008 31 5 989 994 10.2337/dc07‑2024 18252902
    [Google Scholar]
  22. Fan L.H. He Y. Xu W. Tian H.Y. Zhou Y. Liang Q. Huang X. Huo J.H. Li H.B. Bai L. Ma A.Q. Adiponectin may be a biomarker of early atherosclerosis of smokers and decreased by nicotine through KATP channel in adipocytes. Nutrition 2015 31 7-8 955 958 10.1016/j.nut.2015.01.010 26059367
    [Google Scholar]
  23. Yamauchi T. Kamon J. Ito Y. Tsuchida A. Yokomizo T. Kita S. Sugiyama T. Miyagishi M. Hara K. Tsunoda M. Murakami K. Ohteki T. Uchida S. Takekawa S. Waki H. Tsuno N.H. Shibata Y. Terauchi Y. Froguel P. Tobe K. Koyasu S. Taira K. Kitamura T. Shimizu T. Nagai R. Kadowaki T. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003 423 6941 762 769 10.1038/nature01705 12802337
    [Google Scholar]
  24. Pruitt K.D. Tatusova T. Brown G.R. Maglott D.R. NCBI Reference Sequences (RefSeq): Current status, new features and genome annotation policy. Nucleic Acids Res. 2012 40 D1 D130 D135 10.1093/nar/gkr1079 22121212
    [Google Scholar]
  25. Qi L. Li T. Rimm E. Zhang C. Rifai N. Hunter D. Doria A. Hu F.B. The +276 polymorphism of the APM1 gene, plasma adiponectin concentration, and cardiovascular risk in diabetic men. Diabetes 2005 54 5 1607 1610 10.2337/diabetes.54.5.1607 15855354
    [Google Scholar]
  26. Yang Y. Zhang F. Ding R. Wang Y. Lei H. Hu D. Association of ADIPOQ gene polymorphisms and coronary artery disease risk: A meta-analysis based on 12 465 subjects. Thromb. Res. 2012 130 1 58 64 10.1016/j.thromres.2012.01.018 22386722
    [Google Scholar]
  27. Mansourian M. Javanmard S.H. Adiponectin gene polymorphisms and susceptibility to atherosclerosis: A meta-analysis. J. Res. Med. Sci. 2013 18 7 611 616 24516495
    [Google Scholar]
  28. Xita N. Georgiou I. Chatzikyriakidou A. Vounatsou M. Papassotiriou G.P. Papassotiriou I. Tsatsoulis A. Effect of adiponectin gene polymorphisms on circulating adiponectin and insulin resistance indexes in women with polycystic ovary syndrome. Clin. Chem. 2005 51 2 416 423 10.1373/clinchem.2004.043109 15590747
    [Google Scholar]
  29. Wu J. Liu Z. Meng K. Zhang L. Association of adiponectin gene (ADIPOQ) rs2241766 polymorphism with obesity in adults: A meta-analysis. PLoS One 2014 9 4 e95270 10.1371/journal.pone.0095270 24740426
    [Google Scholar]
  30. Wang G. Wang Y. Luo Z. Effect of adiponectin variant on lipid profile and plasma adiponectin levels: A multicenter systematic review and meta-analysis. Cardiovasc. Ther. 2022 2022 1 18 10.1155/2022/4395266 35909951
    [Google Scholar]
  31. Lacquemant C. Froguel P. Lobbens S. Izzo P. Dina C. Ruiz J. The adiponectin gene SNP+45 is associated with coronary artery disease in Type 2 (non-insulin-dependent) diabetes mellitus. Diabet. Med. 2004 21 7 776 781 10.1111/j.1464‑5491.2004.01224.x 15209773
    [Google Scholar]
  32. Walter K. Min J.L. Huang J. Crooks L. Memari Y. McCarthy S. Perry J.R.B. Xu C. Futema M. Lawson D. Iotchkova V. Schiffels S. Hendricks A.E. Danecek P. Li R. Floyd J. Wain L.V. Barroso I. Humphries S.E. Hurles M E. Zeggini E. Barrett J.C. Plagnol V. Richards J. Greenwood C.M.T. Timpson N.J. Durbin R. Soranzo N. The UK10K project identifies rare variants in health and disease. Nature. 2015 526 7571 82 90 10.1038/nature14962 26367797
    [Google Scholar]
  33. Chen X. Yuan Y. Gao Y. Wang Q. Xie F. Xia D. Wei Y. Xie T. Association of variant in the ADIPOQ gene and functional study for its role in atherosclerosis. Oncotarget 2017 8 49 86527 86534 10.18632/oncotarget.21232 29156813
    [Google Scholar]
  34. Smetnev S. Klimushina M. Kutsenko V. Kiseleva A. Gumanova N. Kots A. Skirko O. Ershova A. Yarovaya E. Metelskaya V. Meshkov A. Drapkina O. Associations of SNPs of the ADIPOQ gene with serum adiponectin levels, unstable angina, and coronary artery disease. Biomolecules 2019 9 10 537 10.3390/biom9100537 31561637
    [Google Scholar]
  35. Tong G. Wang N. Leng J. Tong X. Shen Y. Yang J. Ye X. Zhou L. Zhou Y. Common variants in adiponectin gene are associated with coronary artery disease and angiographical severity of coronary atherosclerosis in type 2 diabetes. Cardiovasc. Diabetol. 2013 12 1 67 10.1186/1475‑2840‑12‑67 23590551
    [Google Scholar]
  36. Laumen H. Saningong A.D. Heid I.M. Hess J. Herder C. Claussnitzer M. Baumert J. Lamina C. Rathmann W. Sedlmeier E.M. Klopp N. Thorand B. Wichmann H.E. Illig T. Hauner H. Functional characterization of promoter variants of the adiponectin gene complemented by epidemiological data. Diabetes 2009 58 4 984 991 10.2337/db07‑1646 19074982
    [Google Scholar]
  37. Zhang D. Ma J. Brismar K. Efendic S. Gu H.F. A single nucleotide polymorphism alters the sequence of SP1 binding site in the adiponectin promoter region and is associated with diabetic nephropathy among type 1 diabetic patients in the genetics of kidneys in diabetes study. J. Diab. Complic. 2009 23 4 265 272 10.1016/j.jdiacomp.2008.05.004 18599322
    [Google Scholar]
  38. Han W. Yang S. Xiao H. Wang M. Ye J. Cao L. Sun G. Role of adiponectin in cardiovascular diseases related to glucose and lipid metabolism disorders. Int. J. Mol. Sci. 2022 23 24 15627 10.3390/ijms232415627 36555264
    [Google Scholar]
  39. González-Sánchez J.L. Zabena C.A. Martínez-Larrad M.T. Fernández-Pérez C. Pérez-Barba M. Laakso M. Serrano-Ríos M. An SNP in the adiponectin gene is associated with decreased serum adiponectin levels and risk for impaired glucose tolerance. Obes. Res. 2005 13 5 807 812 10.1038/oby.2005.91 15919831
    [Google Scholar]
  40. Menzaghi C. Ercolino T. Di Paola R. Berg A.H. Warram J.H. Scherer P.E. Trischitta V. Doria A. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2002 51 7 2306 2312 10.2337/diabetes.51.7.2306 12086965
    [Google Scholar]
  41. Boumaiza I. Omezzine A. Rejeb J. Rebhi L. Ben Rejeb N. Nabli N. Ben Abdelaziz A. Boughzala E. Bouslama A. Single-nucleotide polymorphisms at the adiponectin locus and risk of coronary artery disease in Tunisian coronaries. J. Cardiovasc. Med. (Hagerstown) 2011 12 9 619 624 10.2459/JCM.0b013e328348f1f8 21738048
    [Google Scholar]
  42. Filippi E. Sentinelli F. Romeo S. Arca M. Berni A. Tiberti C. Verrienti A. Fanelli M. Fallarino M. Sorropago G. Baroni M.G. The adiponectin gene SNP+276G>T associates with early-onset coronary artery disease and with lower levels of adiponectin in younger coronary artery disease patients (age ≤50 years). J. Mol. Med. (Berl.) 2005 83 9 711 719 10.1007/s00109‑005‑0667‑z 15877215
    [Google Scholar]
  43. Mohammadzadeh G. Ghaffari M-A. Heibar H. Bazyar M. Association of two common single nucleotide polymorphisms (+45T/G and +276G/T) of ADIPOQ gene with coronary artery disease in type 2 diabetic patients. Iran. Biomed. J. 2016 20 3 152 160 10.7508/ibj.2016.03.004 26781170
    [Google Scholar]
  44. Gui M.H. Li X. Jiang S.F. Gao J. Lu D.R. Gao X. Association of the adiponectin gene rs1501299 G>T variant, serum adiponectin levels, and the risk of coronary artery disease in a Chinese population. Diabetes Res. Clin. Pract. 2012 97 3 499 504 10.1016/j.diabres.2012.05.011 22748670
    [Google Scholar]
  45. Mackevics V. Heid I.M. Wagner S.A. Cip P. Doppelmayr H. Lejnieks A. Gohlke H. Ladurner G. Illig T. Iglseder B. Kronenberg F. Paulweber B. The adiponectin gene is associated with adiponectin levels but not with characteristics of the insulin resistance syndrome in healthy Caucasians. Eur. J. Hum. Genet. 2006 14 3 349 356 10.1038/sj.ejhg.5201552 16418740
    [Google Scholar]
  46. Bacci S. Menzaghi C. Ercolino T. Ma X. Rauseo A. Salvemini L. Vigna C. Fanelli R. Di Mario U. Doria A. Trischitta V. The +276 G/T single nucleotide polymorphism of the adiponectin gene is associated with coronary artery disease in type 2 diabetic patients. Diabetes Care 2004 27 8 2015 2020 10.2337/diacare.27.8.2015 15277433
    [Google Scholar]
  47. Esteghamati A. Mansournia N. Nakhjavani M. Mansournia M.A. Nikzamir A. Abbasi M. Association of +45(T/G) and +276(G/T) polymorphisms in the adiponectin gene with coronary artery disease in a population of Iranian patients with type 2 diabetes. Mol. Biol. Rep. 2012 39 4 3791 3797 10.1007/s11033‑011‑1156‑9 21744264
    [Google Scholar]
  48. Zayani N. Omezzine A. Boumaiza I. Achour O. Rebhi L. Rejeb J. Ben Rejeb N. Ben Abdelaziz A. Bouslama A. Association of ADIPOQ, leptin, LEPR, and resistin polymorphisms with obesity parameters in hammam sousse sahloul heart study. J. Clin. Lab. Anal. 2017 31 6 e22148 10.1002/jcla.22148 28195351
    [Google Scholar]
  49. Mackawy A.M.H. Association of the +45T>G adiponectin gene polymorphism with insulin resistance in non-diabetic Saudi women. Gene 2013 530 1 158 163 10.1016/j.gene.2013.07.003 23958652
    [Google Scholar]
  50. Rizk N.M. El-Menyar A. Marei I. Sameer M. Musad T. Younis D. Farag F. Basem N. Al-Ali K. Suwaidi J.A. Association of adiponectin gene polymorphism (+T45G) with acute coronary syndrome and circulating adiponectin levels. Angiology 2013 64 4 257 265 10.1177/0003319712455497 22887729
    [Google Scholar]
  51. Al-Daghri N.M. Al-Attas O.S. Alokail M.S. Alkharfy K.M. Hussain T. Adiponectin gene variants and the risk of coronary artery disease in patients with type 2 diabetes. Mol. Biol. Rep. 2011 38 6 3703 3708 10.1007/s11033‑010‑0484‑5 21400095
    [Google Scholar]
  52. Foucan L. Maimaitiming S. Larifla L. Hedreville S. Deloumeaux J. Joannes M.O. Blanchet-Deverly A. Velayoudom-Céphise F.L. Aubert R. Salamon R. Donnet J.P. Fumeron F. Adiponectin gene variants, adiponectin isoforms and cardiometabolic risk in type 2 diabetic patients. J. Diabetes Investig. 2014 5 2 192 198 10.1111/jdi.12133 24843760
    [Google Scholar]
  53. Du S.X. Lu L.L. Liu Y. Dong Q.J. Xuan S.Y. Xin Y.N. Association of adiponectin gene polymorphisms with the risk of coronary artery disease in patients with nonalcoholic fatty liver disease in a chinese han population. Hepat. Mon. 2016 16 7 e37388 10.5812/hepatmon.37388 27642347
    [Google Scholar]
  54. Jamaluddin M.S. Weakley S.M. Yao Q. Chen C. Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br. J. Pharmacol. 2012 165 3 622 632 10.1111/j.1476‑5381.2011.01369.x 21545576
    [Google Scholar]
  55. Calabro P. Samudio I. Willerson J.T. Yeh E.T.H. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 2004 110 21 3335 3340 10.1161/01.CIR.0000147825.97879.E7 15545519
    [Google Scholar]
  56. Reilly M.P. Lehrke M. Wolfe M.L. Rohatgi A. Lazar M.A. Rader D.J. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005 111 7 932 939 10.1161/01.CIR.0000155620.10387.43 15710760
    [Google Scholar]
  57. Ohmori R. Momiyama Y. Kato R. Taniguchi H. Ogura M. Ayaori M. Nakamura H. Ohsuzu F. Associations between serum resistin levels and insulin resistance, inflammation, and coronary artery disease. J. Am. Coll. Cardiol. 2005 46 2 379 380 10.1016/j.jacc.2005.04.022 16022972
    [Google Scholar]
  58. Singhal N.S. Patel R.T. Qi Y. Lee Y.S. Ahima R.S. Loss of resistin ameliorates hyperlipidemia and hepatic steatosis in leptin-deficient mice. Am. J. Physiol. Endocrinol. Metab. 2008 295 2 E331 E338 10.1152/ajpendo.00577.2007 18505833
    [Google Scholar]
  59. Filippidis G. Liakopoulos V. Mertens P.R. Kiropoulos T. Stakias N. Verikouki C. Patsidis E. Koukoulis G. Stefanidis I. Resistin serum levels are increased but not correlated with insulin resistance in chronic hemodialysis patients. Blood Purif. 2005 23 6 421 428 10.1159/000088017 16141714
    [Google Scholar]
  60. Hasegawa G. Ohta M. Ichida Y. Obayashi H. Shigeta M. Yamasaki M. Fukui M. Yoshikawa T. Nakamura N. Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetol. 2005 42 2 104 109 10.1007/s00592‑005‑0187‑x 15944845
    [Google Scholar]
  61. Lee J.H. Chan J.L. Yiannakouris N. Kontogianni M. Estrada E. Seip R. Orlova C. Mantzoros C.S. Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: Cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. J. Clin. Endocrinol. Metab. 2003 88 10 4848 4856 10.1210/jc.2003‑030519 14557464
    [Google Scholar]
  62. Iqbal N. Seshadri P. Stern L. Loh J. Kundu S. Jafar T. Samaha F.F. Serum resistin is not associated with obesity or insulin resistance in humans. Eur. Rev. Med. Pharmacol. Sci. 2005 9 3 161 165 16080635
    [Google Scholar]
  63. Cao H. Hegele R.A. Single nucleotide polymorphisms of the resistin (RSTN) gene. J. Hum. Genet. 2001 46 9 553 555 10.1007/s100380170040 11558907
    [Google Scholar]
  64. Mattevi V. Zembrzuski V. Hutz M. A resistin gene polymorphism is associated with body mass index in women. Hum. Genet. 2004 115 3 208 212 10.1007/s00439‑004‑1128‑4 15221446
    [Google Scholar]
  65. Park H.K. Ahima R.S. Resistin in rodents and humans. Diabetes Metab. J. 2013 37 6 404 414 10.4093/dmj.2013.37.6.404 24404511
    [Google Scholar]
  66. Beckers S. Zegers D. Van Camp J.K. Boudin E. Nielsen T.L. Brixen K. Andersen M. Van Hul W. Resistin polymorphisms show associations with obesity, but not with bone parameters in men: Results from the Odense Androgen Study. Mol. Biol. Rep. 2013 40 3 2467 2472 10.1007/s11033‑012‑2327‑z 23203410
    [Google Scholar]
  67. Rashad N.M. Allam R.M. Said D. Ali A.E. Mohy N.M. Abomandour H.G. Influence of +299G>A and +62G˃A resistin gene promoter variants on cardiovascular risk in Egyptian women with systemic lupus erythematosus. Egypt. Rheumatol. 2019 41 3 215 220 10.1016/j.ejr.2018.11.005
    [Google Scholar]
  68. Lehrke M. Reilly M.P. Millington S.C. Iqbal N. Rader D.J. Lazar M.A. An inflammatory cascade leading to hyperresistinemia in humans. PLoS Med. 2004 1 2 e45 10.1371/journal.pmed.0010045 15578112
    [Google Scholar]
  69. Osawa H. Yamada K. Onuma H. Murakami A. Ochi M. Kawata H. Nishimiya T. Niiya T. Shimizu I. Nishida W. Hashiramoto M. Kanatsuka A. Fujii Y. Ohashi J. Makino H. The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am. J. Hum. Genet. 2004 75 4 678 686 10.1086/424761 15338456
    [Google Scholar]
  70. Badoer E. Cardiovascular and metabolic crosstalk in the brain: Leptin and resistin. Front. Physiol. 2021 12 639417 10.3389/fphys.2021.639417 33679451
    [Google Scholar]
  71. Cho Y.M. Youn B.S. Chung S.S. Kim K.W. Lee H.K. Yu K.Y. Park H.J. Shin H.D. Park K.S. Common genetic polymorphisms in the promoter of resistin gene are major determinants of plasma resistin concentrations in humans. Diabetologia 2004 47 3 559 565 10.1007/s00125‑003‑1319‑x 14740159
    [Google Scholar]
  72. Azuma K. Oguchi S. Matsubara Y. Mamizuka T. Murata M. Kikuchi H. Watanabe K. Katsukawa F. Yamazaki H. Shimada A. Saruta T. Novel resistin promoter polymorphisms: Association with serum resistin level in Japanese obese individuals. Horm. Metab. Res. 2004 36 8 564 570 10.1055/s‑2004‑825762 15326567
    [Google Scholar]
  73. Zayani N. Hamdouni H. Boumaiza I. Achour O. Neffati F. Omezzine A. Najjar M.F. Bouslama A. Resistin polymorphims, plasma resistin levels and obesity in Tunisian volunteers. J. Clin. Lab. Anal. 2018 32 2 e22227 10.1002/jcla.22227 28393393
    [Google Scholar]
  74. Chiti H. Peyrovi P. Ramazani A. Mazloomzadeh S. Parsamanesh N. Positive association of -420C > G single nucleotide polymorphism in resistin gene promoter with insulin resistance indices in diabetic type 2 patients. Gene Rep. 2022 26 101536 10.1016/j.genrep.2022.101536
    [Google Scholar]
  75. Rathwa N. Patel R. Palit S.P. Ramachandran A.V. Begum R. Genetic variants of resistin and its plasma levels: Association with obesity and dyslipidemia related to type 2 diabetes susceptibility. Genomics 2019 111 4 980 985 10.1016/j.ygeno.2018.06.005 29969661
    [Google Scholar]
  76. Norata G.D. Ongari M. Garlaschelli K. Tibolla G. Grigore L. Raselli S. Vettoretti S. Baragetti I. Noto D. Cefalù A.B. Buccianti G. Averna M. Catapano A.L. Effect of the −420C/G variant of the resistin gene promoter on metabolic syndrome, obesity, myocardial infarction and kidney dysfunction. J. Intern. Med. 2007 262 1 104 112 10.1111/j.1365‑2796.2007.01787.x 17598818
    [Google Scholar]
  77. Hussain S. Bibi S. Javed Q. Heritability of genetic variants of resistin gene in patients with coronary artery disease: A family-based study. Clin. Biochem. 2011 44 8-9 618 622 10.1016/j.clinbiochem.2011.02.013 21382364
    [Google Scholar]
  78. Tang N.P. Wang L.S. Yang L. Zhou B. Gu H.J. Sun Q.M. Cong R.H. Zhu H.J. Wang B. A polymorphism in the resistin gene promoter and the risk of coronary artery disease in a Chinese population. Clin. Endocrinol. (Oxf.) 2008 68 1 82 87 10.1111/j.1365‑2265.2007.03003.x 17727677
    [Google Scholar]
  79. Kohan L. Safarpur M. Abdollahi H. Omentin-1 rs2274907 and resistin rs1862513 polymorphisms influence genetic susceptibility to nonalcoholic fatty liver disease. Mol. Biol. Res. Commun. 2016 5 1 11 17 27844016
    [Google Scholar]
  80. Osawa H. Onuma H. Ochi M. Murakami A. Yamauchi J. Takasuka T. Tanabe F. Shimizu I. Kato K. Nishida W. Yamada K. Tabara Y. Yasukawa M. Fujii Y. Ohashi J. Miki T. Makino H. Resistin SNP-420 determines its monocyte mRNA and serum levels inducing type 2 diabetes. Biochem. Biophys. Res. Commun. 2005 335 2 596 602 10.1016/j.bbrc.2005.07.122 16087164
    [Google Scholar]
  81. Suriyaprom K. Phonrat B. Namjuntra P. Chanchay S. Tungtrongchitr R. The +299(G>A) resistin gene polymorphism and susceptibility to type 2 diabetes in Thais. J. Clin. Biochem. Nutr. 2009 44 1 104 110 10.3164/jcbn.08‑224 19177195
    [Google Scholar]
  82. de Souza Batista C.M. Yang R.Z. Lee M.J. Glynn N.M. Yu D.Z. Pray J. Ndubuizu K. Patil S. Schwartz A. Kligman M. Fried S.K. Gong D.W. Shuldiner A.R. Pollin T.I. McLenithan J.C. Omentin plasma levels and gene expression are decreased in obesity. Diabetes 2007 56 6 1655 1661 10.2337/db06‑1506 17329619
    [Google Scholar]
  83. Shibata R. Ouchi N. Kikuchi R. Takahashi R. Takeshita K. Kataoka Y. Ohashi K. Ikeda N. Kihara S. Murohara T. Circulating omentin is associated with coronary artery disease in men. Atherosclerosis 2011 219 2 811 814 10.1016/j.atherosclerosis.2011.08.017 21925659
    [Google Scholar]
  84. Khoshi A. Bajestani M.K. Shakeri H. Goodarzi G. Azizi F. Association of Omentin rs2274907 and FTO rs9939609 gene polymorphisms with insulin resistance in Iranian individuals with newly diagnosed type 2 diabetes. Lipids Health Dis. 2019 18 1 142 10.1186/s12944‑019‑1085‑5 31200723
    [Google Scholar]
  85. Isakova J. Talaibekova E. Vinnikov D. Aldasheva N. Mirrakhimov E. Aldashev A. The association of Val109Asp polymorphic marker of intelectin 1 gene with abdominal obesity in Kyrgyz population. BMC Endocr. Disord. 2018 18 1 15 10.1186/s12902‑018‑0242‑6 29482534
    [Google Scholar]
  86. Jha C.K. Mir R. Elfaki I. Javid J. Babakr A.T. Banu S. Chahal S.M.S. Evaluation of the association of omentin 1 rs2274907 A>T and rs2274908 G>A gene polymorphisms with coronary artery disease in indian population: A case control study. J. Pers. Med. 2019 9 2 30 10.3390/jpm9020030 31174318
    [Google Scholar]
  87. Al-Barqaawi M.A. Al-Kashwan T.A. Mahdi A.G. Mirza T.J. Amber K.I. Hussain M.K. The impact of omentin-1 gene polymorphisms (rs2274907 and rs2274908) on serum lipid concentrations and coronary artery disease in a sample of Iraqi individuals (A pilot study). Clin. Biochem. 2022 100 29 34 10.1016/j.clinbiochem.2021.11.005 34788636
    [Google Scholar]
  88. Jamshidi J. Ghanbari M. Asnaashari A. Jafari N. Valizadeh G.A. Omentin Val109Asp polymorphism and risk of coronary artery disease. Asian Cardiovasc. Thorac. Ann. 2017 25 3 199 203 10.1177/0218492317699752 28325076
    [Google Scholar]
  89. Güçlü-Geyik F. Erkan A.F. Özuynuk A.S. Ekici B. Çoban N. Val109Asp polymorphism in Intelectin 1 gene is associated with coronary artery disease severity in women. Turk Kardiyo. Dern. Arsivi-Arch. Turk. Soci. Cardiol. 2022 50 1 34 45 10.5543/tkda.2022.21003 35197231
    [Google Scholar]
  90. Sethi J.K. Vidal-Puig A. Visfatin: The missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 2005 11 8 344 347 10.1016/j.molmed.2005.06.010 16005682
    [Google Scholar]
  91. Chang Y.H. Chang D.M. Lin K.C. Shin S.J. Lee Y.J. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab. Res. Rev. 2011 27 6 515 527 10.1002/dmrr.1201 21484978
    [Google Scholar]
  92. Yu F. Li J. Huang Q. Cai H. Increased peripheral blood visfatin concentrations may be a risk marker of coronary artery disease: A meta-analysis of observational studies. Angiology 2018 69 9 825 834 10.1177/0003319718771125 29706084
    [Google Scholar]
  93. Rong J. Chu M. Xing B. Zhu L. Wang S. Tao T. Zhao Y. Jiang L. Variations in the PBEF1 gene are associated with body mass index: A population-based study in northern China. Meta Gene 2015 6 65 68 10.1016/j.mgene.2015.08.004 30941280
    [Google Scholar]
  94. Javanmard S. Dehghananzadeh R. Rafiee L. Naji H. Rezayat A. Sarrafzadegan N. Genetic associations of the visfatin G-948T polymorphism with obesity-related metabolic traits in an Iranian population. J. Res. Med. Sci. 2016 21 1 105 10.4103/1735‑1995.193177 28250782
    [Google Scholar]
  95. Masood S.H. Khan T.A. Baloch A.A. Hasan S.M. Naqvi A.M. Iqbal M.N. Association of Visfatin gene polymorphism with obesity related metabolic disorders among Pakistani population: A case control study. Sci. Rep. 2023 13 1 23002 10.1038/s41598‑023‑48402‑z 38155161
    [Google Scholar]
  96. Martínez Larrad M.T. Corbatón Anchuelo A. Fernández Pérez C. Pérez Barba M. Lazcano Redondo Y. Serrano Ríos M. Obesity and cardiovascular risk: Variations in visfatin gene can modify the obesity associated cardiovascular risk. results from the segovia population based-study. Spain. PLoS One 2016 11 5 e0153976 10.1371/journal.pone.0153976 27166797
    [Google Scholar]
  97. Leander K. Gigante B. Silveira A. Vikström M. Hamsten A. Högberg J. NAMPT (visfatin) and AKT1 genetic variants associate with myocardial infarction. Clin. Chim. Acta 2012 413 7-8 727 732 10.1016/j.cca.2012.01.002 22251423
    [Google Scholar]
  98. Tsai S.Y. Tsai M.J. Chick ovalbumin upstream promoter-transcription factors (COUP-TFs): Coming of age. Endocr. Rev. 1997 18 2 229 240 10.1210/edrv.18.2.0294 9101138
    [Google Scholar]
  99. Bailey S.D. Loredo-Osti J.C. Lepage P. Faith J. Fontaine J. Desbiens K.M. Hudson T.J. Bouchard C. Gaudet D. Pérusse L. Vohl M.C. Engert J.C. Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes 2006 55 10 2896 2902 10.2337/db06‑0189 17003359
    [Google Scholar]
  100. Choi K.C. Ryu O.H. Lee K.W. Kim H.Y. Seo J.A. Kim S.G. Kim N.H. Choi D.S. Baik S.H. Choi K.M. Effect of PPAR-α and -γ agonist on the expression of visfatin, adiponectin, and TNF-α in visceral fat of OLETF rats. Biochem. Biophys. Res. Commun. 2005 336 3 747 753 10.1016/j.bbrc.2005.08.203 16157299
    [Google Scholar]
  101. Hwung Y.P. Crowe D.T. Wang L.H. Tsai S.Y. Tsai M.J. The COUP transcription factor binds to an upstream promoter element of the rat insulin II gene. Mol. Cell. Biol. 1988 8 5 2070 2077 10.1128/mcb.8.5.2070‑2077.1988 3290646
    [Google Scholar]
  102. Bardoux P. Zhang P. Flamez D. Perilhou A. Lavin T.A. Tanti J.F. Hellemans K. Gomas E. Godard C. Andreelli F. Buccheri M.A. Kahn A. Le Marchand-Brustel Y. Burcelin R. Schuit F. Vasseur-Cognet M. Essential role of chicken ovalbumin upstream promoter- transcription factor II in insulin secretion and insulin sensitivity revealed by conditional gene knockout. Diabetes 2005 54 5 1357 1363 10.2337/diabetes.54.5.1357 15855320
    [Google Scholar]
  103. Johansson L.M. Johansson L.E. Ridderstråle M. The visfatin (PBEF1) G-948T gene polymorphism is associated with increased high-density lipoprotein cholesterol in obese subjects. Metabolism 2008 57 11 1558 1562 10.1016/j.metabol.2008.06.011 18940394
    [Google Scholar]
  104. Mahmoudi T. Ghorbani D. Rezamand G. Dehestan N. Jeddi G. Asadi A. Nobakht H. Dabiri R. Farahani H. Tabaeian S.P. Zali M.R. A visfatin gene promoter polymorphism (rs1319501) is associated with susceptibility to nonalcoholic fatty liver disease. Per. Med. 2023 20 2 157 165 10.2217/pme‑2022‑0100 37199515
    [Google Scholar]
  105. Ooi S.Q. Chan R.M.E. Poh L.K.S. Loke K.Y. Heng C.K. Chan Y.H. Gan S.U. Lee K.O. Lee Y.S. Visfatin and its genetic variants are associated with obesity-related morbidities and cardiometabolic risk in severely obese children. Pediatr. Obes. 2014 9 2 81 91 10.1111/j.2047‑6310.2013.00149.x 23447513
    [Google Scholar]
  106. Puspasari A. Hastuti P. Sadewa A.H. Mus R. Maharani C. Setyawati I. A genetic variant of the NAMPT gene rs4730153 as a risk factor for the metabolic syndrome in younger age: A single-centre pilot study in Yogyakarta, Indonesia. Egypt. J. Med. Hum. Genet. 2021 22 1 67 10.1186/s43042‑021‑00187‑4
    [Google Scholar]
  107. Saddi-Rosa P. Oliveira C.S. Crispim F. Giuffrida F.M.A. de Lima V.C. Vieira J.G. Doria A. Velho G. Reis A.F. Association of circulating levels of nicotinamide phosphoribosyltransferase (NAMPT/Visfatin) and of a frequent polymorphism in the promoter of the NAMPT gene with coronary artery disease in diabetic and non-diabetic subjects. Cardiovasc. Diabetol. 2013 12 1 119 10.1186/1475‑2840‑12‑119 23968400
    [Google Scholar]
  108. Friedman J.M. Halaas J.L. Leptin and the regulation of body weight in mammals. Nature 1998 395 6704 763 770 10.1038/27376 9796811
    [Google Scholar]
  109. Friedman J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019 1 8 754 764 10.1038/s42255‑019‑0095‑y 32694767
    [Google Scholar]
  110. Obradovic M. Sudar-Milovanovic E. Soskic S. Essack M. Arya S. Stewart A.J. Gojobori T. Isenovic E.R. Leptin and obesity: Role and clinical implication. Front. Endocrinol. (Lausanne) 2021 12 585887 10.3389/fendo.2021.585887 34084149
    [Google Scholar]
  111. Chai S.B. Sun F. Nie X.L. Wang J. Leptin and coronary heart disease: A systematic review and meta-analysis. Atherosclerosis 2014 233 1 3 10 10.1016/j.atherosclerosis.2013.11.069 24529114
    [Google Scholar]
  112. Montazerifar F. Bolouri A. Paghalea R.S. Mahani M.K. Karajibani M. Obesity, serum resistin and leptin levels linked to coronary artery disease. Arq. Bras. Cardiol. 2016 107 4 348 353 10.5935/abc.20160134 27627223
    [Google Scholar]
  113. Yang H. Guo W. Li J. Cao S. Zhang J. Pan J. Wang Z. Wen P. Shi X. Zhang S. Leptin concentration and risk of coronary heart disease and stroke: A systematic review and meta-analysis. PLoS One 2017 12 3 e0166360 10.1371/journal.pone.0166360 28278178
    [Google Scholar]
  114. Farr O.M. Gavrieli A. Mantzoros C.S. Leptin applications in 2015. Curr. Opin. Endocrinol. Diabetes Obes. 2015 22 5 353 359 10.1097/MED.0000000000000184 26313897
    [Google Scholar]
  115. Dubern B. Clement K. Leptin and leptin receptor-related monogenic obesity. Biochimie 2012 94 10 2111 2115 10.1016/j.biochi.2012.05.010 22627381
    [Google Scholar]
  116. Roszkowska-Gancarz M. Kurylowicz A. Polosak J. Mossakowska M. Franek E. Puzianowska-Kuźnicka M. Functional polymorphisms of the leptin and leptin receptor genes are associated with longevity and with the risk of myocardial infarction and of type 2 diabetes mellitus. Endokrynol. Pol. 2014 65 1 11 16 10.5603/EP.2014.0002 24549597
    [Google Scholar]
  117. Boumaiza I. Omezzine A. Rejeb J. Rebhi L. Ouedrani A. Ben Rejeb N. Nabli N. Ben Abdelaziz A. Bouslama A. Relationship between leptin G2548A and leptin receptor Q223R gene polymorphisms and obesity and metabolic syndrome risk in Tunisian volunteers. Genet. Test. Mol. Biomarkers 2012 16 7 726 733 10.1089/gtmb.2011.0324 22734460
    [Google Scholar]
  118. Dasgupta S. Salman M. Siddalingaiah L.B. Lakshmi G.L. Xaviour D. Sreenath J. Genetic variants in leptin: Determinants of obesity and leptin levels in South Indian population. Adipocyte 2015 4 2 135 140 10.4161/21623945.2014.975538 26167411
    [Google Scholar]
  119. Wang H. Wang C. Han W. Geng C. Chen D. Wu B. Zhang J. Wang C. Jiang P. Association of leptin and leptin receptor polymorphisms with coronary artery disease in a North Chinese Han population. Rev. Soc. Bras. Med. Trop. 2020 53 e20190388 10.1590/0037‑8682‑0388‑2019 32049202
    [Google Scholar]
  120. Chen Y. Liu C. Shao A. Tang W. Wang Y. Chen L. The association between lep/lepr polymorphisms and coronary artery disease: A case-control study in an Eastern Chinese han population. Int. J. Clin. Exp. Med. 2019 5 6060 6068
    [Google Scholar]
  121. Khaki-Khatibi F. Shademan B. Gholikhani-Darbroud R. Nourazarian A. Radagdam S. Porzour M. Gene polymorphism of leptin and risk for heart disease, obesity, and high BMI: A systematic review and pooled analysis in adult obese subjects. Horm. Mol. Biol. Clin. Investig. 2023 44 1 11 20 10.1515/hmbci‑2022‑0020 36103664
    [Google Scholar]
  122. Gong D.W. Bi S. Pratley R.E. Weintraub B.D. Genomic structure and promoter analysis of the human obese gene. J. Biol. Chem. 1996 271 8 3971 3974 10.1074/jbc.271.8.3971 8626726
    [Google Scholar]
  123. Bi S. Gavrilova O. Gong D.W. Mason M.M. Reitman M. Identification of a placental enhancer for the human leptin gene. J. Biol. Chem. 1997 272 48 30583 30588 10.1074/jbc.272.48.30583 9374555
    [Google Scholar]
  124. Hart Sailors M.L. Folsom A.R. Ballantyne C.M. Hoelscher D.M. Jackson A.S. Linda Kao W.H. Pankow J.S. Bray M.S. Genetic variation and decreased risk for obesity in the atherosclerosis risk in communities study. Diabetes Obes. Metab. 2007 9 4 548 557 10.1111/j.1463‑1326.2006.00637.x 17587397
    [Google Scholar]
  125. Otto B. Tschöp M. Frühauf E. Heldwein W. Fichter M. Otto C. Cuntz U. Postprandial ghrelin release in anorectic patients before and after weight gain. Psychoneuroendocrinology 2005 30 6 577 581 10.1016/j.psyneuen.2005.01.009 15808927
    [Google Scholar]
  126. Ukkola O. Ghrelin and atherosclerosis. Curr. Opin. Lipidol. 2015 26 4 288 291 10.1097/MOL.0000000000000183 26103606
    [Google Scholar]
  127. GHRL - ghrelin and obestatin prepropeptide (human). 2025 Available from: https://www.ncbi.nlm.nih.gov/gene/51738 .
  128. Llamas-Covarrubias I.M. Llamas-Covarrubias M.A. Martinez-López E. Zepeda-Carrillo E.A. Rivera-León E.A. Palmeros-Sánchez B. Alcalá-Zermeño J.L. Sánchez-Enríquez S. Association of A-604G ghrelin gene polymorphism and serum ghrelin levels with the risk of obesity in a mexican population. Mol. Biol. Rep. 2017 44 3 289 293 10.1007/s11033‑017‑4109‑0 28597412
    [Google Scholar]
  129. Becer E. Ergoren M.C. Dual effect of the GHRL gene variant in the molecular pathogenesis of obesity. Balkan J. Med. Genet. 2021 24 1 27 34 10.2478/bjmg‑2021‑0011 34447656
    [Google Scholar]
  130. Martantiningtyas D.C. Hastuti P. Sadewa A.H. Leu72Met polymorphism of GHRL gene increase the risk factor of obesity in a Javanese ethnic group from Indonesia. Meta Gene 2021 29 100912 10.1016/j.mgene.2021.100912
    [Google Scholar]
  131. Mora M. Adam V. Palomera E. Blesa S. Díaz G. Buquet X. Serra-Prat M. Martín-Escudero J.C. Palanca A. Chaves J.F. Puig-Domingo M. Ghrelin gene variants influence on metabolic syndrome components in aged spanish population. PLoS One 2015 10 9 e0136931 10.1371/journal.pone.0136931 26375586
    [Google Scholar]
  132. Takezawa J. Yamada K. Morita A. Aiba N. Watanabe S. Preproghrelin gene polymorphisms in obese Japanese: Association with diabetes mellitus in men and with metabolic syndrome parameters in women. Obes. Res. Clin. Pract. 2009 3 4 179 191 10.1016/j.orcp.2009.04.003 24973147
    [Google Scholar]
  133. Zhang Q. Huang W. Lv X. Yang Y. The association of ghrelin polymorphisms with coronary artery disease and ischemic chronic heart failure in an elderly Chinese population. Clin. Biochem. 2011 44 5-6 386 390 10.1016/j.clinbiochem.2010.12.013 21195705
    [Google Scholar]
  134. Hedayatizadeh-Omran A. Rafiei A. Khajavi R. Alizadeh-Navaei R. Mokhberi V. Moradzadeh K. Association between ghrelin gene (Leu72Met) polymorphism and ghrelin serum level with coronary artery diseases. DNA Cell Biol. 2014 33 2 95 101 10.1089/dna.2013.2218 24341728
    [Google Scholar]
  135. Wajnrajch M.P. Ten I.S. Gertner J.M. Leibel R.L. Genomic organization of the human ghrelin gene. Int. J. Disabil. Hum. Dev. 2000 1 4 231 234 10.1515/IJDHD.2000.1.4.231
    [Google Scholar]
  136. Misquitta C.M. Iyer V.R. Werstiuk E.S. Grover A.K. The role of 3′-untranslated region (3′-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol. Cell. Biochem. 2001 224 1/2 53 67 10.1023/A:1011982932645 11693200
    [Google Scholar]
  137. Espinoza García A.S. Díaz Chávez R.L. Valdés Miramontes E.H. Parra Rojas I. Reyes Castillo Z. Genetic variants in ghrelin (rs27647, rs696217) and leptin (rs7799039) are not associated with body composition parameters but are related to appetitive traits in Mexican young adults. Gene Rep. 2024 37 102071 10.1016/j.genrep.2024.102071
    [Google Scholar]
  138. Zavarella S. Petrone A. Zampetti S. Gueorguiev M. Spoletini M. Mein C.A. Leto G. Korbonits M. Buzzetti R. A new variation in the promoter region, the −604 C>T, and the Leu72Met polymorphism of the ghrelin gene are associated with protection to insulin resistance. Int. J. Obes. 2008 32 4 663 668 10.1038/sj.ijo.0803766 18071345
    [Google Scholar]
  139. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  140. Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. Olsson I. Edlund K. Lundberg E. Navani S. Szigyarto C.A.K. Odeberg J. Djureinovic D. Takanen J.O. Hober S. Alm T. Edqvist P.H. Berling H. Tegel H. Mulder J. Rockberg J. Nilsson P. Schwenk J.M. Hamsten M. von Feilitzen K. Forsberg M. Persson L. Johansson F. Zwahlen M. von Heijne G. Nielsen J. Pontén F. Tissue-based map of the human proteome. Science 2015 347 6220 1260419 10.1126/science.1260419 25613900
    [Google Scholar]
  141. Polidori D. Sanghvi A. Seeley R.J. Hall K.D. How strongly does appetite counter weight loss? quantification of the feedback control of human energy intake. Obesity (Silver Spring) 2016 24 11 2289 2295 10.1002/oby.21653 27804272
    [Google Scholar]
  142. Bell D. McDermott B.J. Secretin and vasoactive intestinal peptide are potent stimulants of cellular contraction and accumulation of cyclic AMP in rat ventricular cardiomyocytes. J. Cardiovasc. Pharmacol. 1994 23 6 959 969 10.1097/00005344‑199406000‑00015 7523789
    [Google Scholar]
  143. Laurila S. Sun L. Lahesmaa M. Schnabl K. Laitinen K. Klén R. Li Y. Balaz M. Wolfrum C. Steiger K. Niemi T. Taittonen M. U-Din M. Välikangas T. Elo L.L. Eskola O. Kirjavainen A.K. Nummenmaa L. Virtanen K.A. Klingenspor M. Nuutila P. Secretin activates brown fat and induces satiation. Nat. Metab. 2021 3 6 798 809 10.1038/s42255‑021‑00409‑4 34158656
    [Google Scholar]
  144. Bairqdar A. Shakhtshneider E. Ivanoshchuk D. Mikhailova S. Kashtanova E. Shramko V. Polonskaya Y. Ragino Y. Rare variants of obesity-associated genes in young adults with abdominal obesity. J. Pers. Med. 2023 13 10 1500 10.3390/jpm13101500 37888112
    [Google Scholar]
  145. Funcke J.B. von Schnurbein J. Lennerz B. Lahr G. Debatin K.M. Fischer-Posovszky P. Wabitsch M. Monogenic forms of childhood obesity due to mutations in the leptin gene. Mol. Cell Pediatr. 2014 1 1 3 10.1186/s40348‑014‑0003‑1 26567097
    [Google Scholar]
  146. Brown R.J. Oral E.A. Cochran E. Araújo-Vilar D. Savage D.B. Long A. Fine G. Salinardi T. Gorden P. Long-term effectiveness and safety of metreleptin in the treatment of patients with generalized lipodystrophy. Endocrine 2018 60 3 479 489 10.1007/s12020‑018‑1589‑1 29644599
    [Google Scholar]
  147. Okada-Iwabu M. Yamauchi T. Iwabu M. Honma T. Hamagami K. Matsuda K. Yamaguchi M. Tanabe H. Kimura-Someya T. Shirouzu M. Ogata H. Tokuyama K. Ueki K. Nagano T. Tanaka A. Yokoyama S. Kadowaki T. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013 503 7477 493 499 10.1038/nature12656 24172895
    [Google Scholar]
  148. Okada-Iwabu M. Iwabu M. Yamauchi T. Kadowaki T. Drug development research for novel adiponectin receptor-targeted antidiabetic drugs contributing to healthy longevity. Diabetol. Int. 2019 10 4 237 244 10.1007/s13340‑019‑00409‑6 31592400
    [Google Scholar]
  149. Silswal N. Singh A.K. Aruna B. Mukhopadhyay S. Ghosh S. Ehtesham N.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway. Biochem. Biophys. Res. Commun. 2005 334 4 1092 1101 10.1016/j.bbrc.2005.06.202 16039994
    [Google Scholar]
  150. Yoshino J. Mills K.F. Yoon M.J. Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011 14 4 528 536 10.1016/j.cmet.2011.08.014 21982712
    [Google Scholar]
  151. King E.A. Davis J.W. Degner J.F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019 15 12 e1008489 10.1371/journal.pgen.1008489 31830040
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354993250402172930
Loading
/content/journals/cmc/10.2174/0109298673354993250402172930
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test