Skip to content
2000
image of Identification and Experimental Validation of Tumor Antigens and Hypoxia Subtypes of Osteosarcoma for Potential mRNA Vaccine Development

Abstract

Background

Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. The aim of this study was to explore the possibility of OS hypoxia subtype for anti-OS mRNA vaccine development and select suitable patients for precision therapy.

Methods

We comprehensively explored hypoxia-related genes (HRGs) as potential sources of tumor neoantigens in OS patients. Gene set enrichment analysis algorithm and consensus clustering analysis were used to determine immune subtypes and evaluate tumor microenvironment. Estimation of stromal and immune cells in malignant tumour tissues using expression data algorithm was used to assess tumour immune activity. The OS hypoxia landscape was visualized using dimensionality reduction analysis based on the DDRTree algorithm. Assessment of clinical samples and molecular experiments were performed to verify the determined tumor antigens.

Results

Four overexpressed and mutated tumor antigens associated with prognosis and infiltration of antigen-presenting cells were identified and verified by clinical samples and molecular experiments. Furthermore, OS patients were stratified into two OS hypoxia subtypes. Interestingly, patients with the OS hypoxia subtype 1 tumor had a superior survival than those with the OS hypoxia subtype 2 tumor. Distinct expressions of immune checkpoint proteins (ICPs) and immunogenic cell death (ICD) modulators were observed in different immune subtype tumors. Finally, the immune landscape of OS showed a high degree of heterogeneity between individual patients.

Conclusion

This study identified potential antigens for the anti-OS mRNA vaccine as well as different OS hypoxia subtypes, guiding more effective immunotherapeutic strategies and selecting appropriate patients for tumor vaccine therapy.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348041250407062346
2025-04-29
2025-09-09
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673348041250407062346/BMS-CMC-2024-562.html?itemId=/content/journals/cmc/10.2174/0109298673348041250407062346&mimeType=html&fmt=ahah

References

  1. Stefan B. Jürgens H. Jundt G. Kevric M. Kühne T. Reichardt P. Zoubek A. Werner M. Winkelmann W. Kotz R. Osteosarcoma: the COSS experience. Canc. Treat Res. 2009 152 289 308 10.1007/978‑1‑4419‑0284‑9_15 20213397
    [Google Scholar]
  2. Mirabello L. Troisi R.J. Savage S.A. Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer 2009 115 7 1531 1543 10.1002/cncr.24121 19197972
    [Google Scholar]
  3. Stiller C. A. Craft A. W. Corazziari I. Survival of children with bone sarcoma in Europe since 1978: results from the EUROCARE study. Eur. J. Canc. 2001 37 6 760 76 10.1016/S0959‑8049(01)00004‑1 11311651
    [Google Scholar]
  4. Bielack S.S. Kempf-Bielack B. Delling G. Exner G.U. Flege S. Helmke K. Kotz R. Salzer-Kuntschik M. Werner M. Winkelmann W. Zoubek A. Jürgens H. Winkler K. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 2002 20 3 776 790 10.1200/JCO.2002.20.3.776 11821461
    [Google Scholar]
  5. Paoluzzi L. Cacavio A. Ghesani M. Karambelkar A. Rapkiewicz A. Weber J. Rosen G. Response to anti-PD1 therapy with nivolumab in metastatic sarcomas. Clin. Sarcoma Res. 2016 6 1 24 10.1186/s13569‑016‑0064‑0 28042471
    [Google Scholar]
  6. Dhillon S. Dinutuximab: first global approval. Drugs 2015 75 8 923 927 10.1007/s40265‑015‑0399‑5 25940913
    [Google Scholar]
  7. Weitzenfeld P. Bournazos S. Ravetch J.V. Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J. Clin. Invest. 2019 129 9 3952 3962 10.1172/JCI128437 31424423
    [Google Scholar]
  8. Wang Y. Zhu J. Yu W. Wang J. Xia K. Liang C. Tao H. Allogenic γδ T cell and tumor cell fused vaccine for enhanced immunotherapeutic efficacy of osteosarcoma. J. Bone Oncol. 2020 21 100214 10.1016/j.jbo.2018.100214 32368439
    [Google Scholar]
  9. Miao L. Zhang Y. Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer 2021 20 1 41 10.1186/s12943‑021‑01335‑5 33632261
    [Google Scholar]
  10. Tang T.Y. Huang X. Zhang G. Lu M.H. Liang T.B. mRNA vaccine development for cholangiocarcinoma: a precise pipeline. Mil. Med. Res. 2022 9 1 40 10.1186/s40779‑022‑00399‑8 35821067
    [Google Scholar]
  11. Guan G. Zhang Y. Lu Y. Liu L. Shi D. Wen Y. Yang L. Ma Q. Liu T. Zhu X. Qiu X. Zhou Y. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells. Cancer Lett. 2015 357 1 254 264 10.1016/j.canlet.2014.11.034 25444927
    [Google Scholar]
  12. Ruan K. Song G. Ouyang G. Role of hypoxia in the hallmarks of human cancer. J. Cell. Biochem. 2009 107 6 1053 1062 10.1002/jcb.22214 19479945
    [Google Scholar]
  13. Behzadi P. Ranjbar R. DNA microarray technology and bioinformatic web services. Acta Microbiol. Immunol. Hung. 2018 66 1 19 30 10.1556/030.65.2018.028 30010394
    [Google Scholar]
  14. Buddingh E.P. Kuijjer M.L. Duim R.A.J. Bürger H. Agelopoulos K. Myklebost O. Serra M. Mertens F. Hogendoorn P.C.W. Lankester A.C. Cleton-Jansen A.M. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents. Clin. Cancer Res. 2011 17 8 2110 2119 10.1158/1078‑0432.CCR‑10‑2047 21372215
    [Google Scholar]
  15. Fritsche-Guenther R. Noske A. Ungethüm U. Kuban R.J. Schlag P.M. Tunn P.U. Karle J. Krenn V. Dietel M. Sers C. De novo expression of EphA2 in osteosarcoma modulates activation of the mitogenic signalling pathway. Histopathology 2010 57 6 836 850 10.1111/j.1365‑2559.2010.03713.x 21166698
    [Google Scholar]
  16. Barrett T. Troup D.B. Wilhite S.E. Ledoux P. Rudnev D. Evangelista C. Kim I.F. Soboleva A. Tomashevsky M. Edgar R. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res. 2007 35 Database D760 D765 10.1093/nar/gkl887 17099226
    [Google Scholar]
  17. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinforma. 2016 54 1 33 10.1002/cpbi.5 27322403
    [Google Scholar]
  18. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  19. Zhang B. Tang B. Gao J. Li J. Kong L. Qin L. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. J. Transl. Med. 2020 18 1 342 10.1186/s12967‑020‑02492‑9 32887635
    [Google Scholar]
  20. Huang X. Tang T. Zhang G. Liang T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol. Cancer 2021 20 1 50 10.1186/s12943‑021‑01342‑6 33685460
    [Google Scholar]
  21. Huang X. Zhang G. Tang T. Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol. Cancer 2021 20 1 44 10.1186/s12943‑021‑01310‑0 33648511
    [Google Scholar]
  22. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 43 7 e47 10.1093/nar/gkv007 25605792
    [Google Scholar]
  23. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  24. Brière G. Darbo É. Thébault P. Uricaru R. Consensus clustering applied to multi-omics disease subtyping. BMC Bioinformatics 2021 22 1 361 10.1186/s12859‑021‑04279‑1 34229612
    [Google Scholar]
  25. Tang Y. Huang J. Pedrycz W. Li B. Ren F. A fuzzy clustering validity index induced by triple center relation. IEEE Trans. Cybern. 2023 53 8 5024 5036 10.1109/TCYB.2023.3263215 37040251
    [Google Scholar]
  26. Charoentong P. Finotello F. Angelova M. Mayer C. Efremova M. Rieder D. Hackl H. Trajanoski Z. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017 18 1 248 262 10.1016/j.celrep.2016.12.019 28052254
    [Google Scholar]
  27. Barbie D.A. Tamayo P. Boehm J.S. Kim S.Y. Moody S.E. Dunn I.F. Schinzel A.C. Sandy P. Meylan E. Scholl C. Fröhling S. Chan E.M. Sos M.L. Michel K. Mermel C. Silver S.J. Weir B.A. Reiling J.H. Sheng Q. Gupta P.B. Wadlow R.C. Le H. Hoersch S. Wittner B.S. Ramaswamy S. Livingston D.M. Sabatini D.M. Meyerson M. Thomas R.K. Lander E.S. Mesirov J.P. Root D.E. Gilliland D.G. Jacks T. Hahn W.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009 462 7269 108 112 10.1038/nature08460 19847166
    [Google Scholar]
  28. Perešíni P. Kuźniar M. Kostić D. Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies. CoNEXT '15: Conference on emerging Networking Experiments and Technologies Heidelberg, Germany, 1-4 Dec 2015, pp. 1-13.
    [Google Scholar]
  29. Zhang B. Horvath S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005 4 17 10.2202/1544‑6115.1128 16646834
    [Google Scholar]
  30. Langfelder P. Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformat. 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  31. Yu G. Gene ontology semantic similarity analysis using GOSemSim. Methods Mol. Biol. 2020 2117 207 215 10.1007/978‑1‑0716‑0301‑7_11 31960380
    [Google Scholar]
  32. Kanehisa M. Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  33. Yang W. Soares J. Greninger P. Edelman E.J. Lightfoot H. Forbes S. Bindal N. Beare D. Smith J.A. Thompson I.R. Ramaswamy S. Futreal P.A. Haber D.A. Stratton M.R. Benes C. McDermott U. Garnett M.J. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2012 41 D1 D955 D961 10.1093/nar/gks1111 23180760
    [Google Scholar]
  34. Geeleher P. Cox N. Huang R.S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  35. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001 79 4 373 374 10.1001/jama.2013.281053 11357217
    [Google Scholar]
  36. Bustin S.A. Beaulieu J.F. Huggett J. Jaggi R. Kibenge F.S.B. Olsvik P.A. Penning L.C. Toegel S. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol. Biol. 2010 11 1 74 10.1186/1471‑2199‑11‑74 20858237
    [Google Scholar]
  37. Chen C. Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 1987 7 8 2745 2752 10.1128/mcb.7.8.2745‑2752.1987 3670292
    [Google Scholar]
  38. Vichai V. Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006 1 3 1112 1116 10.1038/nprot.2006.179 17406391
    [Google Scholar]
  39. Boyden S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 1962 115 3 453 466 10.1084/jem.115.3.453 13872176
    [Google Scholar]
  40. Yoshihara K. Shahmoradgoli M. Martínez E. Vegesna R. Kim H. Torres-Garcia W. Treviño V. Shen H. Laird P.W. Levine D.A. Carter S.L. Getz G. Stemke-Hale K. Mills G.B. Verhaak R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013 4 1 2612 10.1038/ncomms3612 24113773
    [Google Scholar]
  41. Jackson L.A. Anderson E.J. Rouphael N.G. Roberts P.C. Makhene M. Coler R.N. McCullough M.P. Chappell J.D. Denison M.R. Stevens L.J. Pruijssers A.J. McDermott A. Flach B. Doria-Rose N.A. Corbett K.S. Morabito K.M. O’Dell S. Schmidt S.D. Swanson P.A. II Padilla M. Mascola J.R. Neuzil K.M. Bennett H. Sun W. Peters E. Makowski M. Albert J. Cross K. Buchanan W. Pikaart-Tautges R. Ledgerwood J.E. Graham B.S. Beigel J.H. An mRNA vaccine against SARS-CoV-2 — Preliminary report. N. Engl. J. Med. 2020 383 20 1920 1931 10.1056/NEJMoa2022483 32663912
    [Google Scholar]
  42. Pardi N. Hogan M.J. Porter F.W. Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018 17 4 261 279 10.1038/nrd.2017.243 29326426
    [Google Scholar]
  43. Burnett J.C. Rossi J.J. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 2012 19 1 60 71 10.1016/j.chembiol.2011.12.008 22284355
    [Google Scholar]
  44. Chandra S. Wilson J.C. Good D. Wei M.Q. mRNA vaccines: a new era in vaccine development. Oncol. Res. 2024 32 10 1543 1564 10.32604/or.2024.043987 39308511
    [Google Scholar]
  45. Pilishvili T. Gierke R. Fleming-Dutra K.E. Farrar J.L. Mohr N.M. Talan D.A. Krishnadasan A. Harland K.K. Smithline H.A. Hou P.C. Lee L.C. Lim S.C. Moran G.J. Krebs E. Steele M.T. Beiser D.G. Faine B. Haran J.P. Nandi U. Schrading W.A. Chinnock B. Henning D.J. Lovecchio F. Lee J. Barter D. Brackney M. Fridkin S.K. Marceaux-Galli K. Lim S. Phipps E.C. Dumyati G. Pierce R. Markus T.M. Anderson D.J. Debes A.K. Lin M.Y. Mayer J. Kwon J.H. Safdar N. Fischer M. Singleton R. Chea N. Magill S.S. Verani J.R. Schrag S.J. Effectiveness of mRNA COVID-19 vaccine among U.S. health care personnel. N. Engl. J. Med. 2021 385 25 e90 10.1056/NEJMoa2106599 34551224
    [Google Scholar]
  46. Schumacher T.N. Schreiber R.D. Neoantigens in cancer immunotherapy. Science 2015 348 6230 69 74 10.1126/science.aaa4971 25838375
    [Google Scholar]
  47. Murphy K Weaver C. The immune system in health and disease. Immunobiology 5th Ed New York Garland Science 2016 1 6
    [Google Scholar]
  48. Galluzzi L. Buqué A. Kepp O. Zitvogel L. Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017 17 2 97 111 10.1038/nri.2016.107 27748397
    [Google Scholar]
  49. Chen D.S. Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013 39 1 1 10 10.1016/j.immuni.2013.07.012 23890059
    [Google Scholar]
  50. Li R.Q. Wang W. Yan L. Song L.Y. Guan X. Zhang W. Lian J. Identification of tumor antigens and immune subtypes in breast cancer for mRNA vaccine development. Front. Oncol. 2022 12 973712 10.3389/fonc.2022.973712 36226063
    [Google Scholar]
  51. Borghese F. Clanchy F.I.L. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin. Ther. Targets 2011 15 3 237 251 10.1517/14728222.2011.550879 21208136
    [Google Scholar]
  52. Zhao Y. Sun H. Zheng J. Shao C. Zhang D. Identification of predictors based on drug targets highlights accurate treatment of goserelin in breast and prostate cancer. Cell Biosci. 2021 11 1 5 10.1186/s13578‑020‑00517‑w 33407865
    [Google Scholar]
  53. Gu W.J. Liu X.X. Shen Y.W. Gong Y.T. Chen Y.L. Lin J. Lu D. Zhang L.J. Chen H.Z. Jin Y. Zhan Z.J. Zhang W.D. Jin J.M. Luan X. TRIM4 enhances small-molecule-induced neddylated-degradation of CORO1A for triple negative breast cancer therapy. Theranostics 2024 14 18 7023 7041 10.7150/thno.97662 39629122
    [Google Scholar]
  54. Itkonen H.M. Engedal N. Babaie E. Luhr M. Guldvik I.J. Minner S. Hohloch J. Tsourlakis M.C. Schlomm T. Mills I.G. UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 2015 34 28 3744 3750 10.1038/onc.2014.307 25241896
    [Google Scholar]
  55. Zhang Q. Han Q. Zi J. Song C. Ge Z. CD37 high expression as a potential biomarker and association with poor outcome in acute myeloid leukemia. Biosci. Rep. 2020 40 5 BSR20200008 10.1042/BSR20200008 32400873
    [Google Scholar]
  56. Hanahan D. Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  57. Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 2007 446 7139 1023 1029 10.1038/nature05816 17460663
    [Google Scholar]
  58. Arena K. Mandolfino F. Cacciola F. Dugo P. Mondello L. Multidimensional liquid chromatography approaches for analysis of food contaminants. J. Sep. Sci. 2021 44 1 17 34 10.1002/jssc.202000754 32909375
    [Google Scholar]
  59. Choudhary C. Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 2010 11 6 427 439 10.1038/nrm2900 20461098
    [Google Scholar]
  60. Harris A.L. Hypoxia — a key regulatory factor in tumour growth. Nat. Rev. Cancer 2002 2 1 38 47 10.1038/nrc704 11902584
    [Google Scholar]
  61. Gordan J.D. Simon M.C. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr. Opin. Genet. Dev. 2007 17 1 71 77 10.1016/j.gde.2006.12.006 17208433
    [Google Scholar]
  62. Luo S. Jiang Y. Anfu Zheng Zhao Y. Wu X. Li M. Du F. Chen Y. Deng S. Chen M. Li W. Li X. Gu L. Sun Y. Xiao Z. Shen J. Targeting hypoxia-inducible factors for breast cancer therapy: A narrative review. Front. Pharmacol. 2022 13 1064661 10.3389/fphar.2022.1064661 36532768
    [Google Scholar]
  63. Höckel M. Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001 93 4 266 276 10.1093/jnci/93.4.266 11181773
    [Google Scholar]
  64. Topalian S.L. Hodi F.S. Brahmer J.R. Gettinger S.N. Smith D.C. McDermott D.F. Powderly J.D. Carvajal R.D. Sosman J.A. Atkins M.B. Leming P.D. Spigel D.R. Antonia S.J. Horn L. Drake C.G. Pardoll D.M. Chen L. Sharfman W.H. Anders R.A. Taube J.M. McMiller T.L. Xu H. Korman A.J. Jure-Kunkel M. Agrawal S. McDonald D. Kollia G.D. Gupta A. Wigginton J.M. Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012 366 26 2443 2454 10.1056/NEJMoa1200690 22658127
    [Google Scholar]
  65. Kroemer G. Galluzzi L. Kepp O. Zitvogel L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013 31 1 51 72 10.1146/annurev‑immunol‑032712‑100008 23157435
    [Google Scholar]
  66. Wilson W.R. Hay M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011 11 6 393 410 10.1038/nrc3064 21606941
    [Google Scholar]
  67. Assal A. Kaner J. Pendurti G. Zang X. Emerging targets in cancer immunotherapy: Beyond CTLA-4 and PD-1. Immunotherapy 2015 7 11 1169 1186 10.2217/imt.15.78 26567614
    [Google Scholar]
  68. Sade-Feldman M. Yizhak K. Bjorgaard S.L. Ray J.P. de Boer C.G. Jenkins R.W. Lieb D.J. Chen J.H. Frederick D.T. Barzily-Rokni M. Freeman S.S. Reuben A. Hoover P.J. Villani A.C. Ivanova E. Portell A. Lizotte P.H. Aref A.R. Eliane J.P. Hammond M.R. Vitzthum H. Blackmon S.M. Li B. Gopalakrishnan V. Reddy S.M. Cooper Z.A. Paweletz C.P. Barbie D.A. Stemmer-Rachamimov A. Flaherty K.T. Wargo J.A. Boland G.M. Sullivan R.J. Getz G. Hacohen N. Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma. Cell 2018 175 4 998 1013.e20 10.1016/j.cell.2018.10.038 30388456
    [Google Scholar]
  69. Ioannidis J.P.A. Why most published research findings are false. PLoS Med. 2005 2 8 e124 10.1371/journal.pmed.0020124 16060722
    [Google Scholar]
  70. Berger V.W. Bour L.J. Carter K. Chipman J.J. Everett C.C. Heussen N. Hewitt C. Hilgers R.D. Luo Y.A. Renteria J. Ryeznik Y. Sverdlov O. Uschner D. Beckman R.A. A roadmap to using randomization in clinical trials. BMC Med. Res. Methodol. 2021 21 1 168 10.1186/s12874‑021‑01303‑z 34399696
    [Google Scholar]
  71. Pardi N. Krammer F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat. Rev. Drug Discov. 2024 23 11 838 861 10.1038/s41573‑024‑01042‑y 39367276
    [Google Scholar]
  72. Akinc A. Thomas M. Klibanov A.M. Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 2005 7 5 657 663 10.1002/jgm.696 15543529
    [Google Scholar]
  73. Fei Y. Yu X. Liu P. Ren H. Wei T. Cheng Q. Simplified lipid nanoparticles for tissue- and cell-targeted mRNA delivery facilitate precision tumor therapy in a lung metastasis mouse model. Adv. Mater. 2024 36 48 2409812 10.1002/adma.202409812 39390844
    [Google Scholar]
  74. Samaridou E. Heyes J. Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv. Drug Deliv. Rev. 2020 154-155 37 63 10.1016/j.addr.2020.06.002 32526452
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348041250407062346
Loading
/content/journals/cmc/10.2174/0109298673348041250407062346
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: tumor antigen ; osteosarcoma ; hypoxia subtypes ; mRNA vaccine ; hypoxia subtype ; hypoxia landscape
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test