Skip to content
2000
image of Endothelial Function Biomarkers in Hypertension

Abstract

Hypertension (HTN) is a major cardiovascular risk factor, contributing to over 10.4 million deaths annually. HTN's pathophysiology involves complex mechanisms, including altered vascular resistance and hormonal regulation. Endothelial dysfunction, a hallmark of HTN, is characterized by reduced vasodilator production and increased vasoconstrictor and inflammatory cytokine generation, leading to elevated blood pressure (BP) and vascular damage. Early detection and intervention are crucial to prevent long-term complications. Identifying biomarkers of endothelial function in HTN can aid early disease detection and offer insights into underlying mechanisms. Blood sample-derived biomarkers include nitric oxide (NO), asymmetric dimethylarginine (ADMA), matrix metalloproteinases (MMPs), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and endothelial microparticles. Imaging-based biomarkers such as flow-mediated dilation (FMD) and coronary flow reserve (CFR) are also significant. These biomarkers provide the means to identify inflammation, endothelial dysfunction, and vascular injury, enhancing disease pathogenesis understanding. Combined with accurate BP measurements, they contribute to early diagnosis and provide valuable insights that may inform treatment strategies. Baseline and sequential plasma biomarker measurements also indicate treatment efficacy. However, large-scale, prospective population studies are necessary to fully validate these biomarkers for clinical use.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673349473250410132823
2025-05-02
2025-09-08
Loading full text...

Full text loading...

References

  1. ZhouB. PerelP. MensahG.A. EzzatiM. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension.Nat. Rev. Cardiol.2021181178580210.1038/s41569‑021‑00559‑834050340
    [Google Scholar]
  2. ZhouB. BenthamJ. Di CesareM. BixbyH. DanaeiG. CowanM.J. PaciorekC.J. SinghG. HajifathalianK. BennettJ.E. TaddeiC. BilanoV. Carrillo-LarcoR.M. DjalaliniaS. KhatibzadehS. LugeroC. PeykariN. ZhangW.Z. LuY. StevensG.A. RileyL.M. BovetP. ElliottP. GuD. IkedaN. JacksonR.T. JoffresM. KengneA.P. LaatikainenT. LamT.H. LaxmaiahA. LiuJ. MirandaJ.J. MondoC.K. NeuhauserH.K. SundströmJ. SmeethL. SoricM. WoodwardM. EzzatiM. Abarca-GómezL. AbdeenZ.A. RahimH.A. Abu-RmeilehN.M. Acosta-CazaresB. AdamsR. AekplakornW. AfsanaK. Aguilar-SalinasC.A. AgyemangC. AhmadvandA. AhrensW. Al RaddadiR. Al WoyatanR. AliM.M. AlkerwiA. AlyE. AmouyelP. AmuzuA. AndersenL.B. AnderssenS.A. ÄngquistL. AnjanaR.M. AnsongD. Aounallah-SkhiriH. AraújoJ. AriansenI. ArisT. ArlappaN. AryalK. ArveilerD. AssahF.K. AssunçãoM.C.F. AvdicováM. AzevedoA. AziziF. BabuB.V. BahijriS. BalakrishnaN. BandoszP. BanegasJ.R. BarbagalloC.M. BarcelóA. BarkatA. BarrosA.J.D. BarrosM.V. BataI. BatiehaA.M. BaurL.A. BeagleholeR. RomdhaneH.B. BenetM. BensonL.S. Bernabe-OrtizA. BernotieneG. BettiolH. BhagyalaxmiA. BharadwajS. BhargavaS.K. BiY. BikbovM. BjerregaardP. BjertnessE. BjörkelundC. BlokstraA. BoS. BobakM. BoeingH. BoggiaJ.G. BoissonnetC.P. BongardV. BraeckmanL. BrajkovichI. BrancaF. BreckenkampJ. BrennerH. BrewsterL.M. BrunoG. Bueno-de-MesquitaH.B. BuggeA. BurnsC. BursztynM. de LeónA.C. CacciottoloJ. CameronC. CanG. CândidoA.P.C. CapuanoV. CardosoV.C. CarlssonA.C. CarvalhoM.J. CasanuevaF.F. CasasJ-P. CasertaC.A. ChamukuttanS. ChanA.W. ChanQ. ChaturvediH.K. ChaturvediN. ChenC-J. ChenF. ChenH. ChenS. ChenZ. ChengC-Y. DekkakiI.C. ChetritA. ChioleroA. ChiouS-T. Chirita-EmandiA. ChoB. ChoY. ChudekJ. CifkovaR. ClaessensF. ClaysE. ConcinH. CooperC. CooperR. CoppingerT.C. CostanzoS. CottelD. CowellC. CraigC.L. CrujeirasA.B. CruzJ.J. D’ArrigoG. d’OrsiE. DallongevilleJ. DamascenoA. DanknerR. DantoftT.M. DauchetL. De BackerG. De BacquerD. de GaetanoG. De HenauwS. De SmedtD. DeepaM. DehghanA. DelisleH. DeschampsV. DhanaK. Di CastelnuovoA.F. Dias-da-CostaJ.S. DiazA. DickersonT.T. DoH.T.P. DobsonA.J. DonfrancescoC. DonosoS.P. DöringA. DouaK. DrygasW. DulskieneV. DžakulaA. DzerveV. Dziankowska-ZaborszczykE. EggertsenR. EkelundU. El AtiJ. EllertU. ElliottP. ElosuaR. ErasmusR.T. EremC. EriksenL. de la PeñaJ.E. EvansA. FaehD. FallC.H. FarzadfarF. Felix-RedondoF.J. FergusonT.S. Fernández-BergésD. FerranteD. FerrariM. FerreccioC. FerrieresJ. FinnJ.D. FischerK. FögerB. FooL.H. ForslundA-S. ForsnerM. FortmannS.P. FouadH.M. FrancisD.K. FrancoM.C. FrancoO.H. FronteraG. FuchsF.D. FuchsS.C. FujitaY. FurusawaT. GaciongZ. GaretaD. GarnettS.P. GaspozJ-M. GasullM. GatesL. GavrilaD. GeleijnseJ.M. GhasemianA. GhimireA. GiampaoliS. GianfagnaF. GiovannelliJ. GoldsmithR.A. GonçalvesH. GrossM.G. RivasJ.P.G. GottrandF. Graff-IversenS. GrafnetterD. GrajdaA. GregorR.D. GrodzickiT. GrøntvedA. GrudenG. GrujicV. GuD. GuanO.P. GudnasonV. GuerreroR. GuessousI. GuimaraesA.L. GullifordM.C. GunnlaugsdottirJ. GunterM. GuptaP.C. GurejeO. GurzkowskaB. GutierrezL. GutzwillerF. HadaeghF. HalkjærJ. HambletonI.R. HardyR. HarikumarR. HataJ. HayesA.J. HeJ. HendriksM.E. HenriquesA. CadenaL.H. HerralaS. HeshmatR. HihtaniemiI.T. HoS.Y. HoS.C. HobbsM. HofmanA. DincG.H. HormigaC.M. HortaB.L. HoutiL. HowittC. HtayT.T. HtetA.S. HuY. HuertaJ.M. HusseiniA.S. HuybrechtsI. HwallaN. IacovielloL. IannoneA.G. IbrahimM.M. IkramM.A. IrazolaV.E. IslamM. IvkovicV. IwasakiM. JacksonR.T. JacobsJ.M. JafarT. JamrozikK. JanszkyI. JasienskaG. JelakovicB. JiangC.Q. JoffresM. JohanssonM. JonasJ.B. JørgensenT. JoshiP. JuoleviA. JurakG. JurešaV. KaaksR. KafatosA. Kalter-LeiboviciO. KamaruddinN.A. KasaeianA. KatzJ. KauhanenJ. KaurP. KavousiM. KazakbaevaG. KeilU. BokerL.K. Keinänen-KiukaanniemiS. KelishadiR. KemperH.C.G. KengneA.P. KerstingM. KeyT. KhaderY.S. KhaliliD. KhangY-H. KhawK-T. KiechlS. KillewoJ. KimJ. KlumbieneJ. KolleE. KolsterenP. KorrovitsP. KoskinenS. KoudaK. KozielS. KristensenP.L. KrokstadS. KromhoutD. KrugerH.S. KubinovaR. KucieneR. KuhD. KujalaU.M. KulaK. KulagaZ. KumarR.K. KurjataP. KusumaY.S. KuulasmaaK. KyobutungiC. LaatikainenT. LachatC. LamT.H. LandroveO. LanskaV. LappasG. LarijaniB. LaugsandL.E. LaxmaiahA. BaoK.L.N. LeT.D. LeclercqC. LeeJ. LeeJ. LehtimäkiT. LekhrajR. León-MuñozL.M. LevittN.S. LiY. LillyC.L. LimW-Y. Lima-CostaM.F. LinH-H. LinX. LinnebergA. LissnerL. LitwinM. LorbeerR. LotufoP.A. LozanoJ.E. LuksieneD. LundqvistA. LunetN. LytsyP. MaG. MaJ. Machado-CoelhoG.L.L. MachiS. MaggiS. MaglianoD.J. MajerM. MakdisseM. MalekzadehR. MalhotraR. RaoK.M. MalyutinaS. ManiosY. MannJ.I. ManzatoE. MargozziniP. Marques-VidalP. MarrugatJ. MartorellR. MathiesenE.B. MatijasevichA. MatshaT.E. MbanyaJ.C.N. PossoA.J.M.D. McFarlaneS.R. McGarveyS.T. McLachlanS. McLeanR.M. McNultyB.A. KhirA.S.M. Mediene-BenchekorS. MedzionieneJ. MeirhaegheA. MeisingerC. MenezesA.M.B. MenonG.R. MeshramI.I. MetspaluA. MiJ. MikkelK. MillerJ.C. MiquelJ.F. Mišigoj-DurakovicM. MohamedM.K. MohammadK. MohammadifardN. MohanV. YusoffM.F.M. MøllerN.C. MolnárD. MomenanA. MondoC.K. MonyekiK.D.K. MoreiraL.B. MorejonA. MorenoL.A. MorganK. MoschonisG. MossakowskaM. MostafaA. MotaJ. MotlaghM.E. MottaJ. MuiesanM.L. Müller-NurasyidM. MurphyN. MursuJ. MusilV. NagelG. NaiduB.M. NakamuraH. NámešnáJ. NangE.E.K. NangiaV.B. NarakeS. Navarrete-MuñozE.M. NdiayeN.C. NealW.A. NenkoI. NerviF. NguyenN.D. NguyenQ.N. Nieto-MartínezR.E. NiiranenT.J. NingG. NinomiyaT. NishtarS. NoaleM. NoboaO.A. NoorbalaA.A. NoorbalaT. NotoD. Al NsourM. O’ReillyD. OhK. OlintoM.T.A. OliveiraI.O. OmarM.A. OnatA. OrdunezP. OsmondC. OstojicS.M. OteroJ.A. OvervadK. Owusu-DaboE. PaccaudF.M. PadezC. PahomovaE. PajakA. PalliD. PalmieriL. Panda-JonasS. PanzaF. PapandreouD. ParnellW.R. ParsaeianM. PecinI. PednekarM.S. PeerN. PeetersP.H. PeixotoS.V. PelletierC. PeltonenM. PereiraA.C. PérezR.M. PetersA. PetkevicieneJ. PhamS.T. PigeotI. PikhartH. PilavA. PilottoL. PitakakaF. Plans-RubióP. PolakowskaM. PolašekO. PortaM. PortegiesM.L.P. PourshamsA. PradeepaR. PrashantM. PriceJ.F. PuiuM. PunabM. QasrawiR.F. QorbaniM. RadicI. RadisauskasR. RahmanM. RaitakariO. RajM. RaoS.R. RamachandranA. RamosE. RampalS. ReinaD.A.R. RasmussenF. RedonJ. ReganitP.F.M. RibeiroR. RiboliE. RigoF. de WitT.F.R. Ritti-DiasR.M. RobinsonS.M. RobitailleC. Rodríguez-ArtalejoF. Rodriguez-Perez del CristoM. Rodríguez-VillamizarL.A. Rojas-MartinezR. RosengrenA. RubinsteinA. RuiO. Ruiz-BetancourtB.S. HorimotoA.R.V.R. RutkowskiM. SabanayagamC. SachdevH.S. SaidiO. SakaryaS. SalanaveB. Salazar MartinezE. SalmerónD. SalomaaV. SalonenJ.T. SalvettiM. Sánchez-AbantoJ. SansS. SantosD. SantosI.S. dos SantosR.N. SantosR. SaramiesJ.L. SardinhaL.B. MargolisG.S. SarrafzadeganN. SaumK-U. SavvaS.C. ScazufcaM. SchargrodskyH. SchneiderI.J. SchultszC. SchutteA.E. SenA. SenbanjoI.O. SepanlouS.G. SharmaS.K. ShawJ.E. ShibuyaK. ShinD.W. ShinY. SiantarR. SibaiA.M. SilvaD.A.S. SimonM. SimonsJ. SimonsL.A. SjöströmM. SkovbjergS. Slowikowska-HilczerJ. SlusarczykP. SmeethL. SmithM.C. SnijderM.B. SoH-K. SobngwiE. SöderbergS. SolfrizziV. SonestedtE. SongY. SørensenT.I.A. JéromeC.S. SoumareA. StaessenJ.A. StarcG. StathopoulouM.G. StavreskiB. Steene-JohannessenJ. StehleP. SteinA.D. StergiouG.S. StessmanJ. StieberJ. StöcklD. StocksT. StokwiszewskiJ. StronksK. StrufaldiM.W. SunC-A. SundströmJ. SungY-T. SuriyawongpaisalP. SyR.G. TaiE.S. TammesooM-L. TamosiunasA. TangL. TangX. TanserF. TaoY. TarawnehM.R. Tarqui-MamaniC.B. TaylorA. TheobaldH. ThijsL. ThuesenB.H. TjonnelandA. TolonenH.K. TolstrupJ.S. TopbasM. Topór-MadryR. TormoM.J. TorrentM. TraissacP. TrichopoulosD. TrichopoulouA. TrinhO.T.H. TrivediA. TshepoL. Tulloch-ReidM.K. TuomainenT-P. TuomilehtoJ. TurleyM.L. TyneliusP. TzourioC. UedaP. UgelE. UlmerH. UusitaloH.M.T. ValdiviaG. ValviD. van der SchouwY.T. Van HerckK. van RossemL. van ValkengoedI.G.M. VanderschuerenD. VanuzzoD. VattenL. VegaT. Velasquez-MelendezG. VeronesiG. VerschurenW.M.M. VerstraetenR. VictoraC.G. VietL. Viikari-JunturaE. VineisP. VioqueJ. VirtanenJ.K. Visvikis-SiestS. ViswanathanB. VollenweiderP. VoutilainenS. VrdoljakA. VrijheidM. WadeA.N. WagnerA. WaltonJ. MohamudW.N.W. WangM-D. WangQ. WangY.X. WannametheeS.G. WarehamN. WedderkoppN. WeerasekeraD. WhincupP.H. WidhalmK. WidyaheningI.S. WiecekA. WijgaA.H. WilksR.J. WilleitJ. WilleitP. WilliamsE.A. WilsgaardT. WojtyniakB. WongT.Y. Wong-McClureR.A. WooJ. WoodwardM. WuA.G. WuF.C. WuS.L. XuH. YanW. YangX. YeX. YiallourosP.K. YoshiharaA. Younger-ColemanN.O. YusoffA.F. YusoffM.F.M. ZambonS. ZdrojewskiT. ZengY. ZhaoD. ZhaoW. ZhengY. ZhuD. ZimmermannE. Zuñiga CisnerosJ. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19·1 million participants.Lancet201738910064375510.1016/S0140‑6736(16)31919‑527863813
    [Google Scholar]
  3. KonukogluD. UzunH. Endothelial dysfunction and hypertension.Adv. Exp. Med. Biol.201695651154010.1007/5584_2016_9028035582
    [Google Scholar]
  4. AmbrosinoP. GrassiG. ManiscalcoM. Endothelial dysfunction: From a pathophysiological mechanism to a potential therapeutic target.Biomedicines20211017810.3390/biomedicines1001007835052760
    [Google Scholar]
  5. TouyzR.M. BurgerD. Special Issues in Hypertension. BerbariA.E. ManciaG. MilanoSpringer Milan201223724610.1007/978‑88‑470‑2601‑8_19
    [Google Scholar]
  6. RichardsA.M. Future biomarkers in cardiology: My favourites.Eur. Heart J. Suppl.201820Suppl. GG37G4410.1093/eurheartj/suy023
    [Google Scholar]
  7. ZhangJ. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases.Rev. Cardiovasc. Med.20222327310.31083/j.rcm230207335229564
    [Google Scholar]
  8. VermaS. BuchananM.R. AndersonT.J. Endothelial function testing as a biomarker of vascular disease.Circulation2003108172054205910.1161/01.CIR.0000089191.72957.ED14581384
    [Google Scholar]
  9. FurchgottR.F. ZawadzkiJ.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.Nature1980288578937337610.1038/288373a06253831
    [Google Scholar]
  10. da SilvaG. da SilvaM. NascimentoD. Lima SilvaE. GouvêaF. de França LopesL. AraújoA. Ferraz PereiraK. de QueirozT. Nitric oxide as a central molecule in hypertension: Focus on the vasorelaxant activity of new nitric oxide donors.Biology20211010104110.3390/biology1010104134681140
    [Google Scholar]
  11. TousoulisD. KampoliA.M. Tentolouris Nikolaos PapageorgiouC. StefanadisC. StefanadisC. The role of nitric oxide on endothelial function.Curr. Vasc. Pharmacol.201210141810.2174/15701611279882976022112350
    [Google Scholar]
  12. ZieglerT. Abdel RahmanF. JurischV. KupattC. Atherosclerosis and the Capillary Network Atherosclerosis and the capillary network; Pathophysiology and potential therapeutic strategies.Cells2019915010.3390/cells901005031878229
    [Google Scholar]
  13. AhmadA. SattarM.A. AzamM. KhanS.A. BhattO. JohnsE.J. Interaction between nitric oxide and renal α1-adrenoreceptors mediated vasoconstriction in rats with left ventricular hypertrophyin Wistar Kyoto rats.PLoS One2018132e018938610.1371/journal.pone.018938629447158
    [Google Scholar]
  14. GarthwaiteJ. NO as a multimodal transmitter in the brain: Discovery and current status.Br. J. Pharmacol.2019176219721110.1111/bph.1453230399649
    [Google Scholar]
  15. SakaiK. HirookaY. MatsuoI. EshimaK. ShigematsuH. ShimokawaH. TakeshitaA. Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo.Hypertension20003661023102810.1161/01.HYP.36.6.102311116119
    [Google Scholar]
  16. KishiT. HirookaY. SakaiK. ShigematsuH. ShimokawaH. TakeshitaA. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release.Hypertension200138489690110.1161/hyp.38.4.89611641305
    [Google Scholar]
  17. HirookaY. Sympathetic activation in hypertension: Importance of the central nervous system.Am. J. Hypertens.2020331091492610.1093/ajh/hpaa07432374869
    [Google Scholar]
  18. DejamA. HunterC.J. PelletierM.M. HsuL.L. MachadoR.F. ShivaS. PowerG.G. KelmM. GladwinM.T. SchechterA.N. Erythrocytes are the major intravascular storage sites of nitrite in human blood.Blood2005106273473910.1182/blood‑2005‑02‑056715774613
    [Google Scholar]
  19. BryanN.S. GrishamM.B. Methods to detect nitric oxide and its metabolites in biological samples.Free Radic. Biol. Med.200743564565710.1016/j.freeradbiomed.2007.04.02617664129
    [Google Scholar]
  20. ShahinY. KhanJ.A. SamuelN. ChetterI. Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: A meta-analysis of randomised controlled trials.Atherosclerosis2011216171610.1016/j.atherosclerosis.2011.02.04421411098
    [Google Scholar]
  21. LeeR. ChannonK.M. AntoniadesC. Therapeutic strategies targeting endothelial function in humans: Clinical implications.Curr. Vasc. Pharmacol.2012101779310.2174/15701611279882975122112349
    [Google Scholar]
  22. ErdösE.G. TanF. SkidgelR.A. Angiotensin I-converting enzyme inhibitors are allosteric enhancers of kinin B1 and B2 receptor function.Hypertension201055221422010.1161/HYPERTENSIONAHA.109.14460020065150
    [Google Scholar]
  23. KalinowskiL. DobruckiL.W. Szczepanska-KonkelM. JankowskiM. MartyniecL. AngielskiS. MalinskiT. Third-generation beta-blockers stimulate nitric oxide release from endothelial cells through ATP efflux: A novel mechanism for antihypertensive action.Circulation2003107212747275210.1161/01.CIR.0000066912.58385.DE12742996
    [Google Scholar]
  24. BoveM. CiceroA.F.G. BorghiC. The effect of xanthine oxidase inhibitors on blood pressure and renal function.Curr. Hypertens. Rep.201719129510.1007/s11906‑017‑0793‑329071435
    [Google Scholar]
  25. CrimiE. IgnarroL.J. NapoliC. Microcirculation and oxidative stress.Free Radic. Res.200741121364137510.1080/1071576070173283018075839
    [Google Scholar]
  26. UngvariZ. CsiszarA. HuangA. KaminskiP.M. WolinM.S. KollerA. High pressure induces superoxide production in isolated arteries via protein kinase C-dependent activation of NAD(P)H oxidase.Circulation2003108101253125810.1161/01.CIR.0000079165.84309.4D12874194
    [Google Scholar]
  27. DikalovS.I. UngvariZ. Role of mitochondrial oxidative stress in hypertension.Am. J. Physiol. Heart Circ. Physiol.201330510H1417H142710.1152/ajpheart.00089.201324043248
    [Google Scholar]
  28. BorissoffJ.I. SpronkH.M.H. ten CateH. The hemostatic system as a modulator of atherosclerosis.N. Engl. J. Med.2011364181746176010.1056/NEJMra101167021542745
    [Google Scholar]
  29. LevineA.B. PunihaoleD. LevineT.B. Characterization of the role of nitric oxide and its clinical applications.Cardiology20121221556810.1159/00033815022722323
    [Google Scholar]
  30. FörstermannU. Nitric oxide and oxidative stress in vascular disease.Pflugers Arch.2010459692393910.1007/s00424‑010‑0808‑220306272
    [Google Scholar]
  31. MilstienS. KatusicZ. Oxidation of tetrahydrobiopterin by peroxynitrite: Implications for vascular endothelial function.Biochem. Biophys. Res. Commun.1999263368168410.1006/bbrc.1999.142210512739
    [Google Scholar]
  32. YangY.M. HuangA. KaleyG. SunD. eNOS uncoupling and endothelial dysfunction in aged vessels.Am. J. Physiol. Heart Circ. Physiol.20092975H1829H183610.1152/ajpheart.00230.200919767531
    [Google Scholar]
  33. YangX. ChangY. WeiW. Endothelial dysfunction and inflammation: Immunity in rheumatoid arthritis.Mediators Inflamm.201620161910.1155/2016/681301627122657
    [Google Scholar]
  34. ChenC.J. FuY.C. YuW. WangW. SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB.Biochem. Biophys. Res. Commun.2013430279880310.1016/j.bbrc.2012.11.06623201401
    [Google Scholar]
  35. LibbyP. RidkerP.M. HanssonG.K. Leducq Transatlantic Network on Atherothrombosis Inflammation in atherosclerosis.J. Am. Coll. Cardiol.200954232129213810.1016/j.jacc.2009.09.00919942084
    [Google Scholar]
  36. ZhouR. YazdiA.S. MenuP. TschoppJ. A role for mitochondria in NLRP3 inflammasome activation.Nature2011469732922122510.1038/nature0966321124315
    [Google Scholar]
  37. VlachakisP.K. TheofilisP. KachrimanidisI. GiannakopoulosK. DrakopoulouM. ApostolosA. KordalisA. LeontsinisI. TsioufisK. TousoulisD. The role of inflammasomes in heart failure.Int. J. Mol. Sci.20242510537210.3390/ijms2510537238791409
    [Google Scholar]
  38. TangX. LuoY.X. ChenH.Z. LiuD.P. Mitochondria, endothelial cell function, and vascular diseases.Front. Physiol.2014517510.3389/fphys.2014.0017524834056
    [Google Scholar]
  39. O’MalleyY. FinkB.D. RossN.C. PrisinzanoT.E. SivitzW.I. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria.J. Biol. Chem.200628152397663977510.1074/jbc.M60826820017060316
    [Google Scholar]
  40. ShafiqueE. TorinaA. ReichertK. ColantuonoB. NurN. ZeeshanK. RavichandranV. LiuY. FengJ. ZeeshanK. BenjaminL.E. IraniK. HarringtonE.O. SellkeF.W. AbidM.R. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium.Cardiovasc. Res.2017113223424610.1093/cvr/cvw24928088753
    [Google Scholar]
  41. SpeckD. KleinauG. SzczepekM. KwiatkowskiD. CatarR. PhilippeA. ScheererP. Angiotensin and endothelin receptor structures with implications for signaling regulation and pharmacological targeting.Front. Endocrinol.20221388000210.3389/fendo.2022.88000235518926
    [Google Scholar]
  42. AraiH. HoriS. AramoriI. OhkuboH. NakanishiS. Cloning and expression of a cDNA encoding an endothelin receptor.Nature1990348630373073210.1038/348730a02175396
    [Google Scholar]
  43. DavenportA.P. HyndmanK.A. DhaunN. SouthanC. KohanD.E. PollockJ.S. PollockD.M. WebbD.J. MaguireJ.J. Endothelin.Pharmacol. Rev.201668235741810.1124/pr.115.01183326956245
    [Google Scholar]
  44. DagamajaluS. RexD.A.B. GopalakrishnanL. KarthikkeyanG. GurtooS. ModiP.K. MohantyV. MujeeburahimanM. SomanS. RajuR. TiwariV. PrasadT.S.K. A network map of endothelin mediated signaling pathway.J. Cell Commun. Signal.202115227728210.1007/s12079‑020‑00581‑432915369
    [Google Scholar]
  45. BerthiaumeN. YanagisawaM. D’Orléans-JusteP. Contribution of endogenous endothelin-1 and endothelin-A-receptors to the hypertensive state of endothelin-B heterozygous (+/-) knockout mice.J. Cardiovasc. Pharmacol.2000365Suppl. 1S72S7411078340
    [Google Scholar]
  46. MurakoshiN. MiyauchiT. KakinumaY. OhuchiT. GotoK. YanagisawaM. YamaguchiI. Vascular endothelin-B receptor system in vivo plays a favorable inhibitory role in vascular remodeling after injury revealed by endothelin-B receptor-knockout mice.Circulation2002106151991199810.1161/01.CIR.0000032004.56585.2A12370225
    [Google Scholar]
  47. BądzyńskaB. VaneckovaI. SadowskiJ. HojnáS. Kompanowska-JezierskaE. Effects of systemic and renal intramedullary endothelin-1 receptor blockade on tissue NO and intrarenal hemodynamics in normotensive and hypertensive rats.Eur. J. Pharmacol.202191017444510.1016/j.ejphar.2021.17444534492284
    [Google Scholar]
  48. VuurmansT.J.L. BoerP. KoomansH.A. Effects of endothelin-1 and endothelin-1 receptor blockade on cardiac output, aortic pressure, and pulse wave velocity in humans.Hypertension20034161253125810.1161/01.HYP.0000072982.70666.E812743011
    [Google Scholar]
  49. LermanL.O. KurtzT.W. TouyzR.M. EllisonD.H. ChadeA.R. CrowleyS.D. MattsonD.L. MullinsJ.J. OsbornJ. EirinA. ReckelhoffJ.F. IadecolaC. CoffmanT.M. Animal models of hypertension: A scientific statement from the american heart association.Hypertension2019736e87e12010.1161/HYP.000000000000009030866654
    [Google Scholar]
  50. BartonM. YanagisawaM. Endothelin: 30 years from discovery to therapy.Hypertension20197461232126510.1161/HYPERTENSIONAHA.119.1210531679425
    [Google Scholar]
  51. KostovK. BlazhevA. Circulating levels of endothelin-1 and big endothelin-1 in patients with essential hypertension.Pathophysiology2021284489495
    [Google Scholar]
  52. de OliveiraM.G. NadruzW.Jr MónicaF.Z. Endothelial and vascular smooth muscle dysfunction in hypertension.Biochem. Pharmacol.202220511526310.1016/j.bcp.2022.11526336174768
    [Google Scholar]
  53. PalmF. OnozatoM.L. LuoZ. WilcoxC.S. Dimethylarginine dimethylaminohydrolase (DDAH): Expression, regulation, and function in the cardiovascular and renal systems.Am. J. Physiol. Heart Circ. Physiol.20072936H3227H324510.1152/ajpheart.00998.200717933965
    [Google Scholar]
  54. LeiperJ. NandiM. TorondelB. Murray-RustJ. MalakiM. O’HaraB. RossiterS. AnthonyS. MadhaniM. SelwoodD. SmithC. Wojciak-StothardB. RudigerA. StidwillR. McDonaldN.Q. VallanceP. Disruption of methylarginine metabolism impairs vascular homeostasis.Nat. Med.200713219820310.1038/nm154317273169
    [Google Scholar]
  55. TakiuchiS. RakugiH. FujiiH. KamideK. HorioT. NakataniS. KawanoY. HigakiJ. OgiharaT. Carotid intima-media thickness is correlated with impairment of coronary flow reserve in hypertensive patients without coronary artery disease.Hypertens. Res.2003261294595110.1291/hypres.26.94514717336
    [Google Scholar]
  56. MelikianN. WheatcroftS.B. OgahO.S. MurphyC. ChowienczykP.J. WierzbickiA.S. SandersT.A.B. JiangB. DuncanE.R. ShahA.M. KearneyM.T. Asymmetric dimethylarginine and reduced nitric oxide bioavailability in young Black African men.Hypertension200749487387710.1161/01.HYP.0000258405.25330.8017261643
    [Google Scholar]
  57. KielsteinJ.T. ImpraimB. SimmelS. Bode-BögerS.M. TsikasD. FrölichJ.C. HoeperM.M. HallerH. FliserD. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans.Circulation2004109217217710.1161/01.CIR.0000105764.22626.B114662708
    [Google Scholar]
  58. DellesC. SchneiderM. JohnS. GekleM. SchmiederR. Angiotensin converting enzyme inhibition and angiotensin II AT1-receptor blockade reduce the levels of asymmetrical NG, NG-dimethylarginine in human essential hypertension1.Am. J. Hypertens.200215759059310.1016/S0895‑7061(02)02278‑112118904
    [Google Scholar]
  59. NapoliC. SicaV. de NigrisF. PignalosaO. CondorelliM. IgnarroL.J. LiguoriA. Sulfhydryl angiotensin- converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension.Am. Heart J.2004148117210.1016/j.ahj.2004.03.02515215814
    [Google Scholar]
  60. ItoA. EgashiraK. NarishigeT. MuramatsuK. TakeshitaA. Renin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension.Jpn. Circ. J.200165977577810.1253/jcj.65.77511548874
    [Google Scholar]
  61. TomiyamaH. YamadaJ. KojiY. ShiinaK. YoshidaM. YamashinaA. Effect of telmisartan on forearm postischemic hyperemia and serum asymmetric dimethylarginine levels.Am. J. Hypertens.200720121305131110.1016/j.amjhyper.2007.07.01318047921
    [Google Scholar]
  62. JiangJ.L. ZhuH.Q. ChenZ. XuH.Y. LiY.J. Angiotensin-converting enzyme inhibitors prevent LDL-induced endothelial dysfunction by reduction of asymmetric dimethylarginine level.Int. J. Cardiol.2005101115315510.1016/j.ijcard.2004.01.00615860402
    [Google Scholar]
  63. BlackwellS. The biochemistry, measurement and current clinical significance of asymmetric dimethylarginine.Ann. Clin. Biochem.2010471172810.1258/acb.2009.00919619940201
    [Google Scholar]
  64. KaurR. SinghV. KumariP. SinghR. ChopraH. EmranT.B. Novel insights on the role of VCAM-1 and ICAM-1: Potential biomarkers for cardiovascular diseases.Ann. Med. Surg.20228410480210.1016/j.amsu.2022.10480236408439
    [Google Scholar]
  65. van de StolpeA. van der SaagP.T. Intercellular adhesion molecule-1.J. Mol. Med.1996741133310.1007/BF002020698834767
    [Google Scholar]
  66. KongD.H. KimY. KimM. JangJ. LeeS. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer.Int. J. Mol. Sci.2018194105710.3390/ijms1904105729614819
    [Google Scholar]
  67. CiobanuD.M. MirceaP.A. BalaC. RusuA. VesaŞ. RomanG. Intercellular adhesion molecule-1 (ICAM-1) associates with 24-hour ambulatory blood pressure variability in type 2 diabetes and controls.Cytokine201911613413810.1016/j.cyto.2019.01.00630716657
    [Google Scholar]
  68. TroncosoM.F. Ortiz-QuinteroJ. Garrido-MorenoV. Sanhueza-OlivaresF. Guerrero-MoncayoA. ChiongM. CastroP.F. GarcíaL. GabrielliL. CorbalánR. Garrido-OlivaresL. LavanderoS. VCAM-1 as a predictor biomarker in cardiovascular disease.Biochim. Biophys. Acta Mol. Basis Dis.20211867916617010.1016/j.bbadis.2021.16617034000374
    [Google Scholar]
  69. StevensS.L. WoodS. KoshiarisC. LawK. GlasziouP. StevensR.J. McManusR.J. Blood pressure variability and cardiovascular disease: Systematic review and meta-analysis.BMJ2016354i409810.1136/bmj.i409827511067
    [Google Scholar]
  70. LangP.P. BaiJ. ZhangY.L. YangX.L. XiaY.L. LinQ.Y. LiH.H. Blockade of intercellular adhesion molecule-1 prevents angiotensin II-induced hypertension and vascular dysfunction.Lab. Invest.2020100337838610.1038/s41374‑019‑0320‑z31527830
    [Google Scholar]
  71. KurodaY. KomamuraK. TatsumiR. MoriK. YonedaK. KatayamaY. ShigemotoS. MiyatakeK. HanafusaT. Vascular cell adhesion molecule-1 as a biochemical marker of left ventricular mass in the patients with hypertension.Am. J. Hypertens.200114986887210.1016/S0895‑7061(01)02139‑211587151
    [Google Scholar]
  72. Abu-FarhaM. CherianP. QaddoumiM.G. AlKhairiI. SriramanD. AlanbaeiM. AbubakerJ. Increased plasma and adipose tissue levels of ANGPTL8/Betatrophin and ANGPTL4 in people with hypertension.Lipids Health Dis.20181713510.1186/s12944‑018‑0681‑029490644
    [Google Scholar]
  73. BrownI.A.M. DiederichL. GoodM.E. DeLalioL.J. MurphyS.A. Cortese-KrottM.M. HallJ.L. LeT.H. IsaksonB.E. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension.Arterioscler. Thromb. Vasc. Biol.20183891969198510.1161/ATVBAHA.118.31122930354262
    [Google Scholar]
  74. LiuX. LiuX. LiM. ZhangY. ChenW. ZhangM. ZhangC. ZhangM. Mechanical stretch induces smooth muscle cell dysfunction by regulating ACE2 via P38/ATF3 and post-transcriptional regulation by miR-421.Front. Physiol.20211154059110.3389/fphys.2020.54059133536929
    [Google Scholar]
  75. JiaoX. YuH. DuZ. LiL. HuC. DuY. ZhangJ. ZhangX. LvQ. LiF. SunQ. WangY. QinY. Vascular smooth muscle cells specific deletion of angiopoietin-like protein 8 prevents angiotensin II-promoted hypertension and cardiovascular hypertrophy.Cardiovasc. Res.202311991856186810.1093/cvr/cvad08937285486
    [Google Scholar]
  76. Riches-SumanK. Diverse roles of microRNA-145 in regulating smooth muscle (dys)function in health and disease.Biochem. Soc. Trans.202149135336310.1042/BST2020067933616623
    [Google Scholar]
  77. RiegA.D. SuleimanS. AnkerC. VerjansE. RossaintR. UhligS. MartinC. PDGF-BB regulates the pulmonary vascular tone: Impact of prostaglandins, calcium, MAPK- and PI3K/AKT/mTOR signalling and actin polymerisation in pulmonary veins of guinea pigs.Respir. Res.201819112010.1186/s12931‑018‑0829‑529921306
    [Google Scholar]
  78. WeiL. LiL. LiuL. YuR. LiX. LuoZ. Knockdown of Annexin-A1 inhibits growth, migration and invasion of glioma cells by suppressing the PI3K/Akt signaling pathway.ASN Neuro20211311759091421100121810.1177/1759091421100121833706561
    [Google Scholar]
  79. ZhangY. YingJ. JiangD. ChangZ. LiH. ZhangG. GongS. JiangX. TaoJ. Urotensin-II receptor stimulation of cardiac L-type Ca2+ channels requires the βγ subunits of Gi/o-protein and phosphatidylinositol 3-kinase-dependent protein kinase C β1 isoform.J. Biol. Chem.2015290138644865510.1074/jbc.M114.61502125678708
    [Google Scholar]
  80. FadaeiR. ShateriH. DiStefanoJ.K. MoradiN. MohammadiM. EmamiF. AghajaniH. ZiamajidiN. Higher circulating levels of ANGPTL8 are associated with body mass index, triglycerides, and endothelial dysfunction in patients with coronary artery disease.Mol. Cell. Biochem.20204691-2293910.1007/s11010‑020‑03725‑732239421
    [Google Scholar]
  81. BisogniV. CerasariA. PucciG. VaudoG. Matrix metalloproteinases and hypertension-mediated organ damage: Current insights.Integr. Blood Press. Control20201315716910.2147/IBPC.S22334133173330
    [Google Scholar]
  82. XuT. ZhangY. LiY. ZhuD. GaoP. The association of serum inflammatory biomarkers with chronic kidney disease in hypertensive patients.Ren. Fail.201436566667210.3109/0886022X.2014.89000224575880
    [Google Scholar]
  83. AzevedoA. PradoA.F. AntonioR.C. IssaJ.P. GerlachR.F. Matrix metalloproteinases are involved in cardiovascular diseases.Basic Clin. Pharmacol. Toxicol.2014115430131410.1111/bcpt.1228224974977
    [Google Scholar]
  84. ValenteF.M. de AndradeD.O. Cosenso-MartinL.N. CesarinoC.B. GuimarãesS.M. GuimarãesV.B. LacchiniR. Tanus-SantosJ.E. Yugar-ToledoJ.C. Vilela- MartinJ.F. Plasma levels of matrix metalloproteinase-9 are elevated in individuals with hypertensive crisis.BMC Cardiovasc. Disord.202020113210.1186/s12872‑020‑01412‑532164582
    [Google Scholar]
  85. Rodríguez-SánchezE. Navarro-GarcíaJ.A. Aceves-RipollJ. Álvarez-LlamasG. SeguraJ. BarderasM.G. RuilopeL.M. Ruiz-HurtadoG. Association between renal dysfunction and metalloproteinase (MMP)-9 activity in hypertensive patients.Nefrología201939218419110.1016/j.nefroe.2019.03.00630509751
    [Google Scholar]
  86. MorillasP. QuilesJ. de AndradeH. CastilloJ. TarazónE. RosellóE. PortolésM. RiveraM. Bertomeu-MartínezV. Circulating biomarkers of collagen metabolism in arterial hypertension.J. Hypertens.20133181611161710.1097/HJH.0b013e3283614c1c23615327
    [Google Scholar]
  87. NiemirskaA. LitwinM. TrojanekJ. GackowskaL. KubiszewskaI. WierzbickaA. KułagaZ. MichałkiewiczJ. Altered matrix metalloproteinase 9 and tissue inhibitor of metalloproteinases 1 levels in children with primary hypertension.J. Hypertens.20163491815182210.1097/HJH.000000000000102427379542
    [Google Scholar]
  88. AndersonC.L. BrownC.J. Variability of X chromosome inactivation: Effect on levels of TIMP1 RNA and role of DNA methylation.Hum. Genet.2002110327127810.1007/s00439‑002‑0676‑811935340
    [Google Scholar]
  89. SzmitkoP.E. WangC.H. WeiselR.D. de AlmeidaJ.R. AndersonT.J. VermaS. New markers of inflammation and endothelial cell activation: Part I.Circulation2003108161917192310.1161/01.CIR.0000089190.95415.9F14568885
    [Google Scholar]
  90. MezianiF. TesseA. AndriantsitohainaR. Microparticles are vectors of paradoxical information in vascular cells including the endothelium: Role in health and diseases.Pharmacol. Rep.20086017584
    [Google Scholar]
  91. BurgerD. SchockS. ThompsonC.S. MontezanoA.C. HakimA.M. TouyzR.M. Microparticles: Biomarkers and beyond.Clin. Sci.2013124742344110.1042/CS2012030923249271
    [Google Scholar]
  92. AmabileN. ChengS. RenardJ.M. LarsonM.G. GhorbaniA. McCabeE. GriffinG. GuerinC. HoJ.E. ShawS.Y. CohenK.S. VasanR.S. TedguiA. BoulangerC.M. WangT.J. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study.Eur. Heart J.201435422972297910.1093/eurheartj/ehu15324742886
    [Google Scholar]
  93. SalemM. KamalS. El SherbinyW. Abdel AalA.A. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters.Hematology201520315415910.1179/1607845414Y.000000017825001068
    [Google Scholar]
  94. de la SierraA. LarrousseM. Endothelial dysfunction is associated with increased levels of biomarkers in essential hypertension.J. Hum. Hypertens.201024637337910.1038/jhh.2009.9119960026
    [Google Scholar]
  95. ZuL. RenC. PanB. ZhouB. ZhouE. NiuC. WangX. ZhaoM. GaoW. GuoL. ZhengL. Endothelial microparticles after antihypertensive and lipid-lowering therapy inhibit the adhesion of monocytes to endothelial cells.Int. J. Cardiol.201620275675910.1016/j.ijcard.2015.10.03526476027
    [Google Scholar]
  96. CurrieG. DellesC. Use of biomarkers in the evaluation and treatment of hypertensive patients.Curr. Hypertens. Rep.20161875410.1007/s11906‑016‑0661‑627221728
    [Google Scholar]
  97. López-NovoaJ.M. BernabeuC. The physiological role of endoglin in the cardiovascular system.Am. J. Physiol. Heart Circ. Physiol.20102994H959H97410.1152/ajpheart.01251.200920656886
    [Google Scholar]
  98. VenkateshaS. ToporsianM. LamC. HanaiJ. MammotoT. KimY.M. BdolahY. LimK.H. YuanH.T. LibermannT.A. StillmanI.E. RobertsD. D’AmoreP.A. EpsteinF.H. SellkeF.W. RomeroR. SukhatmeV.P. LetarteM. KarumanchiS.A. Soluble endoglin contributes to the pathogenesis of preeclampsia.Nat. Med.200612664264910.1038/nm142916751767
    [Google Scholar]
  99. Valbuena-DiezA.C. BlancoF.J. OujoB. LangaC. Gonzalez-NuñezM. LlanoE. PendasA.M. DíazM. CastrilloA. Lopez-NovoaJ.M. BernabeuC. Oxysterol-induced soluble endoglin release and its involvement in hypertension.Circulation2012126222612262410.1161/CIRCULATIONAHA.112.10126123110859
    [Google Scholar]
  100. Gallardo-VaraE. Gamella-PozueloL. Perez-RoqueL. BarthaJ.L. Garcia-PalmeroI. CasalJ.I. López-NovoaJ.M. PericachoM. BernabeuC. Potential role of circulating endoglin in hypertension via the upregulated expression of BMP4.Cells20209498810.3390/cells904098832316263
    [Google Scholar]
  101. BudaV. AndorM. BaibataD.E. CozlacR. RaduG. CoricovacD. DanciuC. LedetiI. CheveresanA. NicaC. TuduceP. TomescuM.C. Decreased sEng plasma levels in hypertensive patients with endothelial dysfunction under chronic treatment with Perindopril.Drug Des. Devel. Ther.2019131915192510.2147/DDDT.S18637831239642
    [Google Scholar]
  102. RossiE. Sanz-RodriguezF. ElenoN. DüwellA. BlancoF.J. LangaC. BotellaL.M. CabañasC. Lopez-NovoaJ.M. BernabeuC. Endothelial endoglin is involved in inflammation: Role in leukocyte adhesion and transmigration.Blood2013121240341510.1182/blood‑2012‑06‑43534723074273
    [Google Scholar]
  103. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.04766233973623
    [Google Scholar]
  104. Correia de SousaM. GjorgjievaM. DolickaD. SobolewskiC. FotiM. Deciphering miRNAs’ action through miRNA editing.Int. J. Mol. Sci.20192024624910.3390/ijms2024624931835747
    [Google Scholar]
  105. DuanL. XiongX.J. WangJ. MicroRNA and hypertension.Zhongguo Zhongyao Zazhi201439339740124946537
    [Google Scholar]
  106. ÖzkanG. UlusoyŞ. GeyikE. ErdemY. Down-regulation of miRNA 145 and up-regulation of miRNA 4516 may be associated with primary hypertension.J. Clin. Hypertens.201921111724173110.1111/jch.1370431556476
    [Google Scholar]
  107. ZhangL. YangF. YanQ. Candesartan ameliorates vascular smooth muscle cell proliferation via regulating miR-301b/STAT3 axis.Hum. Cell202033352853610.1007/s13577‑020‑00333‑x32170715
    [Google Scholar]
  108. LiX. WeiY. WangZ. microRNA-21 and hypertension.Hypertens. Res.2018419649661
    [Google Scholar]
  109. YaacoubS. BoudakaA. AlKhatibA. PintusG. SahebkarA. KobeissyF. EidA.H. The pharmaco-epigenetics of hypertension: A focus on microRNA.Mol. Cell. Biochem.2024479123255327110.1007/s11010‑024‑04947‑938424404
    [Google Scholar]
  110. AdamcovaM. KawanoI. SimkoF. The impact of microRNAs in renin–angiotensin-system-induced cardiac remodelling.Int. J. Mol. Sci.2021229476210.3390/ijms2209476233946230
    [Google Scholar]
  111. te RietL. van EschJ.H.M. RoksA.J.M. van den MeirackerA.H. DanserA.H.J. Hypertension.Circ. Res.2015116696097510.1161/CIRCRESAHA.116.30358725767283
    [Google Scholar]
  112. AliF. ShenA. IslamW. SaleemM.Z. MuthuR. XieQ. WuM. ChengY. ChuJ. linW. PengJ. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension.Microb. Pathog.202216210536110.1016/j.micpath.2021.10536134919993
    [Google Scholar]
  113. ThijssenD.H.J. BrunoR.M. van MilA.C.C.M. HolderS.M. FaitaF. GreylingA. ZockP.L. TaddeiS. DeanfieldJ.E. LuscherT. GreenD.J. GhiadoniL. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans.Eur. Heart J.201940302534254710.1093/eurheartj/ehz35031211361
    [Google Scholar]
  114. GreylingA. van MilA.C.C.M. ZockP.L. GreenD.J. GhiadoniL. ThijssenD.H. DilationT.I.W.G.F.M. TIFN International Working Group on Flow Mediated Dilation Adherence to guidelines strongly improves reproducibility of brachial artery flow-mediated dilation.Atherosclerosis201624819620210.1016/j.atherosclerosis.2016.03.01127023841
    [Google Scholar]
  115. MajkaK. ParolM. NowickiA. GambinB. TrawińskiZ. JaciubekM. KrupieniczA. OlszewskiR. Comparison of the radial and brachial artery flow-mediated dilation in patients with hypertension.Adv. Clin. Exp. Med.202231323124010.17219/acem/14404035040291
    [Google Scholar]
  116. MaruhashiT. SogaJ. FujimuraN. IdeiN. MikamiS. IwamotoY. KajikawaM. MatsumotoT. HidakaT. KiharaY. ChayamaK. NomaK. NakashimaA. GotoC. TomiyamaH. TakaseB. YamashinaA. HigashiY. Relationship between flow-mediated vasodilation and cardiovascular risk factors in a large community-based study.Heart201399241837184210.1136/heartjnl‑2013‑30473924153417
    [Google Scholar]
  117. VeerabhadrappaP. DiazK.M. FeairhellerD.L. SturgeonK.M. WilliamsonS.T. CrabbeD.L. KashemA.M. BrownM.D. Endothelial-dependent flow-mediated dilation in African Americans with masked-hypertension.Am. J. Hypertens.201124101102110710.1038/ajh.2011.10321677701
    [Google Scholar]
  118. NishizakaM.K. ZamanM.A. GreenS.A. RenfroeK.Y. CalhounD.A. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism.Circulation2004109232857286110.1161/01.CIR.0000129307.26791.8E15173035
    [Google Scholar]
  119. RossiR. ChiurliaE. NuzzoA. CioniE. OriglianiG. ModenaM.G. Flow-mediated vasodilation and the risk of developing hypertension in healthy postmenopausal women.J. Am. Coll. Cardiol.20044481636164010.1016/j.jacc.2004.07.02715489096
    [Google Scholar]
  120. YangY. XuJ. WangY. TangX. GaoP. Brachial flow-mediated dilation predicts subclinical target organ damage progression in essential hypertensive patients.J. Hypertens.201432122393240010.1097/HJH.000000000000033725188368
    [Google Scholar]
  121. LiangC. SongZ. YaoX. XiaoQ. FuH. TangL. Exercise interventions for the effect of endothelial function in hypertensive patients: A systematic review and meta-analysis.J. Clin. Hypertens.202426659961410.1111/jch.1481838708922
    [Google Scholar]
  122. PellerM. OzierańskiK. BalsamP. GrabowskiM. FilipiakK.J. OpolskiG. Influence of beta-blockers on endothelial function: A meta-analysis of randomized controlled trials.Cardiol. J.201522670871610.5603/CJ.a2015.004226202651
    [Google Scholar]
  123. ChenJ.D. LiuM. ChenX. YangZ.J. Effect of Angiotensin receptor blockers on flow-mediated vasodilation: A meta-analysis of randomized controlled trials.Cardiology20151312697910.1159/00037525925872009
    [Google Scholar]
  124. SakimaA. ArimaH. MatayoshiT. IshidaA. OhyaY. Effect of mineralocorticoid receptor blockade on arterial stiffness and endothelial function.Hypertension202177392993710.1161/HYPERTENSIONAHA.120.1639733461316
    [Google Scholar]
  125. MuiesanM.L. SalvettiM. MonteduroC. CorbelliniC. GuelfiD. RizzoniD. CastellanoM. Agabiti-RoseiE. Flow-mediated dilatation of the brachial artery and left ventricular geometry in hypertensive patients.J. Hypertens.2001193 Pt 2Suppl.64164710.1097/00004872‑200103001‑0001811327641
    [Google Scholar]
  126. MalikA.R. SultanS. TurnerS.T. KulloI.J. Urinary albumin excretion is associated with impaired flow- and nitroglycerin-mediated brachial artery dilatation in hypertensive adults.J. Hum. Hypertens.200721323123810.1038/sj.jhh.100214317230233
    [Google Scholar]
  127. GündüzF. KoçerG. ÜlkerS. MeiselmanH.J. BaşkurtO.K. ŞentürkÜ.K. Exercise training enhances flow-mediated dilation in spontaneously hypertensive rats.Physiol. Res.201160458959710.33549/physiolres.93216621574753
    [Google Scholar]
  128. Barone GibbsB. DobrosielskiD.A. BonekampS. StewartK.J. ClarkJ.M. A randomized trial of exercise for blood pressure reduction in type 2 diabetes: Effect on flow-mediated dilation and circulating biomarkers of endothelial function.Atherosclerosis2012224244645310.1016/j.atherosclerosis.2012.07.03522889573
    [Google Scholar]
  129. BanksN.F. RogersE.M. StanhewiczA.E. WhitakerK.M. JenkinsN.D.M. Resistance exercise lowers blood pressure and improves vascular endothelial function in individuals with elevated blood pressure or stage-1 hypertension.Am. J. Physiol. Heart Circ. Physiol.20243261H256H26910.1152/ajpheart.00386.202337975709
    [Google Scholar]
  130. MaruhashiT. SogaJ. FujimuraN. IdeiN. MikamiS. IwamotoY. IwamotoA. KajikawaM. MatsumotoT. OdaN. KishimotoS. MatsuiS. HashimotoH. AibaraY. YusoffF.B.M. HidakaT. KiharaY. ChayamaK. NomaK. NakashimaA. GotoC. TomiyamaH. TakaseB. KohroT. SuzukiT. IshizuT. UedaS. YamazakiT. FurumotoT. KarioK. InoueT. KobaS. WatanabeK. TakemotoY. HanoT. SataM. IshibashiY. NodeK. MaemuraK. OhyaY. FurukawaT. ItoH. IkedaH. YamashinaA. HigashiY. Endothelial function is impaired in patients receiving antihypertensive drug treatment regardless of blood pressure level.Hypertension201770479079710.1161/HYPERTENSIONAHA.117.0961228808069
    [Google Scholar]
  131. HoshideS. KabutoyaT. UenoH. KarioK. Class effect of xanthine oxidase inhibitors on flow-mediated dilatation in hypertensive patients: A randomized controlled trial.J. Clin. Hypertens.202022345145610.1111/jch.1375731873985
    [Google Scholar]
  132. CiceroA.F.G. PirroM. WattsG.F. MikhailidisD.P. BanachM. SahebkarA. Effects of allopurinol on endothelial function: A systematic review and meta-analysis of randomized placebo-controlled trials.Drugs20187819910910.1007/s40265‑017‑0839‑529139092
    [Google Scholar]
  133. AlexanderY. OstoE. Schmidt-TrucksässA. ShechterM. TrifunovicD. DunckerD.J. AboyansV. BäckM. BadimonL. CosentinoF. De CarloM. DorobantuM. HarrisonD.G. GuzikT.J. HoeferI. MorrisP.D. NorataG.D. SuadesR. TaddeiS. VilahurG. WaltenbergerJ. WeberC. WilkinsonF. Bochaton-PiallatM.L. EvansP.C. Endothelial function in cardiovascular medicine: A consensus paper of the European society of cardiology working groups on atherosclerosis and vascular biology, aorta and peripheral vascular diseases, coronary pathophysiology and microcirculation, and thrombosis.Cardiovasc. Res.20211171294210.1093/cvr/cvaa08532282914
    [Google Scholar]
  134. BenasD. TriantafyllidiH. BirmpaD. FambriA. SchoinasA. ThymisI. KostelliG. IkonomidisI. Hypertension-mediated organ damage in young patients with first-diagnosed and never treated systolic hypertension.Curr. Vasc. Pharmacol.202321319720410.2174/157016112166623053115343137533181
    [Google Scholar]
  135. BozbasH. PiratB. YildirirA. ErogluS. SimsekV. SadeE. AtarI. AydinalpA. OzinB. MuderrisogluH. Coronary microvascular function in patients with isolated systolic and combined systolic/diastolic hypertension.J. Clin. Hypertens.2012141287187610.1111/j.1751‑7176.2012.00705.x23205754
    [Google Scholar]
  136. FuQ. ZhangQ. LuW. WangY. HuangY. WangY. WuQ. LuC. Assessment of coronary flow reserve by adenosine stress myocardial perfusion imaging in patients with hypertension.Cell Biochem. Biophys.201573233934410.1007/s12013‑015‑0600‑127352320
    [Google Scholar]
  137. GalderisiM. DesimoneG. CicalaS. ParisiM. DerricoA. InnelliP. DedivitiisM. MondilloS. DedivitiisO. Coronary flow reserve in hypertensive patients with hypercholesterolemia and without coronary heart disease.Am. J. Hypertens.200720217718310.1016/j.amjhyper.2006.06.01717261464
    [Google Scholar]
  138. BezanteG.P. ViazziF. LeonciniG. RattoE. ContiN. BalbiM. AgostiS. DeferrariL. DeferrariG. PontremoliR. Coronary flow reserve is impaired in hypertensive patients with subclinical renal damage.Am. J. Hypertens.200922219119610.1038/ajh.2008.35119151691
    [Google Scholar]
  139. EvangelouD. BechlioulisA. TzeltzesG. LakkasL. TheodorouI. KalaitzidisR. DounousiE. MichalisL.K. NakaK.K. Myocardial strain indices and coronary flow reserve are only mildly affected in healthy hypertensive patients.Int. J. Cardiovasc. Imaging2021371697910.1007/s10554‑020‑01947‑w32734496
    [Google Scholar]
  140. ErdoganD. GulluH. CaliskanM. YildirimI. TokD. MuderrisogluH. Coronary flow reserve is preserved in white-coat hypertension.Heart20069281109111210.1136/hrt.2005.07491416387828
    [Google Scholar]
  141. CaliskanM. CiftciO. GulluH. CaliskanZ. GüvenA. ErdoganD. MuderrisogluH. Effect of masked, white-coat, and sustained hypertension on coronary flow reserve and peripheral endothelial functions.Clin. Exp. Hypertens.201335318319110.3109/10641963.2012.71217622891712
    [Google Scholar]
  142. ErdoganD. GulluH. CaliskanM. YildirimI. UlusT. BilgiM. MuderrisogluH. Coronary flow reserve in dipper and non-dipper hypertensive patients.Blood Press.200514634535210.1080/0803705050035655016403688
    [Google Scholar]
  143. VölzS. SvedlundS. AnderssonB. Li-MingG. RundqvistB. Coronary flow reserve in patients with resistant hypertension.Clin. Res. Cardiol.2017106215115710.1007/s00392‑016‑1043‑427747373
    [Google Scholar]
  144. XiaozhenH. YunZ. MeiZ. YuS. Effect of carvedilol on coronary flow reserve in patients with hypertensive left-ventricular hypertrophy.Blood Press.2010191404710.3109/0803705090345049220001392
    [Google Scholar]
  145. ToyamaT. SatoC. KoyamaK. KasamaS. MurakamiJ. YamashitaE. KawaguchiR. AdachiH. HoshizakiH. OshimaS. Olmesartan improves coronary flow reserve of hypertensive patients using coronary magnetic resonance imaging compared with amlodipine.Cardiology2012122423023610.1159/00033976222906847
    [Google Scholar]
  146. TomásJ.P. MoyaJ.L. BarriosV. CampuzanoR. GuzmanG. MegíasA. Ruiz-LeriaS. CatalánP. MarfilT. TarancónB. MurielA. García-LledóA. Effect of candesartan on coronary flow reserve in patients with systemic hypertension.J. Hypertens.200624102109211410.1097/01.hjh.0000244962.77609.5716957573
    [Google Scholar]
  147. GalderisiM. CicalaS. D’ErricoA. de DivitiisO. de SimoneG. Nebivolol improves coronary flow reserve in hypertensive patients without coronary heart disease.J. Hypertens.200422112201220810.1097/00004872‑200411000‑0002415480106
    [Google Scholar]
  148. MotzW. StrauerB.E. Improvement of coronary flow reserve after long-term therapy with enalapril.Hypertension19962751031103810.1161/01.HYP.27.5.10318621193
    [Google Scholar]
  149. VölzS. AnderssonB. LjungmanC. GanL.M. RundqvistB. SvedlundS. Effect of renal denervation on coronary flow reserve in patients with resistant hypertension.Clin. Physiol. Funct. Imaging2019391152110.1111/cpf.1252329761608
    [Google Scholar]
  150. EngholmM. BertelsenJ.B. MathiassenO.N. BøtkerH.E. VaseH. PetersC.D. BechJ.N. BuusN.H. SchroederA.P. RickersH. HansenK.W. PoulsenP.L. KaltoftA. ChristensenK.L. Effects of renal denervation on coronary flow reserve and forearm dilation capacity in patients with treatment-resistant hypertension. A randomized, double-blinded, sham-controlled clinical trial.Int. J. Cardiol.2018250293410.1016/j.ijcard.2017.09.20029042091
    [Google Scholar]
  151. TzortzisS. IkonomidisI. TriantafyllidiH. TrivilouP. PavlidisG. KatsanosS. KatogiannisK. BirbaD. ThymisJ. MakavosG. VaroudiM. FrogoudakiA. VrettouA.R. VlastosD. ParissisJ. LekakisJ. Optimal blood pressure control improves left ventricular torsional deformation and vascular function in newly diagnosed hypertensives: A 3-year follow-up study.J. Cardiovasc. Transl. Res.202013581482510.1007/s12265‑019‑09951‑931898757
    [Google Scholar]
  152. YangY. HwangE. LeeS.A. LeeS. KimD.H. SongJ.M. KangD.H. Effect of rosuvastatin on coronary flow reserve in hypertensive patients at cardiovascular risk.J. Cardiovasc. Imaging202129325526210.4250/jcvi.2020.024434080332
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673349473250410132823
Loading
/content/journals/cmc/10.2174/0109298673349473250410132823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test