Skip to content
2000
image of lncRNAs and circRNAs: Emerging Players in Pediatric Medulloblastoma Pathology

Abstract

Medulloblastomas (MBs) are the most common malignant brain tumors in children, marked by aggressive growth, molecular heterogeneity, and a high propensity for cerebrospinal dissemination. Despite advancements in conventional treatments - surgery, chemotherapy, and radiation therapy—substantial challenges persist, including debilitating long-term toxicities and emerging resistance to therapy. This review examines the multifaceted roles of non-coding RNAs (ncRNAs) - particularly long non- coding RNAs (lncRNAs) and circular RNAs (circRNAs) - in pediatric medulloblastoma pathogenesis, diagnosis, and therapeutic targeting. NcRNAs exert robust regulatory effects on gene expression by modulating signaling pathways, acting as miRNA sponges, and controlling the expression of oncogenic or tumor-suppressive genes. In this study, we focus on notable examples of lncRNAs (, HOTAIR, TP73-AS1) and circRNAs (, circ-SKA3, circ_63706) implicated in fundamental oncogenic processes, such as cell proliferation, apoptosis, metastasis, and stem cell maintenance. We also discuss their subgroup-specific roles, emphasizing high-risk groups, such as Sonic Hedgehog (SHH) and Group 3 medulloblastomas. In parallel, we explore the potential of ncRNAs to serve as diagnostic/prognostic biomarkers, given their tissue-specific expression, stability, and detectability in biological fluids like the Cerebrospinal Fluid (CSF). Finally, we review emerging therapeutic strategies, including antisense oligonucleotides, RNA sponges, and CRISPR-based editing, aimed at disrupting oncogenic ncRNA functions or reinforcing tumor-suppressive pathways. While these strategies hold promise, major hurdles include functional redundancy, optimizing delivery, and mitigating off-target effects. By detailing these challenges and outlining future research directions, this review underscores the revolutionary potential of ncRNA-focused diagnostics and therapies for managing pediatric medulloblastomas, offering new paths for improving survival outcomes and quality of life in affected children.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354413250325073924
2025-04-15
2025-08-16
The full text of this item is not currently available.

References

  1. Pezuk J.A. Salomão K.B. Baroni M. Pereira C.A. Geron L. Brassesco M.S. Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev. 2019 38 4 813 828 10.1007/s10555‑019‑09820‑6 31797180
    [Google Scholar]
  2. Liu K.W. Pajtler K.W. Worst B.C. Pfister S.M. Wechsler-Reya R.J. Molecular mechanisms and therapeutic targets in pediatric brain tumors. Sci. Signal. 2017 10 470 eaaf7593 10.1126/scisignal.aaf7593 28292958
    [Google Scholar]
  3. Northcott P.A. Robinson G.W. Kratz C.P. Mabbott D.J. Pomeroy S.L. Clifford S.C. Rutkowski S. Ellison D.W. Malkin D. Taylor M.D. Gajjar A. Pfister S.M. Medulloblastoma. Nat. Rev. Dis. Primers 2019 5 1 11 10.1038/s41572‑019‑0063‑6 30765705
    [Google Scholar]
  4. Taylor M.D. Northcott P.A. Korshunov A. Remke M. Cho Y.J. Clifford S.C. Eberhart C.G. Parsons D.W. Rutkowski S. Gajjar A. Ellison D.W. Lichter P. Gilbertson R.J. Pomeroy S.L. Kool M. Pfister S.M. Molecular subgroups of medulloblastoma: The current consensus. Acta Neuropathol. 2012 123 4 465 472 10.1007/s00401‑011‑0922‑z 22134537
    [Google Scholar]
  5. Kool M. Korshunov A. Remke M. Jones D.T.W. Schlanstein M. Northcott P.A. Cho Y.J. Koster J. Schouten-van Meeteren A. van Vuurden D. Clifford S.C. Pietsch T. von Bueren A.O. Rutkowski S. McCabe M. Collins V.P. Bäcklund M.L. Haberler C. Bourdeaut F. Delattre O. Doz F. Ellison D.W. Gilbertson R.J. Pomeroy S.L. Taylor M.D. Lichter P. Pfister S.M. Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012 123 4 473 484 10.1007/s00401‑012‑0958‑8 22358457
    [Google Scholar]
  6. Gajjar A. Chintagumpala M. Ashley D. Kellie S. Kun L.E. Merchant T.E. Woo S. Wheeler G. Ahern V. Krasin M.J. Fouladi M. Broniscer A. Krance R. Hale G.A. Stewart C.F. Dauser R. Sanford R.A. Fuller C. Lau C. Boyett J.M. Wallace D. Gilbertson R.J. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol. 2006 7 10 813 820 10.1016/S1470‑2045(06)70867‑1 17012043
    [Google Scholar]
  7. Northcott P.A. Korshunov A. Witt H. Hielscher T. Eberhart C.G. Mack S. Bouffet E. Clifford S.C. Hawkins C.E. French P. Rutka J.T. Pfister S. Taylor M.D. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 2011 29 11 1408 1414 10.1200/JCO.2009.27.4324 20823417
    [Google Scholar]
  8. Sharma T. Schwalbe E.C. Williamson D. Sill M. Hovestadt V. Mynarek M. Rutkowski S. Robinson G.W. Gajjar A. Cavalli F. Ramaswamy V. Taylor M.D. Lindsey J.C. Hill R.M. Jäger N. Korshunov A. Hicks D. Bailey S. Kool M. Chavez L. Northcott P.A. Pfister S.M. Clifford S.C. Second-generation molecular subgrouping of medulloblastoma: An international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathol. 2019 138 2 309 326 10.1007/s00401‑019‑02020‑0 31076851
    [Google Scholar]
  9. Juraschka K. Taylor M.D. Medulloblastoma in the age of molecular subgroups: A review. J. Neurosurg. Pediatr. 2019 24 4 353 363 10.3171/2019.5.PEDS18381 31574483
    [Google Scholar]
  10. Cho Y.J. Tsherniak A. Tamayo P. Santagata S. Ligon A. Greulich H. Berhoukim R. Amani V. Goumnerova L. Eberhart C.G. Lau C.C. Olson J.M. Gilbertson R.J. Gajjar A. Delattre O. Kool M. Ligon K. Meyerson M. Mesirov J.P. Pomeroy S.L. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 2011 29 11 1424 1430 10.1200/JCO.2010.28.5148 21098324
    [Google Scholar]
  11. Schwalbe E.C. Lindsey J.C. Nakjang S. Crosier S. Smith A.J. Hicks D. Rafiee G. Hill R.M. Iliasova A. Stone T. Pizer B. Michalski A. Joshi A. Wharton S.B. Jacques T.S. Bailey S. Williamson D. Clifford S.C. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: A cohort study. Lancet Oncol. 2017 18 7 958 971 10.1016/S1470‑2045(17)30243‑7 28545823
    [Google Scholar]
  12. Beylerli O. Beeraka N.M. Gareev I. Pavlov V. Yang G. Liang Y. Aliev G. MiRNAs as noninvasive biomarkers and therapeutic agents of pituitary adenomas. Int. J. Mol. Sci. 2020 21 19 7287 10.3390/ijms21197287 33023145
    [Google Scholar]
  13. Sufianov A. Begliarzade S. Beilerli A. Liang Y. Ilyasova T. Beylerli O. Circular RNAs as biomarkers for lung cancer. Noncoding RNA Res. 2023 8 1 83 88 10.1016/j.ncrna.2022.11.002 36407660
    [Google Scholar]
  14. Beilerli A. Begliarzade S. Sufianov A. Ilyasova T. Liang Y. Beylerli O. Circulating ciRS-7 as a potential non-invasive biomarker for epithelial ovarian cancer: An investigative study. Noncoding RNA Res. 2022 7 3 197 204 10.1016/j.ncrna.2022.07.004 35991513
    [Google Scholar]
  15. Gareev I. Beylerli O. Yang G. Izmailov A. Shi H. Sun J. Zhao B. Liu B. Zhao S. Diagnostic and prognostic potential of circulating miRNAs for intracranial aneurysms. Neurosurg. Rev. 2021 44 4 2025 2039 10.1007/s10143‑020‑01427‑8 33094424
    [Google Scholar]
  16. Sufianov A. Kostin A. Begliarzade S. Kudriashov V. Ilyasova T. Liang Y. Mukhamedzyanov A. Beylerli O. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Noncoding RNA Res. 2023 8 2 192 204 10.1016/j.ncrna.2023.02.001 36818396
    [Google Scholar]
  17. Sufianov A. Begliarzade S. Ilyasova T. Xu X. Beylerli O. MicroRNAs as potential diagnostic markers of glial brain tumors. Noncoding RNA Res. 2022 7 4 242 247 10.1016/j.ncrna.2022.09.008 36203525
    [Google Scholar]
  18. Shi PF Ji HL Luo YK Mao TM Chen X Zhou KY Effect of long noncoding RNA SPRY4-IT1 on proliferation and metastasis of medulloblastoma. Chin. J. Appl. Physiol. 2017 33 1 78 42 10.12047/j.cjap.5448.2017.020
    [Google Scholar]
  19. Shi P.F. Ji H.L. Luo Y.K. Mao T.M. Chen X. Zhou K.Y. [Effect of long noncoding RNA SPRY4-IT1 on proliferation and metastasis of medulloblastoma]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2017 33 1 78 82 10.12047/j.cjap.5448.2017.020 29926610
    [Google Scholar]
  20. Laneve P. Po A. Favia A. Legnini I. Alfano V. Rea J. Carlo V.D. Bevilacqua V. Miele E. Mastronuzzi A. Carai A. Locatelli F. Bozzoni I. Ferretti E. Caffarelli E. The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget 2017 8 19 31003 31015 10.18632/oncotarget.16049 28415684
    [Google Scholar]
  21. Li B. Shen M. Yao H. Chen X. Xiao Z. Long Noncoding RNA TP73-AS1 modulates medulloblastoma progression in vitro and in vivo by sponging miR-494-3p and targeting EIF5A2. OncoTargets Ther. 2019 12 9873 9885 10.2147/OTT.S228305 31819485
    [Google Scholar]
  22. Yue Y. Zhang W. Liu C. Niu Y. Tong W. Long non-coding RNA Gm15577 is involved in mouse cerebellar neurogenesis. Zhonghua Bing Li Xue Za Zhi, 2015 44 7 504 508 26705043
    [Google Scholar]
  23. Zhang Y. Wang T. Wang S. Xiong Y. Zhang R. Zhang X. Zhao J. Yang A.G. Wang L. Jia L. Nkx2-2as suppression contributes to the pathogenesis of sonic hedgehog medulloblastoma. Cancer Res. 2018 78 4 962 973 10.1158/0008‑5472.CAN‑17‑1631 29229597
    [Google Scholar]
  24. Song H. Han L.M. Gao Q. Sun Y. Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma. Eur. Rev. Med. Pharmacol. Sci. 2016 20 12 2588 2597 27383309
    [Google Scholar]
  25. Zhengyuan X. Hu X. Qiang W. Nanxiang L. Junbin C. Wangming Z. Silencing of urothelial carcinoma associated 1 inhibits the proliferation and migration of medulloblastoma cells. Med. Sci. Monit. 2017 23 4454 4461 10.12659/MSM.904675 28916736
    [Google Scholar]
  26. Zhang J. Li N. Fu J. Zhou W. Long noncoding RNA HOTAIR promotes medulloblastoma growth, migration and invasion by sponging miR-1/miR-206 and targeting YY1. Biomed. Pharmacother. 2020 124 109887 10.1016/j.biopha.2020.109887 31986414
    [Google Scholar]
  27. Gao R. Zhang R. Zhang C. Zhao L. Zhang Y. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway. Tumori 2018 104 1 43 50 10.5301/tj.5000662 28777430
    [Google Scholar]
  28. Varon M. Levy T. Mazor G. Ben David H. Marciano R. Krelin Y. Prasad M. Elkabets M. Pauck D. Ahmadov U. Picard D. Qin N. Borkhardt A. Reifenberger G. Leprivier G. Remke M. Rotblat B. The long noncoding RNA TP73‐AS1 promotes tumorigenicity of medulloblastoma cells. Int. J. Cancer 2019 145 12 3402 3413 10.1002/ijc.32400 31081944
    [Google Scholar]
  29. Liu X. Wang F.C. Wang J.H. Zhao J.Y. Ye S.Y. The circular RNA circSKA3 facilitates the malignant biological behaviors of medulloblastoma via miR-520 h/CDK6 pathway. Mol. Biotechnol. 2022 64 9 1022 1033 10.1007/s12033‑022‑00466‑4 35352283
    [Google Scholar]
  30. Lv T. Miao Y.F. Jin K. Han S. Xu T.Q. Qiu Z.L. Zhang X.H. Dysregulated circular RNAs in medulloblastoma regulate proliferation and growth of tumor cells via host genes. Cancer Med. 2018 7 12 6147 6157 10.1002/cam4.1613 30402980
    [Google Scholar]
  31. Lee B. Mahmud I. Pokhrel R. Murad R. Yuan M. Stapleton S. Bettegowda C. Jallo G. Eberhart C.G. Garrett T. Perera R.J. Medulloblastoma cerebrospinal fluid reveals metabolites and lipids indicative of hypoxia and cancer-specific RNAs. Acta Neuropathol. Commun. 2022 10 1 25 10.1186/s40478‑022‑01326‑7 35209946
    [Google Scholar]
  32. Katsushima K. Pokhrel R. Mahmud I. Yuan M. Murad R. Baral P. Zhou R. Chapagain P. Garrett T. Stapleton S. Jallo G. Bettegowda C. Raabe E. Wechsler-Reya R.J. Eberhart C.G. Perera R.J. The oncogenic circular RNA circ_63706 is a potential therapeutic target in sonic hedgehog-subtype childhood medulloblastomas. Acta Neuropathol. Commun. 2023 11 1 38 10.1186/s40478‑023‑01521‑0 36899402
    [Google Scholar]
  33. Yin H. Zhao Y. Han X. Li Q. Dong Q. Liu Y. Wang X. Yuan G. Pan Y. Circ_103128 is associated with the tumorigenesis of medulloblastoma. J. Cancer Res. Clin. Oncol. 2023 149 13 11339 11349 10.1007/s00432‑023‑04999‑2 37369798
    [Google Scholar]
  34. Zhou Z. Zhu B. Meng Q. Zhang T. Wu Y. Yu R. Gao S. Research progress in molecular pathology markers in medulloblastoma. Explor. Target. Antitumor. Ther. 2023 4 1 139 156 10.37349/etat.2023.00126 36937322
    [Google Scholar]
  35. Alshahrani S.H. Ibrahim Y.S. Jalil A.T. Altoum A.A. Achmad H. Zabibah R.S. Gabr G.A. Ramírez-Coronel A.A. Alameri A.A. Qasim Q.A. Karampoor S. Mirzaei R. Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Front. Oncol. 2022 12 1042196 10.3389/fonc.2022.1042196 36483029
    [Google Scholar]
  36. Abballe L. Spinello Z. Antonacci C. Coppola L. Miele E. Catanzaro G. Miele E. Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: Current knowledge and future perspectives. Pharmaceutics 2023 15 2 505 10.3390/pharmaceutics15020505 36839827
    [Google Scholar]
  37. Obrador E. Moreno-Murciano P. Oriol-Caballo M. López-Blanch R. Pineda B. Gutiérrez-Arroyo J. Loras A. Gonzalez-Bonet L. Martinez-Cadenas C. Estrela J. Marqués-Torrejón M. Glioblastoma therapy: Past, present and future. Int. J. Mol. Sci. 2024 25 5 2529 10.3390/ijms25052529 38473776
    [Google Scholar]
  38. Gareev I. Beylerli O. Liang Y. Xiang H. Liu C. Xu X. Yuan C. Ahmad A. Yang G. The role of MicroRNAs in therapeutic resistance of malignant primary brain tumors. Front. Cell Dev. Biol. 2021 9 740303 10.3389/fcell.2021.740303 34692698
    [Google Scholar]
  39. Bevacqua E. Farshchi J. Niklison-Chirou M.V. Tucci P. Role of MicroRNAs in the development and progression of the four medulloblastoma subgroups. Cancers 2021 13 24 6323 10.3390/cancers13246323 34944941
    [Google Scholar]
  40. Gupta T. Shirsat N. Jalali R. Molecular subgrouping of medulloblastoma: Impact upon research and clinical practice. Curr. Pediatr. Rev. 2015 11 2 106 119 10.2174/1573396311666150702104030 26133181
    [Google Scholar]
  41. Laneve P. Caffarelli E. The non-coding side of medulloblastoma. Front. Cell Dev. Biol. 2020 8 275 10.3389/fcell.2020.00275 32528946
    [Google Scholar]
  42. Haltom A.R. Toll S.A. Cheng D. Maegawa S. Gopalakrishnan V. Khatua S. Medulloblastoma epigenetics and the path to clinical innovation. J. Neurooncol. 2020 150 1 35 46 10.1007/s11060‑020‑03591‑9 32816225
    [Google Scholar]
  43. Zhi F. Wang S. Wang R. Xia X. Yang Y. From small to big: MicroRNAs as new players in medulloblastomas. Tumour Biol. 2013 34 1 9 15 10.1007/s13277‑012‑0579‑9 23179395
    [Google Scholar]
  44. Kumar V. Kumar V. McGuire T. Coulter D.W. Sharp J.G. Mahato R.I. Challenges and recent advances in medulloblastoma therapy. Trends Pharmacol. Sci. 2017 38 12 1061 1084 10.1016/j.tips.2017.09.002 29061299
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354413250325073924
Loading
/content/journals/cmc/10.2174/0109298673354413250325073924
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: circRNAs ; cell proliferation ; pediatric brain tumors ; medulloblastomas ; lncRNAs ; pathogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test