Skip to content
2000
image of The Pre-metastatic Niche-related Index Reveals the Immune Signature and Immunotherapy Response in Lung Adenocarcinoma

Abstract

Background

Metastasis is the leading cause of death in lung cancer patients. Pre-metastatic niche (PMN) plays an important role in pre-metastatic tumors. However, the development of clinical applications of PMN is still limited.

Methods

Expression data for lung adenocarcinoma (LUAD) patients and PMN-related genes were downloaded from the UCSC Xena website and GeneCards database, respectively. Multiple combinations based on machine learning algorithms were used to screen signature genes and construct a PMN-associated index. Spearman analysis explored the correlation between the PMN-associated index and immune cell infiltration. In addition, we analyzed the clinical value of the PMN-associated index based on drug sensitivity analysis and TIDE scores.

Results

The enrichment analyses suggested that PMN-related genes were mainly enriched in the PI3K-Akt and HIF-1 signaling pathways. We chose random survival forest, Lasso, and multivariate Cox regression analyses to construct the PMN-associated index based on the results of multiple machine learning algorithms. Six signature genes (SNAI2, CXCR4, TNFSF11, ENG, TIMP1, and PDGFB) were screened to construct the PMN-associated index. KM analysis suggested that the survival probability was greater in the low PMN-associated index group than in the high PMN-associated index group. In addition, we confirmed that LUAD patients with a low PMN-associated index were more likely to benefit from immunotherapy.

Conclusion

We confirmed that the PMN-associated index is a valid predictor of prognosis, immune characteristics, and antitumor therapy efficacy in LUAD patients, which provides additional evidence for the potential clinical value of PMN development.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673354164250414003620
2025-04-29
2025-09-09
Loading full text...

Full text loading...

References

  1. Thai A.A. Solomon B.J. Sequist L.V. Gainor J.F. Heist R.S. Lung cancer. Lancet 2021 398 10299 535 554 10.1016/S0140‑6736(21)00312‑3 34273294
    [Google Scholar]
  2. Schabath M.B. Cote M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomarkers Prev. 2019 28 10 1563 1579 10.1158/1055‑9965.EPI‑19‑0221 31575553
    [Google Scholar]
  3. Wang X. Adjei A.A. Lung cancer and metastasis: New opportunities and challenges. Cancer Metastasis Rev. 2015 34 2 169 171 10.1007/s10555‑015‑9562‑4 25956388
    [Google Scholar]
  4. Yang W. Li Z. Wang W. Wu J. Li J. Huang X. Zhang X. Ye X. Vasculogenic mimicry score identifies the prognosis and immune landscape of lung adenocarcinoma. Front. Genet. 2023 14 1206141 10.3389/fgene.2023.1206141 37351348
    [Google Scholar]
  5. Lyon A.R. López-Fernández T. Couch L.S. Asteggiano R. Aznar M.C. Bergler-Klein J. Boriani G. Cardinale D. Cordoba R. Cosyns B. Cutter D.J. Azambuja D.E. Boer D.R.A. Dent S.F. Farmakis D. Gevaert S.A. Gorog D.A. Herrmann J. Lenihan D. Moslehi J. Moura B. Salinger S.S. Stephens R. Suter T.M. Szmit S. Tamargo J. Thavendiranathan P. Tocchetti C.G. van der Meer P. van der Pal H.J.H. Lancellotti P. Thuny F. Abdelhamid M. Aboyans V. Aleman B. Alexandre J. Barac A. Borger M.A. Casado-Arroyo R. Cautela J. Čelutkienė J. Cikes M. Cohen-Solal A. Dhiman K. Ederhy S. Edvardsen T. Fauchier L. Fradley M. Grapsa J. Halvorsen S. Heuser M. Humbert M. Jaarsma T. Kahan T. Konradi A. Koskinas K.C. Kotecha D. Ky B. Landmesser U. Lewis B.S. Linhart A. Lip G.Y.H. Løchen M-L. Malaczynska-Rajpold K. Metra M. Mindham R. Moonen M. Neilan T.G. Nielsen J.C. Petronio A-S. Prescott E. Rakisheva A. Salem J-E. Savarese G. Sitges M. Berg J. Touyz R.M. Tycinska A. Wilhelm M. Zamorano J.L. Laredj N. Zelveian P. Rainer P.P. Samadov F. Andrushchuk U. Gerber B.L. Selimović M. Kinova E. Samardzic J. Economides E. Pudil R. Nielsen K.M. Kafafy T.A. Vettus R. Tuohinen S. Ederhy S. Pagava Z. Rassaf T. Briasoulis A. Czuriga D. Andersen K.K. Smyth Y. Iakobishvili Z. Parrini I. Rakisheva A. Pruthi E.P. Mirrakhimov E. Kalejs O. Skouri H. Benlamin H. Žaliaduonytė D. Iovino A. Moore A.M. Bursacovschi D. Benyass A. Manintveld O. Bosevski M. Gulati G. Leszek P. Fiuza M. Jurcut R. Vasyuk Y. Foscoli M. Simic D. Slanina M. Lipar L. Martin-Garcia A. Hübbert L. Kurmann R. Alayed A. Abid L. Zorkun C. Nesukay E. Manisty C. Srojidinova N. Baigent C. Abdelhamid M. Aboyans V. Antoniou S. Arbelo E. Asteggiano R. Baumbach A. Borger M.A. Čelutkienė J. Cikes M. Collet J-P. Falk V. Fauchier L. Gale C.P. Halvorsen S. Iung B. Jaarsma T. Konradi A. Koskinas K.C. Kotecha D. Landmesser U. Lewis B.S. Linhart A. Løchen M-L. Mindham R. Nielsen J.C. Petersen S.E. Prescott E. Rakisheva A. Sitges M. Touyz R.M. 2022 ESC guidelines on cardio-oncology developed in collaboration with the european hematology association (EHA), the european society for therapeutic radiology and oncology (ESTRO) and the international cardio-oncology society (IC-OS). Eur. Heart J. 2022 43 41 4229 4361 10.1093/eurheartj/ehac244 36017568
    [Google Scholar]
  6. Zhang D. Jiang Q. Ge X. Shi Y. Ye T. Mi Y. Xie T. Li Q. Ye Q. RHOV promotes lung adenocarcinoma cell growth and metastasis through JNK/c-Jun pathway. Int. J. Biol. Sci. 2021 17 10 2622 2632 10.7150/ijbs.59939 34326698
    [Google Scholar]
  7. Gerstberger S. Jiang Q. Ganesh K. Metastasis. Cell 2023 186 8 1564 1579 10.1016/j.cell.2023.03.003 37059065
    [Google Scholar]
  8. Kaplan R.N. Riba R.D. Zacharoulis S. Bramley A.H. Vincent L. Costa C. MacDonald D.D. Jin D.K. Shido K. Kerns S.A. Zhu Z. Hicklin D. Wu Y. Port J.L. Altorki N. Port E.R. Ruggero D. Shmelkov S.V. Jensen K.K. Rafii S. Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005 438 7069 820 827 10.1038/nature04186 16341007
    [Google Scholar]
  9. Sceneay J. Smyth M.J. Möller A. The pre-metastatic niche: Finding common ground. Cancer Metastasis Rev. 2013 32 3-4 449 464 10.1007/s10555‑013‑9420‑1 23636348
    [Google Scholar]
  10. Chin A.R. Wang S.E. Cancer tills the premetastatic field: Mechanistic basis and clinical implications. Clin. Cancer Res. 2016 22 15 3725 3733 10.1158/1078‑0432.CCR‑16‑0028 27252414
    [Google Scholar]
  11. Qian C.N. Berghuis B. Tsarfaty G. Bruch M. Kort E.J. Ditlev J. Tsarfaty I. Hudson E. Jackson D.G. Petillo D. Chen J. Resau J.H. Teh B.T. Preparing the “soil”: The primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res. 2006 66 21 10365 10376 10.1158/0008‑5472.CAN‑06‑2977 17062557
    [Google Scholar]
  12. Patras L. Shaashua L. Matei I. Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023 41 3 546 572 10.1016/j.ccell.2023.02.018 36917952
    [Google Scholar]
  13. Liu Y. Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016 30 5 668 681 10.1016/j.ccell.2016.09.011 27846389
    [Google Scholar]
  14. Zhou Y. Han M. Gao J. Prognosis and targeting of pre-metastatic niche. J. Cont. Rel. 2020 325 223 234 10.1016/j.jconrel.2020.06.037
    [Google Scholar]
  15. Deng J. Liu Y. Lee H. Herrmann A. Zhang W. Zhang C. Shen S. Priceman S.J. Kujawski M. Pal S.K. Raubitschek A. Hoon D.S.B. Forman S. Figlin R.A. Liu J. Jove R. Yu H. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 2012 21 5 642 654 10.1016/j.ccr.2012.03.039 22624714
    [Google Scholar]
  16. Hosseini M.P. Hosseini A. Ahi K. A review on machine learning for EEG signal processing in bioengineering. IEEE Rev. Biomed. Eng. 2021 14 204 218 10.1109/RBME.2020.2969915 32011262
    [Google Scholar]
  17. Luo L. Chen X. Huang F. Machine learning revealed ferroptosis features and ferroptosis-related gene-based immune microenvironment in lung adenocarcinoma. Chem. Biol. Interact. 2023 378 110471 10.1016/j.cbi.2023.110471 37061114
    [Google Scholar]
  18. Wei Q. Jiang X. Miao X. Zhang Y. Chen F. Zhang P. Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns. J. Cancer Res. Clin. Oncol. 2023 149 13 11351 11368 10.1007/s00432‑023‑05000‑w 37378675
    [Google Scholar]
  19. Uhlén M. Fagerberg L. Hallström B.M. Lindskog C. Oksvold P. Mardinoglu A. Sivertsson Å. Kampf C. Sjöstedt E. Asplund A. Olsson I. Edlund K. Lundberg E. Navani S. Szigyarto C.A.K. Odeberg J. Djureinovic D. Takanen J.O. Hober S. Alm T. Edqvist P.H. Berling H. Tegel H. Mulder J. Rockberg J. Nilsson P. Schwenk J.M. Hamsten M. Feilitzen V.K. Forsberg M. Persson L. Johansson F. Zwahlen M. Heijne V.G. Nielsen J. Pontén F. Tissue-based map of the human proteome. Science 2015 347 6220 1260419 10.1126/science.1260419 25613900
    [Google Scholar]
  20. Szklarczyk D. Gable A.L. Nastou K.C. Lyon D. Kirsch R. Pyysalo S. Doncheva N.T. Legeay M. Fang T. Bork P. Jensen L.J. Mering V.C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021 49 D1 D605 D612 10.1093/nar/gkaa1074 33237311
    [Google Scholar]
  21. Liu Z. Liu L. Weng S. Guo C. Dang Q. Xu H. Wang L. Lu T. Zhang Y. Sun Z. Han X. Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer. Nat. Commun. 2022 13 1 816 10.1038/s41467‑022‑28421‑6 35145098
    [Google Scholar]
  22. Kohn M.A. Newman T.B. The walking man approach to interpreting the receiver operating characteristic curve and area under the receiver operating characteristic curve. J. Clin. Epidemiol. 2023 162 182 186 10.1016/j.jclinepi.2023.07.020 37562728
    [Google Scholar]
  23. Newman A.M. Liu C.L. Green M.R. Gentles A.J. Feng W. Xu Y. Hoang C.D. Diehn M. Alizadeh A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 2015 12 5 453 457 10.1038/nmeth.3337 25822800
    [Google Scholar]
  24. Barbie D.A. Tamayo P. Boehm J.S. Kim S.Y. Moody S.E. Dunn I.F. Schinzel A.C. Sandy P. Meylan E. Scholl C. Fröhling S. Chan E.M. Sos M.L. Michel K. Mermel C. Silver S.J. Weir B.A. Reiling J.H. Sheng Q. Gupta P.B. Wadlow R.C. Le H. Hoersch S. Wittner B.S. Ramaswamy S. Livingston D.M. Sabatini D.M. Meyerson M. Thomas R.K. Lander E.S. Mesirov J.P. Root D.E. Gilliland D.G. Jacks T. Hahn W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009 462 7269 108 112 10.1038/nature08460 19847166
    [Google Scholar]
  25. Becht E. Giraldo N.A. Lacroix L. Buttard B. Elarouci N. Petitprez F. Selves J. Laurent-Puig P. Sautès-Fridman C. Fridman W.H. Reyniès D.A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016 17 1 218 10.1186/s13059‑016‑1070‑5 27765066
    [Google Scholar]
  26. Aina M. Kuznyetsova D. Baillon F. Sescousse R. Sanchez-Ballester N.M. Begu S. Soulairol I. Sauceau M. Impact of disintegrants on rheological properties and printability in SSE 3D printing of immediate-release formulations. Eur. J. Pharm. Sci. 2025 206 107017 10.1016/j.ejps.2025.107017
    [Google Scholar]
  27. Ashmawy F.O. Gomha S.M. Abdallah M.A. Zaki M.E.A. Al-Hussain S.A. El-desouky M.A. Synthesis, in vitro evaluation and molecular docking studies of novel thiophenyl thiazolyl-pyridine hybrids as potential anticancer agents. Molecules 2023 28 11 4270 10.3390/molecules28114270 37298747
    [Google Scholar]
  28. Jiang P. Gu S. Pan D. Fu J. Sahu A. Hu X. Li Z. Traugh N. Bu X. Li B. Liu J. Freeman G.J. Brown M.A. Wucherpfennig K.W. Liu X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 2018 24 10 1550 1558 10.1038/s41591‑018‑0136‑1 30127393
    [Google Scholar]
  29. Fares J. Fares M.Y. Khachfe H.H. Salhab H.A. Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020 5 1 28 10.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  30. Dong G. Chen P. Xu Y. Liu T. Yin R. Cancer-associated fibroblasts: Key criminals of tumor pre-metastatic niche. Cancer Lett. 2023 566 216234 10.1016/j.canlet.2023.216234 37236390
    [Google Scholar]
  31. Yang W. Wu Z. Cai S. Li Z. Wang W. Wu J. Luo H. Ye X. Tumor lymphangiogenesis index reveals the immune landscape and immunotherapy response in lung adenocarcinoma. Front. Immunol. 2024 15 1354339 10.3389/fimmu.2024.1354339 38638428
    [Google Scholar]
  32. Khezri M.R. Jafari R. Yousefi K. Zolbanin N.M. The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions. Exp. Mol. Pathol. 2022 127 104787 10.1016/j.yexmp.2022.104787 35644245
    [Google Scholar]
  33. Wu S. Xing X. Wang Y. Zhang X. Li M. Wang M. Wang Z. Chen J. Gao D. Zhao Y. Chen R. Ren Z. Zhang K. Cui J. The pathological significance of LOXL2 in pre-metastatic niche formation of HCC and its related molecular mechanism. Eur. J. Cancer 2021 147 63 73 10.1016/j.ejca.2021.01.011
    [Google Scholar]
  34. Liu R. Fu M. Chen P. Liu Y. Huang W. Sun X. Zhu P. Wen Z. Cheng Y. Emerging roles of angiopoietin‑like 4 in human tumors (Review). Int. J. Oncol. 2024 66 2 9 10.3892/ijo.2024.5715 39704206
    [Google Scholar]
  35. Lock F.E. McDonald P.C. Lou Y. Serrano I. Chafe S.C. Ostlund C. Aparicio S. Winum J-Y. Supuran C.T. Dedhar S. Targeting carbonic anhydrase IX depletes breast cancer stem cells within the hypoxic niche. Oncogene 2013 32 44 5210 5219 10.1038/onc.2012.550 23208505
    [Google Scholar]
  36. Chafe S.C. Lou Y. Sceneay J. Vallejo M. Hamilton M.J. McDonald P.C. Bennewith K.L. Möller A. Dedhar S. Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production. Cancer Res. 2015 75 6 996 1008 10.1158/0008‑5472.CAN‑14‑3000 25623234
    [Google Scholar]
  37. Becker A. Thakur B.K. Weiss J.M. Kim H.S. Peinado H. Lyden D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell 2016 30 6 836 848 10.1016/j.ccell.2016.10.009 27960084
    [Google Scholar]
  38. Peinado H. Lavotshkin S. Lyden D. The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts. Semin. Cancer Biol. 2011 21 2 139 146 10.1016/j.semcancer.2011.01.002 21251983
    [Google Scholar]
  39. O’Donnell J.S. Massi D. Teng M.W.L. Mandala M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol. 2018 48 91 103 10.1016/j.semcancer.2017.04.015 28467889
    [Google Scholar]
  40. Wu Q. You L. Nepovimova E. Heger Z. Wu W. Kuca K. Adam V. Hypoxia-inducible factors: Master regulators of hypoxic tumor immune escape. J. Hematol. Oncol. 2022 15 1 77 10.1186/s13045‑022‑01292‑6 35659268
    [Google Scholar]
  41. Song D. Wu Y. Li J. Liu J. Yi Z. Wang X. Sun J. Li L. Wu Q. Chen Y. Fang H. Luan T. Du H. Huang J. Peng W. Wei Y. Li F. Li Q. Zhang L. Zhu Y. Wan J. Ren G. Li H. Insulin-like growth factor 2 drives fibroblast-mediated tumor immunoevasion and confers resistance to immunotherapy. J. Clin. Invest. 2024 134 22 e183366 10.1172/JCI183366 39545420
    [Google Scholar]
  42. Noman M.Z. Desantis G. Janji B. Hasmim M. Karray S. Dessen P. Bronte V. Chouaib S. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 2014 211 5 781 790 10.1084/jem.20131916 24778419
    [Google Scholar]
  43. Fan L. Lei H. Zhang S. Peng Y. Fu C. Shu G. Yin G. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics 2020 10 13 5895 5913 10.7150/thno.43198 32483426
    [Google Scholar]
  44. Qureshi R. Picon-Ruiz M. Sho M. Booven V.D. Nunes de Paiva V. Diaz-Ruano A.B. Ince T.A. Slingerland J. Estrone, the major postmenopausal estrogen, binds ERa to induce SNAI2, epithelial-to-mesenchymal transition, and ER+ breast cancer metastasis. Cell Rep. 2022 41 7 111672 10.1016/j.celrep.2022.111672 36384125
    [Google Scholar]
  45. Tang Y. Lu Y. Chen Y. Luo L. Cai L. Peng B. Huang W. Liao H. Zhao L. Pan M. Pre-metastatic niche triggers SDF-1/CXCR4 axis and promotes organ colonisation by hepatocellular circulating tumour cells via downregulation of Prrx1. J. Exp. Clin. Cancer Res. 2019 38 1 473 10.1186/s13046‑019‑1475‑6 31752959
    [Google Scholar]
  46. Yang P. Hu Y. Zhou Q. The CXCL12-CXCR4 signaling axis plays a key role in cancer metastasis and is a potential target for developing novel therapeutics against metastatic cancer. Curr. Med. Chem. 2020 27 33 5543 5561 10.2174/0929867326666191113113110 31724498
    [Google Scholar]
  47. Li Z. Lu W. Yin F. Zeng P. Li H. Huang A. Overexpression of TNFSF11 reduces GPX4 levels and increases sensitivity to ferroptosis inducers in lung adenocarcinoma. J. Transl. Med. 2024 22 1 340 10.1186/s12967‑024‑05112‑y 38594779
    [Google Scholar]
  48. Okamoto K. Role of RANKL in cancer development and metastasis. J. Bone Miner. Metab. 2021 39 1 71 81 10.1007/s00774‑020‑01182‑2 33387063
    [Google Scholar]
  49. Paauwe M. Schoonderwoerd M.J.A. Helderman R.F.C.P. Harryvan T.J. Groenewoud A. Pelt V.G.W. Bor R. Hemmer D.M. Versteeg H.H. Snaar-Jagalska B.E. Theuer C.P. Hardwick J.C.H. Sier C.F.M. Dijke T.P. Hawinkels L.J.A.C. Endoglin expression on cancer-associated fibroblasts regulates invasion and stimulates colorectal cancer metastasis. Clin. Cancer Res. 2018 24 24 6331 6344 10.1158/1078‑0432.CCR‑18‑0329 29945992
    [Google Scholar]
  50. Dantas E. Murthy A. Ahmed T. Ahmed M. Ramsamooj S. Hurd M.A. Lam T. Malbari M. Agrusa C. Elemento O. Zhang C. Pappin D.J. McGraw T.E. Stiles B.M. Altorki N.K. Goncalves M.D. TIMP1 is an early biomarker for detection and prognosis of lung cancer. Clin. Transl. Med. 2023 13 10 e1391 10.1002/ctm2.1391 37759102
    [Google Scholar]
  51. Wu R. Gandhi S. Tokumaru Y. Asaoka M. Oshi M. Yan L. Ishikawa T. Takabe K. Intratumoral PDGFB gene predominantly expressed in endothelial cells is associated with angiogenesis and lymphangiogenesis, but not with metastasis in breast cancer. Breast Cancer Res. Treat. 2022 195 1 17 31 10.1007/s10549‑022‑06661‑w 35793004
    [Google Scholar]
  52. Seubert B. Grünwald B. Kobuch J. Cui H. Schelter F. Schaten S. Siveke J.T. Lim N.H. Nagase H. Simonavicius N. Heikenwalder M. Reinheckel T. Sleeman J.P. Janssen K.P. Knolle P.A. Krüger A. Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology 2015 61 1 238 248 10.1002/hep.27378 25131778
    [Google Scholar]
  53. Tabariès S. Ouellet V. Hsu B.E. Annis M.G. Rose A.A.N. Meunier L. Carmona E. Tam C.E. Mes-Masson A.M. Siegel P.M. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res. 2015 17 1 45 10.1186/s13058‑015‑0558‑3 25882816
    [Google Scholar]
  54. Yang L.Y. Luo Q. Lu L. Zhu W.W. Sun H.T. Wei R. Lin Z.F. Wang X.Y. Wang C.Q. Lu M. Jia H.L. Chen J.H. Zhang J.B. Qin L.X. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J. Hematol. Oncol. 2020 13 1 3 10.1186/s13045‑019‑0836‑0 31907001
    [Google Scholar]
  55. Li H.X. Wang S.Q. Lian Z.X. Deng S.L. Yu K. Relationship between tumor infiltrating immune cells and tumor metastasis and its prognostic value in cancer. Cells 2022 12 1 64 10.3390/cells12010064 36611857
    [Google Scholar]
  56. Jablonska J. Lang S. Sionov R.V. Granot Z. The regulation of pre-metastatic niche formation by neutrophils. Oncotarget 2017 8 67 112132 112144 10.18632/oncotarget.22792 29340117
    [Google Scholar]
  57. Chen P. Bonaldo P. Role of macrophage polarization in tumor angiogenesis and vessel normalization: Implications for new anticancer therapies. Int. Rev. Cell Mol. Biol. 2013 301 1 35 10.1016/B978‑0‑12‑407704‑1.00001‑4 23317816
    [Google Scholar]
  58. Xiang X. Wang J. Lu D. Xu X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 75 10.1038/s41392‑021‑00484‑9 33619259
    [Google Scholar]
  59. Chen X.W. Yu T.J. Zhang J. Li Y. Chen H.L. Yang G.F. Yu W. Liu Y.Z. Liu X.X. Duan C.F. Tang H.L. Qiu M. Wang C.L. Zheng H. Yue J. Guo A.M. Yang J. CYP4A in tumor-associated macrophages promotes pre-metastatic niche formation and metastasis. Oncogene 2017 36 35 5045 5057 10.1038/onc.2017.118 28481877
    [Google Scholar]
  60. Chan T.A. Yarchoan M. Jaffee E. Swanton C. Quezada S.A. Stenzinger A. Peters S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019 30 1 44 56 10.1093/annonc/mdy495 30395155
    [Google Scholar]
  61. McGrail D.J. Pilié P.G. Rashid N.U. Voorwerk L. Slagter M. Kok M. Jonasch E. Khasraw M. Heimberger A.B. Lim B. Ueno N.T. Litton J.K. Ferrarotto R. Chang J.T. Moulder S.L. Lin S.Y. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann. Oncol. 2021 32 5 661 672 10.1016/j.annonc.2021.02.006 33736924
    [Google Scholar]
  62. Wang Y. Jia J. Wang F. Fang Y. Yang Y. Zhou Q. Yuan W. Gu X. Hu J. Yang S. Pre-metastatic niche: Formation, characteristics and therapeutic implication. Signal Transduct. Target. Ther. 2024 9 1 236 10.1038/s41392‑024‑01937‑7 39317708
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673354164250414003620
Loading
/content/journals/cmc/10.2174/0109298673354164250414003620
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test