Skip to content
2000
image of The Role and Molecular Mechanism of Icaritin in the Treatment of Alzheimer's Disease

Abstract

Alzheimer's disease (AD), a degenerative disease of the central nervous system, affects approximately 70 million individuals worldwide. As the number of elderly in the population increases, the prevalence and incidence of AD are increasing annually. Although the drugs are currently used to alleviate certain cognitive symptoms, their overall therapeutic efficacy remains unclear. Consequently, there is significant societal demand for safe and effective therapeutic options. Icaritin (ICT), a bioactive compound derived from Maxim, has anti-apoptotic, antioxidant, anti-neuroinflammatory, anti-aging, and neuroprotective properties. In recent years, it has garnered significant interest because of its potential preventative and therapeutic effects in the context of AD. In this review, we analyze the therapeutic effects of ICT on AD, namely the inhibition of neuroinflammation, effects against oxidative stress and apoptosis, and promotion of cellular autophagy. The aim of this review was to provide a general reference for the research and development of new drugs, in particular ICT, for the prevention and treatment of AD.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354454250124074057
2025-02-07
2025-09-08
Loading full text...

Full text loading...

References

  1. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Jucker M. Walker L.C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 2023 186 20 4260 4270 10.1016/j.cell.2023.08.021 37729908
    [Google Scholar]
  3. Singh M.K. Shin Y. Ju S. Han S. Kim S.S. Kang I. Comprehensive overview of alzheimer’s disease: Etiological insights and degradation strategies. Int. J. Mol. Sci. 2024 25 13 6901 10.3390/ijms25136901 39000011
    [Google Scholar]
  4. Waite L.M. New and emerging drug therapies for Alzheimer disease. Aust. Prescr. 2024 47 3 75 79 10.18773/austprescr.2024.021 38962384
    [Google Scholar]
  5. Wang Y.T. Therriault J. Tissot C. Servaes S. Rahmouni N. Macedo A.C. Fernandez-Arias J. Mathotaarachchi S.S. Stevenson J. Lussier F.Z. Benedet A.L. Pascoal T.A. Ashton N.J. Zetterberg H. Blennow K. Gauthier S. Rosa-Neto P. Hormone therapy is associated with lower Alzheimer’s disease tau biomarkers in post-menopausal females -evidence from two independent cohorts. Alzheimers Res. Ther. 2024 16 1 162 10.1186/s13195‑024‑01509‑5 39034389
    [Google Scholar]
  6. Zhu D. Montagne A. Zhao Z. Alzheimer’s pathogenic mechanisms and underlying sex difference. Cell. Mol. Life Sci. 2021 78 11 4907 4920 10.1007/s00018‑021‑03830‑w 33844047
    [Google Scholar]
  7. Chen M.H. Lin H.C. Chao T. Lee V.S.Y. Hou C.L. Wang T.J. Chen J.R. Hyaluronic acid conjugated with 17β-estradiol effectively alleviates estropause-induced cognitive deficits in rats. Int. J. Mol. Sci. 2023 24 21 15569 10.3390/ijms242115569 37958552
    [Google Scholar]
  8. Sun Q. Yang R. chen T. Li S. Wang H. Kong D. Zhang W. Duan J. Zheng H. Shen Z. Zhang J. Icaritin attenuates ischemia–reperfusion injury by anti-inflammation, anti-oxidative stress, and anti-autophagy in mouse liver. Int. Immunopharmacol. 2024 138 112533 10.1016/j.intimp.2024.112533 38924868
    [Google Scholar]
  9. Yu Z. Su G. Zhang L. Liu G. Zhou Y. Fang S. Zhang Q. Wang T. Huang C. Huang Z. Li L. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER–ERK–NF-κB signaling pathway. Mol. Med. 2022 28 1 142 10.1186/s10020‑022‑00573‑7 36447154
    [Google Scholar]
  10. Feng F. Li Y. Huang Q.N. Effect of icaritin on β-amyloid production-related pathways. Chongqing Medicine. 2020 49 11 1721 1725
    [Google Scholar]
  11. Wang Z. Zhang X. Wang H. Qi L. Lou Y. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway. Neuroscience 2007 145 3 911 922 10.1016/j.neuroscience.2006.12.059 17321691
    [Google Scholar]
  12. Mroczko B. Groblewska M. Litman-Zawadzka A. The role of protein misfolding and tau oligomers (TauOs) in alzheimer′s disease (AD). Int. J. Mol. Sci. 2019 20 19 4661 10.3390/ijms20194661 31547024
    [Google Scholar]
  13. Iqbal K. Gong C.X. Liu F. Hyperphosphorylation-induced tau oligomers. Front. Neurol. 2013 4 112 10.3389/fneur.2013.00112 23966973
    [Google Scholar]
  14. Fan X. Xia L. Zhou Z. Qiu Y. Zhao C. Yin X. Qian W. Tau acts in concert with kinase/phosphatase underlying synaptic dysfunction. Front. Aging Neurosci. 2022 14 908881 10.3389/fnagi.2022.908881 35711910
    [Google Scholar]
  15. Li Z. Yin B. Zhang S. Lan Z. Zhang L. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives. Eur. J. Med. Chem. 2023 261 115817 10.1016/j.ejmech.2023.115817 37722288
    [Google Scholar]
  16. Zhao X. Xiong L. She L. Li L. Huang P. Liang G. The role and therapeutic implication of protein tyrosine phosphatases in Alzheimer’s disease. Biomed. Pharmacother. 2022 151 113188 10.1016/j.biopha.2022.113188 35676788
    [Google Scholar]
  17. Luo Z. Li S. Zhang Y. Yin F. Luo H. Chen X. Cui N. Wan S. Li X. Kong L. Wang X. Oxazole-4-carboxamide/butylated hydroxytoluene hybrids with GSK-3β inhibitory and neuroprotective activities against Alzheimer’s disease. Eur. J. Med. Chem. 2023 256 115415 10.1016/j.ejmech.2023.115415 37172476
    [Google Scholar]
  18. Hui J. Zhang J. Pu M. Zhou X. Dong L. Mao X. Shi G. Zou J. Wu J. Jiang D. Xi G. Modulation of GSK-3β/β-catenin signaling contributes to learning and memory impairment in a rat model of depression. Int. J. Neuropsychopharmacol. 2018 21 9 858 870 10.1093/ijnp/pyy040 29688389
    [Google Scholar]
  19. Li X.A. Ho Y.S. Chen L. Hsiao W.L. The protective effects of icariin against the homocysteine-induced neurotoxicity in the primary embryonic cultures of rat cortical neurons. Molecules 2016 21 11 1557 10.3390/molecules21111557 27879670
    [Google Scholar]
  20. Li Y. Dai S. Huang N. Wu J. Yu C. Luo Y. Icaritin and icariin reduce p-Tau levels in a cell model of Alzheimer’s disease by downregulating glycogen synthase kinase 3β. Biotechnol. Appl. Biochem. 2022 69 1 355 363 10.1002/bab.2114 33502043
    [Google Scholar]
  21. Shen Y. Liu F. Zhang M. Therapeutic potential of plant-derived natural compounds in Alzheimer’s disease: Targeting microglia-mediated neuroinflammation. Biomed. Pharmacother. 2024 178 117235 10.1016/j.biopha.2024.117235 39094545
    [Google Scholar]
  22. Stoklund Dittlau K. Freude K. Astrocytes: The stars in neurodegeneration? Biomolecules 2024 14 3 289 10.3390/biom14030289 38540709
    [Google Scholar]
  23. Santiago-Balmaseda A. Aguirre-Orozco A. Valenzuela-Arzeta I.E. Villegas-Rojas M.M. Pérez-Segura I. Jiménez-Barrios N. Hurtado-Robles E. Rodríguez-Hernández L.D. Rivera-German E.R. Guerra-Crespo M. Martinez-Fong D. Ledesma-Alonso C. Diaz-Cintra S. Soto-Rojas L.O. Neurodegenerative diseases: Unraveling the heterogeneity of astrocytes. Cells 2024 13 11 921 10.3390/cells13110921 38891053
    [Google Scholar]
  24. Boon B.D.C. Hoozemans J.J.M. Lopuhaä B. Eigenhuis K.N. Scheltens P. Kamphorst W. Rozemuller A.J.M. Bouwman F.H. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease. J. Neuroinflammation 2018 15 1 170 10.1186/s12974‑018‑1180‑y 29843759
    [Google Scholar]
  25. Li X. Feng X. Sun X. Hou N. Han F. Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022 14 937486 10.3389/fnagi.2022.937486 36299608
    [Google Scholar]
  26. Wirth S. Schlößer A. Beiersdorfer A. Schweizer M. Woo M.S. Friese M.A. Lohr C. Grochowska K.M. Astrocytic uptake of posttranslationally modified amyloid-β leads to endolysosomal system disruption and induction of pro-inflammatory signaling. Glia 2024 72 8 1451 1468 10.1002/glia.24539 38629411
    [Google Scholar]
  27. Yan X. Hu G. Yan W. Chen T. Yang F. Zhang X. Zhao G. Liu J. Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci. 2017 168 16 23 10.1016/j.lfs.2016.11.002 27825720
    [Google Scholar]
  28. Zhang WD Zhang M Bai JY Effect of Icaritin on Lipopolysaccharide-induced gene expression of Cyclooxygenase-2 and inducible nitric oxide synthase in primary cultured astrocytes. J. Qingdao Uni. (Med. Sci.). 2019 55 01 32 34, 39
    [Google Scholar]
  29. Chen S. Zhu M.L. Song J.H. Effect of icaritin on lipopolysaccharide-induced inflammatory response in primary cultured cortical astrocytes. J. Qingdao Uni. 2021 57 02 167 170
    [Google Scholar]
  30. Zhang W.D. Li N. Du Z.R. Zhang M. Chen S. Chen W.F. IGF-1 receptor is involved in the regulatory effects of icariin and icaritin in astrocytes under basal conditions and after an inflammatory challenge. Eur. J. Pharmacol. 2021 906 174269 10.1016/j.ejphar.2021.174269 34147477
    [Google Scholar]
  31. Angeloni C. Barbalace M.C. Hrelia S. Icariin and its metabolites as potential protective phytochemicals against alzheimer’s disease. Front. Pharmacol. 2019 10 271 10.3389/fphar.2019.00271 30941046
    [Google Scholar]
  32. Zhu ML Wang XW Huang LL Effect of icaritin on lipopolysaccharide-induced inflammatory response in the hippocampus of mice with Alzheimer's disease. J. Precision Med. 2019 34 3 237 239, 244 10.13362/j.jpmed.201903013
    [Google Scholar]
  33. Yang Y. Jiang G.Y. Jin M.R. Li J.J. Liu Z.M. Chen W.F. Neuronal damage caused by lipopolysaccharide-activated mesencephalon glial cell-conditioned medium and the neuroprotective effect of icaritin. J. Qingdao Uni. 2021 57 02 182 185
    [Google Scholar]
  34. Zhu M.L. Molecular mechanism study of icaritin against inflammatory response in Alzheimer’s disease. Qingdao University, 2019
    [Google Scholar]
  35. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  36. Bai R. Guo J. Ye X.Y. Xie Y. Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022 77 101619 10.1016/j.arr.2022.101619 35395415
    [Google Scholar]
  37. Nie Y. Chu C. Qin Q. Shen H. Wen L. Tang Y. Qu M. Lipid metabolism and oxidative stress in patients with Alzheimer’s disease and amnestic mild cognitive impairment. Brain Pathol. 2024 34 1 e13202 10.1111/bpa.13202 37619589
    [Google Scholar]
  38. Arimon M. Takeda S. Post K.L. Svirsky S. Hyman B.T. Berezovska O. Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 2015 84 109 119 10.1016/j.nbd.2015.06.013 26102023
    [Google Scholar]
  39. Park M.W. Cha H.W. Kim J. Kim J.H. Yang H. Yoon S. Boonpraman N. Yi S.S. Yoo I.D. Moon J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021 41 101947 10.1016/j.redox.2021.101947 33774476
    [Google Scholar]
  40. Teleanu D.M. Niculescu A.G. Lungu I.I. Radu C.I. Vladâcenco O. Roza E. Costăchescu B. Grumezescu A.M. Teleanu R.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 11 5938 10.3390/ijms23115938 35682615
    [Google Scholar]
  41. Simpson D.S.A. Oliver P.L. ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020 9 8 743 10.3390/antiox9080743 32823544
    [Google Scholar]
  42. Zhou Y. Huang N. Li Y. Ba Z. Zhou Y. Luo Y. Icaritin protects SH-SY5Y cells transfected with TDP-43 by alleviating mitochondrial damage and oxidative stress. PeerJ 2021 9 e11978 10.7717/peerj.11978 34434670
    [Google Scholar]
  43. Nie J. Luo Y. Huang X.N. Protective effects of icariin on learning and memory dysfunction induced by amyloid β-protein fragment 25-35. Zhongguo Yaolixue Yu Dulixue Zazhi 2008 22 31 37
    [Google Scholar]
  44. He X.L. Zhou W.Q. Bi M.G. Du G.H. Neuroprotective effects of icariin on memory impairment and neurochemical deficits in senescence-accelerated mouse prone 8 (SAMP8) mice. Brain Res. 2010 1334 73 83 10.1016/j.brainres.2010.03.084 20380820
    [Google Scholar]
  45. Luo Y. Nie J. Gong Q.H. Lu Y.F. Wu Q. Shi J.S. Protective effects of icariin against learning and memory deficits induced by aluminium in rats. Clin. Exp. Pharmacol. Physiol. 2007 34 8 792 795 10.1111/j.1440‑1681.2007.04647.x 17600559
    [Google Scholar]
  46. Lai L.J. Liu X.F. Chen Q. Therapeutic effects of icaritin on cerebral ischemia-reperfusion by inhibiting oxidative stress. J. Gannan Med. Uni. 2015 35 01 14 17
    [Google Scholar]
  47. Li L. Wei Z. Tang Y. Jin M. Yao H. Li X. Li Q. Tan J. Xiao B. Icaritin greatly attenuates β-amyloid-induced toxicity in vivo. CNS Neurosci. Ther. 2024 30 4 e14527 10.1111/cns.14527 37990437
    [Google Scholar]
  48. Nah J. Yuan J. Jung Y.K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 2015 38 5 381 389 10.14348/molcells.2015.0034 25896254
    [Google Scholar]
  49. Chen Y. Chen J. Xing Z. Peng C. Li D. Autophagy in neuroinflammation: A focus on epigenetic regulation. Aging Dis. 2024 15 2 739 754 10.14336/AD.2023.0718‑1 37548945
    [Google Scholar]
  50. Wu X. Kong W. Qi X. Wang S. Chen Y. Zhao Z. Wang W. Lin X. Lai J. Yu Z. Lai G. Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci. 2019 239 116879 10.1016/j.lfs.2019.116879 31682849
    [Google Scholar]
  51. Jiang X. Chen L.L. Lan Z. Xiong F. Xu X. Yin Y.Y. Li P. Wang P. Icariin ameliorates amyloid pathologies by maintaining homeostasis of autophagic systems in Aβ1–42-injected rats. Neurochem. Res. 2019 44 12 2708 2722 10.1007/s11064‑019‑02889‑z 31612304
    [Google Scholar]
  52. Zhou Y. Huang N. Li Y. Ba Z. Luo Y. Effect of icaritin on autophagy-related protein expression in TDP-43-transfected SH-SY5Y cells. PeerJ 2022 10 e13703 10.7717/peerj.13703 35811810
    [Google Scholar]
  53. Chen Y.G. Research progress in the pathogenesis of alzheimer’s disease. Chin. Med. J. (Engl.) 2018 131 13 1618 1624 10.4103/0366‑6999.235112 29941717
    [Google Scholar]
  54. Cheng S.Z. Su G.Y. Gao L.P. Research progress on the mechanism of apoptosis in Alzheimer 's disease. J. Handan Med. Col. 2003 05 487 489
    [Google Scholar]
  55. Tang C. Liu X. Zhu H. Lu Q. Antagonizing effect of icaritin on apoptosis and injury of hippocampal neurocytes induced by amyloid beta via GR/BDNF signaling pathway. J. Recept. Signal Transduct. Res. 2020 40 6 550 559 10.1080/10799893.2020.1768547 32476534
    [Google Scholar]
  56. Zhou X. Huang N. Hou X. Zhu L. Xie Y. Ba Z. Luo Y. Icaritin attenuates 6-OHDA-induced MN9D cell damage by inhibiting oxidative stress. PeerJ 2022 10 e13256 10.7717/peerj.13256 35433120
    [Google Scholar]
  57. Liu J. Wei A.H. Liu T.T. Ji X.H. Zhang Y. Yan F. Chen M.X. Hu J.B. Zhou S.Y. Shi J.S. Jin H. Jin F. Icariin ameliorates glycolytic dysfunction in Alzheimer’s disease models by activating the Wnt/β-catenin signaling pathway. FEBS J. 2024 291 10 2221 2241 10.1111/febs.17099 38400523
    [Google Scholar]
  58. Liu Y. Li H. Wang X. Huang J. Zhao D. Tan Y. Zhang Z. Zhang Z. Zhu L. Wu B. Chen Z. Peng W. Anti-Alzheimers molecular mechanism of icariin: insights from gut microbiota, metabolomics, and network pharmacology. J. Transl. Med. 2023 21 1 277 10.1186/s12967‑023‑04137‑z 37095548
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354454250124074057
Loading
/content/journals/cmc/10.2174/0109298673354454250124074057
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test