Skip to content
2000
image of Development of Potential Pharmacological Targets to Normalize Gene Expression in Islets of Type 2 Diabetic Patients

Abstract

Background

Type 2 diabetes (T2D) is a disease of high prevalence that is expected to continue increasing despite the pharmacological treatments available; in most cases, it is difficult to control. Therefore, more research on experimental drugs is necessary to propose better treatments.

Objective

This study aimed to identify the molecular alterations of pancreatic islets in type 2 diabetes through multi-omics data integration and possible pharmacological targets using bioinformatics methods.

Methods

In this study, the OmicsNet tool was used to integrate the multi-omics data associated with T2D, and the protein-protein interaction was visualized. Then, gene ontology and KEGG pathways analyses were carried out. Using the DrugRep server, the hub genes obtained underwent a virtual screening with experimental drugs, and twelve experimental drugs were selected to execute the molecular docking by CB-Dock2. Finally, the interactions were displayed in BIOVIA software.

Results

Our results showed that the main molecular alterations of pancreatic islets in T2D were enzyme binding, mitochondrial metabolism, transcription factors, They were involved in glucose uptake, receptor insulin signaling, and secretion. The molecular docking showed that SRC, AKT1, CREBBP, and HSP90AA1 were therapeutic targets for DB02729, DB04877, DB07970, DB07789, and DB03373.

Conclusion

We identified some alterations in the pancreas of patients with T2D, ten hub genes, and five experimental drugs that could potentially correct gene expression abnormalities. However, further studies are required to validate these results.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673352470250312082922
2025-04-07
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673352470250312082922/BMS-CMC-2024-HT135-5868-7.html?itemId=/content/journals/cmc/10.2174/0109298673352470250312082922&mimeType=html&fmt=ahah

References

  1. ElSayed N.A. Aleppo G. Aroda V.R. Bannuru R.R. Brown F.M. Bruemmer D. Collins B.S. Gaglia J.L. Hilliard M.E. Isaacs D. Johnson E.L. Kahan S. Khunti K. Leon J. Lyons S.K. Perry M.L. Prahalad P. Pratley R.E. Seley J.J. Stanton R.C. Gabbay R.A. Classification and diagnosis of diabetes: Standards of care in diabetes. Diabetes Care 2023 46 Suppl. 1 S19 S40 10.2337/dc23‑S002 36507649
    [Google Scholar]
  2. Javeed N. Matveyenko A.V. Circadian etiology of type 2 diabetes mellitus. Physiology (Bethesda) 2018 33 2 138 150 10.1152/physiol.00003.2018 29412061
    [Google Scholar]
  3. DeFronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009 58 4 773 795 10.2337/db09‑9028 19336687
    [Google Scholar]
  4. Ruze R. Liu T. Zou X. Song J. Chen Y. Xu R. Yin X. Xu Q. Obesity and type 2 diabetes mellitus: Connections in epidemiology, pathogenesis, and treatments. Front. Endocrinol. (Lausanne) 2023 14 1161521 10.3389/fendo.2023.1161521 37152942
    [Google Scholar]
  5. Guzmán-Flores J.M. López-Briones S. Cells of innate and adaptive immunity in type 2 diabetes and obesity. Gac. Med. Mex. 2012 148 4 381 389 22976756
    [Google Scholar]
  6. Scheithauer T.P.M. Rampanelli E. Nieuwdorp M. Vallance B.A. Verchere C.B. van Raalte D.H. Herrema H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol. 2020 11 571731 10.3389/fimmu.2020.571731 33178196
    [Google Scholar]
  7. Le Chatelier E. Nielsen T. Qin J. Prifti E. Hildebrand F. Falony G. Almeida M. Arumugam M. Batto J.M. Kennedy S. Leonard P. Li J. Burgdorf K. Grarup N. Jørgensen T. Brandslund I. Nielsen H.B. Juncker A.S. Bertalan M. Levenez F. Pons N. Rasmussen S. Sunagawa S. Tap J. Tims S. Zoetendal E.G. Brunak S. Clément K. Doré J. Kleerebezem M. Kristiansen K. Renault P. Sicheritz-Ponten T. de Vos W.M. Zucker J.D. Raes J. Hansen T. Guedon E. Delorme C. Layec S. Khaci G. van de Guchte M. Vandemeulebrouck G. Jamet A. Dervyn R. Sanchez N. Maguin E. Haimet F. Winogradski Y. Cultrone A. Leclerc M. Juste C. Blottière H. Pelletier E. LePaslier D. Artiguenave F. Bruls T. Weissenbach J. Turner K. Parkhill J. Antolin M. Manichanh C. Casellas F. Boruel N. Varela E. Torrejon A. Guarner F. Denariaz G. Derrien M. van Hylckama Vlieg J.E.T. Veiga P. Oozeer R. Knol J. Rescigno M. Brechot C. M’Rini C. Mérieux A. Yamada T. Bork P. Wang J. Ehrlich S.D. Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013 500 7464 541 546 10.1038/nature12506 23985870
    [Google Scholar]
  8. Qin J. Li Y. Cai Z. Li S. Zhu J. Zhang F. Liang S. Zhang W. Guan Y. Shen D. Peng Y. Zhang D. Jie Z. Wu W. Qin Y. Xue W. Li J. Han L. Lu D. Wu P. Dai Y. Sun X. Li Z. Tang A. Zhong S. Li X. Chen W. Xu R. Wang M. Feng Q. Gong M. Yu J. Zhang Y. Zhang M. Hansen T. Sanchez G. Raes J. Falony G. Okuda S. Almeida M. LeChatelier E. Renault P. Pons N. Batto J.M. Zhang Z. Chen H. Yang R. Zheng W. Li S. Yang H. Wang J. Ehrlich S.D. Nielsen R. Pedersen O. Kristiansen K. Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012 490 7418 55 60 10.1038/nature11450 23023125
    [Google Scholar]
  9. Spranger J. Kroke A. Möhlig M. Hoffmann K. Bergmann M.M. Ristow M. Boeing H. Pfeiffer A.F.H. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based european prospective investigation into cancer and nutrition (EPIC)-potsdam study. Diabetes 2003 52 3 812 817 10.2337/diabetes.52.3.812 12606524
    [Google Scholar]
  10. Piemonti L. Leone B.E. Nano R. Saccani A. Monti P. Maffi P. Bianchi G. Sica A. Peri G. Melzi R. Aldrighetti L. Secchi A. Di Carlo V. Allavena P. Bertuzzi F. Human pancreatic islets produce and secrete MCP-1/CCL2: Relevance in human islet transplantation. Diabetes 2002 51 1 55 65 10.2337/diabetes.51.1.55 11756323
    [Google Scholar]
  11. Ho K.T. Shiau M.Y. Chang Y.H. Chen C.M. Yang S.C. Huang C.N. Association of interleukin-4 promoter polymorphisms in Taiwanese patients with type 2 diabetes mellitus. Metabolism 2010 59 12 1717 1722 10.1016/j.metabol.2010.04.010 20580039
    [Google Scholar]
  12. Montoya A. Gallardo-Rincón H. Silva-Tinoco R. García-Cerde R. Razo C. Ong L. Stafford L. Lenox H. Tapia-Conyer R. Type 2 diabetes epidemic in Mexico. Burden of disease 1990-2021 analysis and implications for public policies. Gac. Med. Mex. 2023 159 6 474 486 38386876
    [Google Scholar]
  13. Butler A.E. Janson J. Bonner-Weir S. Ritzel R. Rizza R.A. Butler P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003 52 1 102 110 10.2337/diabetes.52.1.102 12502499
    [Google Scholar]
  14. Cerf M.E. High fat programming of beta cell compensation, exhaustion, death and dysfunction. Pediatr. Diabetes 2015 16 2 71 78 10.1111/pedi.12137 25682938
    [Google Scholar]
  15. Perl S. Kushner J.A. Buchholz B.A. Meeker A.K. Stein G.M. Hsieh M. Kirby M. Pechhold S. Liu E.H. Harlan D.M. Tisdale J.F. Significant human beta- cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. J. Clin. Endocrinol. Metab. 2010 95 10 E234 E239 10.1210/jc.2010‑0932 20660050
    [Google Scholar]
  16. Babu M. Snyder M. Multi-omics profiling for health. Mol. Cell. Proteomics 2023 22 6 100561 10.1016/j.mcpro.2023.100561 37119971
    [Google Scholar]
  17. Chen R. Mias G.I. Li-Pook-Than J. Jiang L. Lam H.Y.K. Chen R. Miriami E. Karczewski K.J. Hariharan M. Dewey F.E. Cheng Y. Clark M.J. Im H. Habegger L. Balasubramanian S. O’Huallachain M. Dudley J.T. Hillenmeyer S. Haraksingh R. Sharon D. Euskirchen G. Lacroute P. Bettinger K. Boyle A.P. Kasowski M. Grubert F. Seki S. Garcia M. Whirl-Carrillo M. Gallardo M. Blasco M.A. Greenberg P.L. Snyder P. Klein T.E. Altman R.B. Butte A. Ashley E.A. Nadeau K.C. Gerstein M. Tang H. Snyder M. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012 148 1293 1307 10.1016/j.cell.2012.02.009 22424236
    [Google Scholar]
  18. Zhou W. Sailani M.R. Contrepois K. Zhou Y. Ahadi S. Leopold S.R. Zhang M.J. Rao V. Avina M. Mishra T. Johnson J. Lee-McMullen B. Chen S. Metwally A.A. Tran T.D.B. Nguyen H. Zhou X. Albright B. Hong B.Y. Petersen L. Bautista E. Hanson B. Chen L. Spakowicz D. Bahmani A. Salins D. Leopold B. Ashland M. Dagan-Rosenfeld O. Rego S. Limcaoco P. Colbert E. Allister C. Perelman D. Craig C. Wei E. Chaib H. Hornburg D. Dunn J. Liang L. Rose S.M.S.F. Kukurba K. Piening B. Rost H. Tse D. McLaughlin T. Sodergren E. Weinstock G.M. Snyder M. Longitudinal multi-omics of host–microbe dynamics in prediabetes. Nature 2019 569 7758 663 671 10.1038/s41586‑019‑1236‑x 31142858
    [Google Scholar]
  19. Fang X. Miao R. Wei J. Wu H. Tian J. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Comput. Struct. Biotechnol. J. 2022 20 5935 5951 10.1016/j.csbj.2022.10.030 36382190
    [Google Scholar]
  20. Norton L. Shannon C. Gastaldelli A. DeFronzo R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022 129 155142 10.1016/j.metabol.2022.155142 35066003
    [Google Scholar]
  21. Pantaleao S.Q. Fujii D.G.V. Maltarollo V.G. da C Silva D. Trossini G.H.G. Weber K.C. Scott L.P.B. Honorio K.M. The role of QSAR and virtual screening studies in type 2 diabetes drug discovery. Med. Chem. 2017 13 8 706 720 28530546
    [Google Scholar]
  22. Martínez-Esquivias F. Guzmán-Flores J.M. Pérez-Larios A. Rico J.L. Becerra-Ruiz J.S. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem. 2021 21 14 1798 1812 10.2174/18755607MTEziOTEv4 33535949
    [Google Scholar]
  23. Laoud A. Ferkous F. Maccari L. Maccari G. Saihi Y. Kraim K. Identification of novel nt-MGAM inhibitors for potential treatment of type 2 diabetes: Virtual screening, atom based 3D-QSAR model, docking analysis and ADME study. Comput. Biol. Chem. 2018 72 122 135 10.1016/j.compbiolchem.2017.12.003 29274684
    [Google Scholar]
  24. Jhong C.H. Riyaphan J. Lin S.H. Chia Y.C. Weng C.F. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. Biofactors 2015 41 4 242 251 10.1002/biof.1219 26154585
    [Google Scholar]
  25. Sadeghi M. Moradi M. Madanchi H. Johari B. In silico study of garlic (Allium sativum L.)-derived compounds molecular interactions with α-glucosidase. In Silico Pharmacol. 2021 9 1 11 10.1007/s40203‑020‑00072‑9 33457179
    [Google Scholar]
  26. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 31680165
    [Google Scholar]
  27. Rappaport N. Twik M. Plaschkes I. Nudel R. Iny Stein T. Levitt J. Gershoni M. Morrey C.P. Safran M. Lancet D. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017 45 D1 D877 D887 10.1093/nar/gkw1012 27899610
    [Google Scholar]
  28. Davis A.P. Wiegers T.C. Johnson R.J. Sciaky D. Wiegers J. Mattingly C.J. Comparative toxicogenomics database (CTD): Update 2023. Nucleic Acids Res. 2023 51 D1 D1257 D1262 10.1093/nar/gkac833 36169237
    [Google Scholar]
  29. Clough E. Barrett T. Wilhite S.E. Ledoux P. Evangelista C. Kim I.F. Tomashevsky M. Marshall K.A. Phillippy K.H. Sherman P.M. Lee H. Zhang N. Serova N. Wagner L. Zalunin V. Kochergin A. Soboleva A. NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Res. 2024 52 D1 D138 D144 10.1093/nar/gkad965 37933855
    [Google Scholar]
  30. Perez-Riverol Y. Zorin A. Dass G. Vu M.T. Xu P. Glont M. Vizcaíno J.A. Jarnuczak A.F. Petryszak R. Ping P. Hermjakob H. Quantifying the impact of public omics data. Nat. Commun. 2019 10 1 3512 10.1038/s41467‑019‑11461‑w 31383865
    [Google Scholar]
  31. Diamanti K. Cavalli M. Pereira M.J. Pan G. Castillejo-López C. Kumar C. Mundt F. Komorowski J. Deshmukh A.S. Mann M. Korsgren O. Eriksson J.W. Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep. Med. 2022 3 10 100763 10.1016/j.xcrm.2022.100763 36198307
    [Google Scholar]
  32. Zhou G. Xia J. OmicsNet: A web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res. 2018 46 W1 W514 W522 10.1093/nar/gky510 29878180
    [Google Scholar]
  33. Varadi M. Bertoni D. Magana P. Paramval U. Pidruchna I. Radhakrishnan M. Tsenkov M. Nair S. Mirdita M. Yeo J. Kovalevskiy O. Tunyasuvunakool K. Laydon A. Žídek A. Tomlinson H. Hariharan D. Abrahamson J. Green T. Jumper J. Birney E. Steinegger M. Hassabis D. Velankar S. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024 52 D1 D368 D375 10.1093/nar/gkad1011 37933859
    [Google Scholar]
  34. Gan J. Liu J. Liu Y. Chen S. Dai W. Xiao Z.X. Cao Y. DrugRep: An automatic virtual screening server for drug repurposing. Acta Pharmacol. Sin. 2023 44 4 888 896 10.1038/s41401‑022‑00996‑2 36216900
    [Google Scholar]
  35. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  36. Liu Y. Yang X. Gan J. Chen S. Xiao Z.X. Cao Y. CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022 50 W1 W159 W164 10.1093/nar/gkac394 35609983
    [Google Scholar]
  37. Acher F.C. Cabayé A. Eshak F. Goupil-Lamy A. Pin J.P. Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology 2022 204 108886 10.1016/j.neuropharm.2021.108886 34813860
    [Google Scholar]
  38. Eizirik D.L. Pasquali L. Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020 16 7 349 362 10.1038/s41574‑020‑0355‑7 32398822
    [Google Scholar]
  39. Tokarz V.L. MacDonald P.E. Klip A. The cell biology of systemic insulin function. J. Cell Biol. 2018 217 7 2273 2289 10.1083/jcb.201802095 29622564
    [Google Scholar]
  40. Campbell J.E. Newgard C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021 22 2 142 158 10.1038/s41580‑020‑00317‑7 33398164
    [Google Scholar]
  41. Hu Y. Zeng N. Ge Y. Wang D. Qin X. Zhang W. Jiang F. Liu Y. Identification of the shared gene signatures and biological mechanism in type 2 diabetes and pancreatic cancer. Front. Endocrinol. (Lausanne) 2022 13 847760 10.3389/fendo.2022.847760 35432196
    [Google Scholar]
  42. Chaudhry A. Shi R. Luciani D.S. A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells. Am. J. Physiol. Endocrinol. Metab. 2020 318 2 E87 E101 10.1152/ajpendo.00457.2019 31846372
    [Google Scholar]
  43. Haythorne E. Rohm M. van de Bunt M. Brereton M.F. Tarasov A.I. Blacker T.S. Sachse G. Silva dos Santos M. Terron Exposito R. Davis S. Baba O. Fischer R. Duchen M.R. Rorsman P. MacRae J.I. Ashcroft F.M. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat. Commun. 2019 10 1 2474 10.1038/s41467‑019‑10189‑x 31171772
    [Google Scholar]
  44. Mir M. Mir R. Alghamdi M. Wani J. Elfaki I. Sabah Z. Alhujaily M. Jeelani M. Marakala V. Alharthi M. Al-Shahrani A. Potential impact of GCK, MIR-196A-2 and MIR-423 gene abnormalities on the development and progression of type 2 diabetes mellitus in Asir and Tabuk regions of Saudi Arabia. Mol. Med. Rep. 2022 25 5 162 10.3892/mmr.2022.12675 35293603
    [Google Scholar]
  45. Paternoster S. Falasca M. The intricate relationship between diabetes, obesity and pancreatic cancer. Biochim. Biophys. Acta Rev. Cancer 2020 1873 1 188326 10.1016/j.bbcan.2019.188326 31707038
    [Google Scholar]
  46. Khadka R. Tian W. Hao X. Koirala R. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int. J. Surg. 2018 52 342 346 10.1016/j.ijsu.2018.02.058 29535016
    [Google Scholar]
  47. Yuan C. Babic A. Khalaf N. Nowak J.A. Brais L.K. Rubinson D.A. Ng K. Aguirre A.J. Pandharipande P.V. Fuchs C.S. Giovannucci E.L. Stampfer M.J. Rosenthal M.H. Sander C. Kraft P. Wolpin B.M. Diabetes, weight change, and pancreatic cancer risk. JAMA Oncol. 2020 6 10 e202948 10.1001/jamaoncol.2020.2948 32789511
    [Google Scholar]
  48. Andersen D.K. Korc M. Petersen G.M. Eibl G. Li D. Rickels M.R. Chari S.T. Abbruzzese J.L. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes 2017 66 5 1103 1110 10.2337/db16‑1477 28507210
    [Google Scholar]
  49. Sabatini P.V. Speckmann T. Lynn F.C. Friend and foe: Β-cell Ca2+ signaling and the development of diabetes. Mol. Metab. 2019 21 1 12 10.1016/j.molmet.2018.12.007 30630689
    [Google Scholar]
  50. Simonett S.P. Shin S. Herring J.A. Bacher R. Smith L.A. Dong C. Rabaglia M.E. Stapleton D.S. Schueler K.L. Choi J. Bernstein M.N. Turkewitz D.R. Perez-Cervantes C. Spaeth J. Stein R. Tessem J.S. Kendziorski C. Keleş S. Moskowitz I.P. Keller M.P. Attie A.D. Identification of direct transcriptional targets of NFATC2 that promote β cell proliferation. J. Clin. Invest. 2021 131 21 e144833 10.1172/JCI144833 34491912
    [Google Scholar]
  51. Miranda J.G. Schleicher W.E. Wells K.L. Ramirez D.G. Landgrave S.P. Benninger R.K.P. Dynamic changes in β-cell [Ca2+] regulate NFAT activation, gene transcription, and islet gap junction communication. Mol. Metab. 2022 57 101430 10.1016/j.molmet.2021.101430 34979329
    [Google Scholar]
  52. Skovsø S. Panzhinskiy E. Kolic J. Cen H.H. Dionne D.A. Dai X.Q. Sharma R.B. Elghazi L. Ellis C.E. Faulkner K. Marcil S.A.M. Overby P. Noursadeghi N. Hutchinson D. Hu X. Li H. Modi H. Wildi J.S. Botezelli J.D. Noh H.L. Suk S. Gablaski B. Bautista A. Kim R. Cras-Méneur C. Flibotte S. Sinha S. Luciani D.S. Nislow C. Rideout E.J. Cytrynbaum E.N. Kim J.K. Bernal-Mizrachi E. Alonso L.C. MacDonald P.E. Johnson J.D. Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nat. Commun. 2022 13 1 735 10.1038/s41467‑022‑28039‑8 35136059
    [Google Scholar]
  53. Karambataki M. Malousi A. Kouidou S. Risk-associated coding synonymous SNPs in type 2 diabetes and neurodegenerative diseases: Genetic silence and the underrated association with splicing regulation and epigenetics. Mutat. Res. 2014 770 85 93 10.1016/j.mrfmmm.2014.09.005 25771874
    [Google Scholar]
  54. Malakar P. Chartarifsky L. Hija A. Leibowitz G. Glaser B. Dor Y. Karni R. Insulin receptor alternative splicing is regulated by insulin signaling and modulates beta cell survival. Sci. Rep. 2016 6 1 31222 10.1038/srep31222 27526875
    [Google Scholar]
  55. Sato H. Nagashima K. Ogura M. Sato Y. Tahara Y. Ogura K. Yamano G. Sugizaki K. Fujita N. Tatsuoka H. Usui R. Mukai E. Fujimoto S. Inagaki N. Src regulates insulin secretion and glucose metabolism by influencing subcellular localization of glucokinase in pancreatic β- cells. J. Diabetes Investig. 2016 7 2 171 178 10.1111/jdi.12407 27042268
    [Google Scholar]
  56. Fujimoto S. Mukai E. Inagaki N. Role of endogenous ROS production in impaired metabolism-secretion coupling of diabetic pancreatic β cells. Prog. Biophys. Mol. Biol. 2011 107 2 304 310 10.1016/j.pbiomolbio.2011.07.013 21839765
    [Google Scholar]
  57. Li J. Huang Y. Zhao S. Guo Q. Zhou J. Han W. Xu Y. Based on network pharmacology to explore the molecular mechanisms of astragalus membranaceus for treating T2 diabetes mellitus. Ann. Transl. Med. 2019 7 22 633 10.21037/atm.2019.10.118 31930034
    [Google Scholar]
  58. Benter I.F. Benboubetra M. Hollins A.J. Yousif M.H.M. Canatan H. Akhtar S. Early inhibition of EGFR signaling prevents diabetes-induced up-regulation of multiple gene pathways in the mesenteric vasculature. Vascul. Pharmacol. 2009 51 4 236 245 10.1016/j.vph.2009.06.008 19577003
    [Google Scholar]
  59. Elghazi L. Gould A.P. Weiss A.J. Barker D.J. Callaghan J. Opland D. Myers M. Cras-Méneur C. Bernal-Mizrachi E. Importance of β-Catenin in glucose and energy homeostasis. Sci. Rep. 2012 2 1 693 10.1038/srep00693 23012647
    [Google Scholar]
  60. Rabby M.G. Rahman M.H. Islam M.N. Kamal M.M. Biswas M. Bonny M. Hasan M.M. In silico identification and functional prediction of differentially expressed genes in South Asian populations associated with type 2 diabetes. PLoS One 2023 18 12 e0294399 10.1371/journal.pone.0294399 38096208
    [Google Scholar]
  61. Weir G.C. Bonner-Weir S. Five stages of evolving beta- cell dysfunction during progression to diabetes. Diabetes 2004 53 Suppl. 3 S16 S21 10.2337/diabetes.53.suppl_3.S16 15561905
    [Google Scholar]
  62. Ercin M. Sancar-Bas S. Bolkent S. Gezginci-Oktayoglu S. Tub and β-catenin play a key role in insulin and leptin resistance-induced pancreatic beta-cell differentiation. Biochim. Biophys. Acta Mol. Cell Res. 2018 1865 12 1934 1944 10.1016/j.bbamcr.2018.09.010 30290242
    [Google Scholar]
  63. Ala P.J. Huston E.E. Klabe R.M. Jadhav P.K. Lam P.Y.S. Chang C.H. Counteracting HIV-1 protease drug resistance: Structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities. Biochemistry 1998 37 43 15042 15049 10.1021/bi980386e 9790666
    [Google Scholar]
  64. Zhang F. Zhang Q. Tengholm A. Sjöholm Å. Involvement of JAK2 and Src kinase tyrosine phosphorylation in human growth hormone-stimulated increases in cytosolic free Ca2+ and insulin secretion. Am. J. Physiol. Cell Physiol. 2006 291 3 C466 C475 10.1152/ajpcell.00418.2005 16597920
    [Google Scholar]
  65. Patel M. Kaltenbach R.F. III Nugiel D.A. McHugh R.J. Jr Jadhav P.K. Bacheler L.T. Cordova B.C. Klabe R.M. Erickson-Viitanen S. Garber S. Reid C. Seitz S.P. The synthesis of symmetrical and unsymmetrical P1/P1′ cyclic ureas as HIV protease inhibitors. Bioorg. Med. Chem. Lett. 1998 8 9 1077 1082 10.1016/S0960‑894X(98)00175‑9 9871711
    [Google Scholar]
  66. Condello M. Pellegrini E. Multari G. Gallo F.R. Meschini S. Voacamine: Alkaloid with its essential dimeric units to reverse tumor multidrug resistance. Toxicol. In Vitro 2020 65 104819 10.1016/j.tiv.2020.104819 32135239
    [Google Scholar]
  67. Meschini S. Marra M. Condello M. Calcabrini A. Federici E. Dupuis M.L. Cianfriglia M. Arancia G. Voacamine, an alkaloid extracted from Peschiera fuchsiaefolia, inhibits P-glycoprotein action in multidrug-resistant tumor cells. Int. J. Oncol. 2005 27 6 1597 1603 16273216
    [Google Scholar]
  68. Wang Y.Q. Li H.X. Liu X.C. Zhao J.S. Liu R.Q. Huai W. Ding W.J. Zhang T.E. Deng Y. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: Biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment. Nat. Prod. Res. 2019 33 23 3459 3463 10.1080/14786419.2018.1480623 29852800
    [Google Scholar]
  69. Leibiger B. Moede T. Uhles S. Barker C.J. Creveaux M. Domin J. Berggren P.O. Leibiger I.B. Insulin-feedback via PI3K-C2α activated PKBα/Akt1 is required for glucose-stimulated insulin secretion. FASEB J. 2010 24 6 1824 1837 10.1096/fj.09‑148072 20061534
    [Google Scholar]
  70. Yao W. Wang T. Huang F. p300/CBP as a key nutritional sensor for hepatic energy homeostasis and liver fibrosis. BioMed Res. Int. 2018 2018 1 14 10.1155/2018/8168791 29862292
    [Google Scholar]
  71. Hussain M.A. Porras D.L. Rowe M.H. West J.R. Song W.J. Schreiber W.E. Wondisford F.E. Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation. Mol. Cell. Biol. 2006 26 20 7747 7759 10.1128/MCB.02353‑05 16908541
    [Google Scholar]
  72. Wong C.K. Wade-Vallance A.K. Luciani D.S. Brindle P.K. Lynn F.C. Gibson W.T. The p300 and CBP transcriptional coactivators are required for β-cell and α-cell proliferation. Diabetes 2018 67 3 412 422 10.2337/db17‑0237 29217654
    [Google Scholar]
  73. Sun J. Cui J. He Q. Chen Z. Arvan P. Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol. Aspects Med. 2015 42 105 118 10.1016/j.mam.2015.01.001 25579745
    [Google Scholar]
  74. Mustapha S. Mohammed M. Azemi A.K. Jatau A.I. Shehu A. Mustapha L. Aliyu I.M. Danraka R.N. Amin A. Bala A.A. Ahmad W.A.N.W. Rasool A.H.G. Mustafa M.R. Mokhtar S.S. Current status of endoplasmic reticulum stress in type 2 diabetes. Molecules 2021 26 14 4362 10.3390/molecules26144362 34299638
    [Google Scholar]
  75. Klyosova E. Azarova I. Buikin S. Polonikov A. Differentially expressed genes regulating glutathione metabolism, protein-folding, and unfolded protein response in pancreatic β-cells in type 2 diabetes mellitus. Int. J. Mol. Sci. 2023 24 15 12059 10.3390/ijms241512059 37569434
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673352470250312082922
Loading
/content/journals/cmc/10.2174/0109298673352470250312082922
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: multi-omics ; pancreas ; experimental drugs ; bioinformatics ; Type 2 diabetes ; pharmacology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test