Skip to content
2000
Volume 33, Issue 6
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

The current treatment strategy is still subpar, especially for severe mental problems, despite tremendous progress in the understanding of the central nervous system. Improving healthcare usually entails two main approaches: investigating new treatment approaches and improving current ones. New pharmacological options include enhanced monoaminergic pharmaceuticals, old treatments reassessed with a better knowledge of the biology of mental disease, and medications that target new therapeutic pathways. One major clinical challenge in the treatment of depression is resistance to antidepressant drugs. It appears promising to switch to monotherapy using new multifunctional antidepressants and add new atypical antipsychotics, such as brexpiprazole and aripiprazole. Current efforts are concentrated on unraveling depression's origins and pinpointing fresh targets for pharmacological intervention. This review explores encouraging novel pharmacological avenues for major depressive disorder treatment. These include targeting receptors, such as N-methyl-D-aspartate and metabotropic glutamate receptors, and employing glutamatergic modulators and various augmentation strategies, all of which hold the potential for reversal of depressant effects. Combining innovative concepts with enhancements of existing discoveries may propel antidepressant research forward, offering hope for developing compounds that are effective and rapid in their action, even among patients who have found limited success with other therapies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673342524250109181220
2025-05-22
2026-02-21
Loading full text...

Full text loading...

References

  1. SmithK. TorresD.I. Mental health: A world of depression.Nature2014515752618018110.1038/515180a25391942
    [Google Scholar]
  2. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.003044217132052
    [Google Scholar]
  3. ChisholmD. SweenyK. SheehanP. RasmussenB. SmitF. CuijpersP. SaxenaS. Scaling-up treatment of depression and anxiety: A global return on investment analysis.Lancet Psychiatry20163541542410.1016/S2215‑0366(16)30024‑427083119
    [Google Scholar]
  4. HanssenH. MinghettiA. FaudeO. TrucksässS.A. ZahnerL. BeckJ. DonathL. Effects of endurance exercise modalities on arterial stiffness in patients suffering from unipolar depression: A randomized controlled trial.Front. Psychiatry2018831110.3389/fpsyt.2017.0031129403399
    [Google Scholar]
  5. KvamS. KleppeC.L. NordhusI.H. HovlandA. Exercise as a treatment for depression: A meta-analysis.J. Affect. Disord.2016202678610.1016/j.jad.2016.03.06327253219
    [Google Scholar]
  6. DelgadoP.L. Depression: The case for a monoamine deficiency.J. Clin. Psychiatry2000616Suppl. 671110775018
    [Google Scholar]
  7. EdinoffA.N. AkulyH.A. HannaT.A. OchoaC.O. PattiS.J. GhaffarY.A. KayeA.D. ViswanathO. UritsI. BoyerA.G. CornettE.M. KayeA.M. Selective serotonin reuptake inhibitors and adverse effects: A narrative review.Neurol. Int.202113338740110.3390/neurolint1303003834449705
    [Google Scholar]
  8. VieiraM.R. SalvadoreG. LuckenbaughD.A. ManjiH.K. ZarateC.A.Jr Rapid onset of antidepressant action: A new paradigm in the research and treatment of major depressive disorder.J. Clin. Psychiatry200869694695810.4088/JCP.v69n061018435563
    [Google Scholar]
  9. KamranM. BibiF. RehmanU.A. MorrisD.W. ur. Rehman A, Morris DW. Major depressive disorder: Existing hypotheses about pathophysiological mechanisms and new genetic findings.Genes (Basel)202213464610.3390/genes1304064635456452
    [Google Scholar]
  10. KoenigsbergJ.Z. Depressive disorders: Integrated and unified psychotherapy approaches.Taylor & FrancisMilton Park, Abingdon in the United Kingdom2023
    [Google Scholar]
  11. CardonI. GrobeckerS. KücükoktayS. BaderS. JahnerT. NothdurfterC. KoschitzkiK. BerneburgM. WeberB.H.F. StöhrH. HöringM. LiebischG. BraunF. HamplR.T. RiemenschneiderM.J. RupprechtR. MilenkovicV.M. WetzelC.H. Mitochondrial and cellular function in fibroblasts, induced neurons, and astrocytes derived from case study patients: Insights into major depression as a mitochondria-associated disease.Int. J. Mol. Sci.202425296310.3390/ijms2502096338256041
    [Google Scholar]
  12. ArtigasF. Developments in the field of antidepressants, where do we go now?Eur. Neuropsychopharmacol.201525565767010.1016/j.euroneuro.2013.04.01323706576
    [Google Scholar]
  13. GadadB.S. JhaM.K. CzyszA. FurmanJ.L. MayesT.L. EmslieM.P. TrivediM.H. Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks.J. Affect. Disord.201823331410.1016/j.jad.2017.07.00128709695
    [Google Scholar]
  14. RakeshG. PaeC.U. MasandP.S. Beyond serotonin: Newer antidepressants in the future.Expert Rev. Neurother.201717877779010.1080/14737175.2017.134131028598698
    [Google Scholar]
  15. PilcA. ChakiS. NowakG. WitkinJ.M. Mood disorders: Regulation by metabotropic glutamate receptors.Biochem. Pharmacol.2008755997100610.1016/j.bcp.2007.09.02118164691
    [Google Scholar]
  16. DograS. ConnP.J. Targeting metabotropic glutamate receptors for the treatment of depression and other stress-related disorders.Neuropharmacology202119610868710.1016/j.neuropharm.2021.10868734175327
    [Google Scholar]
  17. ChakiS. KoikeH. FukumotoK. Targeting of metabotropic glutamate receptors for the development of novel antidepressants.Chronic. Stress.20193247054701983771210.1177/247054701983771232500107
    [Google Scholar]
  18. YükselC. ÖngürD. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders.Biol. Psychiatry201068978579410.1016/j.biopsych.2010.06.01620728076
    [Google Scholar]
  19. LiC.T. YangK.C. LinW.C. Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: Evidence from clinical neuroimaging studies.Front. Psychiatry2019976710.3389/fpsyt.2018.0076730733690
    [Google Scholar]
  20. PolettiS. MazzaM.G. VaiB. LorenziC. ColomboC. BenedettiF. Proinflammatory cytokines predict brain metabolite concentrations in the anterior cingulate cortex of patients with bipolar disorder.Front. Psychiatry20201159009510.3389/fpsyt.2020.59009533363485
    [Google Scholar]
  21. LodgeD. MercierM.S. Ketamine and phencyclidine: The good, the bad and the unexpected.Br. J. Pharmacol.2015172174254427610.1111/bph.1322226075331
    [Google Scholar]
  22. SerafiniG. HowlandR. RovediF. GirardiP. AmoreM. The role of ketamine in treatment-resistant depression: A systematic review.Curr. Neuropharmacol.201412544446110.2174/1570159X1266614061920425125426012
    [Google Scholar]
  23. YamashitaF. HashidaM. Pharmacokinetic considerations for targeted drug delivery.Adv. Drug Deliv. Rev.201365113914710.1016/j.addr.2012.11.00623280371
    [Google Scholar]
  24. BorbélyÉ. SimonM. FuchsE. WiborgO. CzéhB. HelyesZ. Novel drug developmental strategies for treatment-resistant depression.Br. J. Pharmacol.202217961146118610.1111/bph.1575334822719
    [Google Scholar]
  25. BibiZ. Role of cytochrome P450 in drug interactions.Nutr. Metab.2008512710.1186/1743‑7075‑5‑2718928560
    [Google Scholar]
  26. WangJ. GofferY. XuD. TukeyD.S. ShamirD.B. EberleS.E. ZouA.H. BlanckT.J.J. ZiffE.B. A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats.Anesthesiology2011115481282110.1097/ALN.0b013e31822f16ae21934410
    [Google Scholar]
  27. KohtalaS. Ketamine—50 years in use: From anesthesia to rapid antidepressant effects and neurobiological mechanisms.Pharmacol. Rep.202173232334510.1007/s43440‑021‑00232‑433609274
    [Google Scholar]
  28. KrystalJ.H. KavalaliE.T. MonteggiaL.M. Ketamine and rapid antidepressant action: New treatments and novel synaptic signaling mechanisms.Neuropsychopharmacology2024491415010.1038/s41386‑023‑01629‑w37488280
    [Google Scholar]
  29. AnX. YaoX. LiB. YangW. CuiR. ZhaoG. JinY. Role of BDNF-mTORC1 signaling pathway in female depression.Neural Plast.202120211810.1155/2021/661951533628219
    [Google Scholar]
  30. PeyrovianB. RosenblatJ.D. PanZ. IacobucciM. BrietzkeE. McIntyreR.S. The glycine site of NMDA receptors: A target for cognitive enhancement in psychiatric disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry20199238740410.1016/j.pnpbp.2019.02.00130738126
    [Google Scholar]
  31. HenterI.D. Sousad.R.T. ZarateC.A.Jr Glutamatergic modulators in depression.Harv. Rev. Psychiatry201826630731910.1097/HRP.000000000000018329465478
    [Google Scholar]
  32. LevyH.U. JavittD.C. GelfinY. GorelikE. BarM. BlanaruM. KremerI. Controlled trial of d-cycloserine adjuvant therapy for treatment-resistant major depressive disorder.J. Affect. Disord.2006931-323924310.1016/j.jad.2006.03.00416677714
    [Google Scholar]
  33. LeeE.E. SelvaD.M.P. LiuA. HimelhochS. Ketamine as a novel treatment for major depressive disorder and bipolar depression: A systematic review and quantitative meta-analysis.Gen. Hosp. Psychiatry201537217818410.1016/j.genhosppsych.2015.01.00325698228
    [Google Scholar]
  34. HenterI.D. ParkL.T. ZarateC.A.Jr Novel glutamatergic modulators for the treatment of mood disorders: Current status.CNS Drugs202135552754310.1007/s40263‑021‑00816‑x33904154
    [Google Scholar]
  35. VeceraC.M. Courtes C.A. JonesG. SoaresJ.C. VieiraM.R. Pharmacotherapies targeting GABA-glutamate neurotransmission for treatment-resistant depression.Pharmaceuticals (Basel)20231611157210.3390/ph1611157238004437
    [Google Scholar]
  36. AsgharJ. TabasamM. AlthobaitiM.M. AshourA.A. AleidM.A. KhalafI.O. AldhyaniT.H.H. A randomized clinical trial comparing two treatment strategies, evaluating the meaningfulness of HAM-D rating scale in patients with major depressive disorder.Front. Psychiatry20221387369310.3389/fpsyt.2022.87369335722557
    [Google Scholar]
  37. FentonC. McLoughlinD.M. Usefulness of hamilton rating scale for depression subset scales and full versions for electroconvulsive therapy.PLoS One20211611e025986110.1371/journal.pone.025986134752484
    [Google Scholar]
  38. MahmoudianDehkordiS. AhmedA.T. BhattacharyyaS. HanX. BaillieR.A. ArnoldM. SkimeM.K. WilliamsJ.L.S. MoseleyM.A. ThompsonJ.W. LouieG. PosseR.P. CraigheadW.E. McDonaldW. KrishnanR. RushA.J. FryeM.A. DunlopB.W. WeinshilboumR.M. DaoukK.R. DaoukK.R. RushJ. TenenbaumJ. MoseleyA. ThompsonW. LouieG. BlachC. MahmoudiandehkhordiS. BaillieR. HanX. BhattacharyyaS. FryeM. WeinshilboumR. AhmedA. NeavinD. LiuD. SkimeM. RinaldoP. FiehnO. BrydgesC. MaybergH. ChoiK.S. ChaJ. KastenmüllerG. ArnoldM. BinderE. ArlothK.J. HolgadoN.A. ShiL. DunlopB. CraigheadE. McDonaldW. PosseP.R. PenninxB. MilaneschiY. JansenR. KrishnanR. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression.Transl. Psychiatry.202111115310.1038/s41398‑020‑01097‑633654056
    [Google Scholar]
  39. BourqueM. GrégoireL. PatelW. DickensD. SnodgrassR. PaoloD.T. AV-101, a pro-drug antagonist at the nmda receptor glycine site, reduces l-dopa induced dyskinesias in mptp monkeys.Cells20221122353010.3390/cells1122353036428960
    [Google Scholar]
  40. ParkL.T. KadriuB. GouldT.D. ZanosP. GreensteinD. EvansJ.W. YuanP. FarmerC.A. OppenheimerM. GeorgeJ.M. AdeojoL.W. SnodgrassH.R. SmithM.A. HenterI.D. VieiraM.R. MannesA.J. ZarateC.A.Jr A randomized trial of the n-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression.Int. J. Neuropsychopharmacol.202023741742510.1093/ijnp/pyaa02532236521
    [Google Scholar]
  41. HeckingJ. DavoudianP.A. WilkinsonS.T. Emerging therapeutics based on the amino acid neurotransmitter system: An update on the pharmaceutical pipeline for mood disorders.Chronic. Stress.202152470547021102044610.1177/2470547021102044634124495
    [Google Scholar]
  42. WillardS.S. KoochekpourS. Glutamate, glutamate receptors, and downstream signaling pathways.Int. J. Biol. Sci.20139994895910.7150/ijbs.642624155668
    [Google Scholar]
  43. SchmidtH.D. PierceR.C. Cocaine-induced neuroadaptations in glutamate transmission.Ann. N. Y. Acad. Sci.201011871357510.1111/j.1749‑6632.2009.05144.x20201846
    [Google Scholar]
  44. WolfM.E. FerrarioC.R. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine.Neurosci. Biobehav. Rev.201035218521110.1016/j.neubiorev.2010.01.01320109488
    [Google Scholar]
  45. JasoB.A. NiciuM.J. IadarolaN.D. LallyN. RichardsE.M. ParkM. BallardE.D. NugentA.C. VieiraM.R. ZarateC.A. Therapeutic modulation of glutamate receptors in major depressive disorder.Curr. Neuropharmacol.2017151577010.2174/1570159X1466616032112322126997505
    [Google Scholar]
  46. HenterI.D. Sousad.R.T. GoldP.W. BrunoniA.R. ZarateC.A.Jr VieiraM.R. Mood therapeutics: Novel pharmacological approaches for treating depression.Expert Rev. Clin. Pharmacol.201710215316610.1080/17512433.2017.125347227781556
    [Google Scholar]
  47. RiverosC. DechartresA. PerrodeauE. HaneefR. BoutronI. RavaudP. Timing and completeness of trial results posted at ClinicalTrials.gov and published in journals.PLoS Med.20131012e100156610.1371/journal.pmed.100156624311990
    [Google Scholar]
  48. DechartresA. BondE.G. ScheerJ. RiverosC. AtalI. RavaudP. Reporting of statistically significant results at ClinicalTrials.gov for completed superiority randomized controlled trials.BMC Med.201614119210.1186/s12916‑016‑0740‑127899150
    [Google Scholar]
  49. KentJ.M. DalyE. KezicI. LaneR. LimP. SmedtD.H. BoerD.P. NuetenV.L. DrevetsW.C. CeustersM. Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression.Prog. Neuropsychopharmacol. Biol. Psychiatry201667667310.1016/j.pnpbp.2016.01.00926804646
    [Google Scholar]
  50. LavreysenH. AhnaouA. DrinkenburgW. LangloisX. MackieC. PypeS. LütjensR. PoulL.E. TrabancoA.A. NuñezJ.M.C. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor.Pharmacol. Res. Perspect.201531e0009610.1002/prp2.9625692015
    [Google Scholar]
  51. RoseM. DevineJ. Assessment of patient-reported symptoms of anxiety.Dialogues Clin. Neurosci.201416219721110.31887/DCNS.2014.16.2/mrose25152658
    [Google Scholar]
  52. KocarnikJ.M. ComptonK. DeanF.E. FuW. GawB.L. HarveyJ.D. HenriksonH.J. LuD. PenniniA. XuR. AbabnehE. KangevariA.M. AbbastabarH. ElsalamA.S.M. AbdoliA. AbediA. AbidiH. AbolhassaniH. AdedejiI.A. AdnaniQ.E.S. AdvaniS.M. AfzalM.S. AghaaliM. AhinkorahB.O. AhmadS. AhmadT. AhmadiA. AhmadiS. RashidA.T. SalihA.Y. AkaluG.T. AkliluA. AkramT. AkunnaC.J. HamadA.H. AlahdabF. AlyA.Z. AliS. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. HashianiA.A. AlmasriN.A. MaweriA.S.A.A. AlmustanyirS. AlonsoN. GuzmanA.N. AmuH. AnbesuE.W. AncuceanuR. AnsariF. MoghaddamA.A. AntwiM.H. AnvariD. AnyasodorA.E. AqeelM. ArablooJ. ZozaniA.M. AremuO. AriffinH. AripovT. ArshadM. ArtamanA. ArulappanJ. AsemiZ. JafarabadiA.M. AshrafT. AtorkeyP. AujayebA. AusloosM. AwedewA.F. QuintanillaA.B.P. AyenewT. AzabM.A. AzadnajafabadS. JafariA.A. AzarianG. AzzamA.Y. BadiyeA.D. BahadoryS. BaigA.A. BakerJ.L. BalakrishnanS. BanachM. BärnighausenT.W. AdesiB.F. BarraF. BarrowA. BehzadifarM. BelgaumiU.I. BezabheW.M.M. BezabihY.M. BhagatD.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BisignanoC. BjørgeT. BleyerA. BlyussO. BolarinwaO.A. BollaS.R. BraithwaiteD. BrarA. BrennerH. TeixeiraB.M.T. ButtN.S. ButtZ.A. Caetano dos SantosF.L. CaoY. CarrerasG. LópezC.F. CembranelF. CerinE. CernigliaroA. ChakinalaR.C. ChattuS.K. ChattuV.K. ChaturvediP. OchirC.O. ChoD.Y. ChristopherD.J. ChuD.T. ChungM.T. CondeJ. CortésS. CortesiP.A. CostaV.M. CunhaA.R. DadrasO. DagnewA.B. DahlawiS.M.A. DaiX. DandonaL. DandonaR. DarweshA.M. Nevesd.J. De la HozF.P. DemisA.B. GutiérrezD.E. DhamnetiyaD. DhimalM.L. DhimalM. DianatinasabM. DiazD. DjalaliniaS. DoH.P. DoaeiS. DorostkarF. dos Santos FigueiredoF.W. DriscollT.R. EbrahimiH. EftekharzadehS. TantawiE.M. AbidE.H. ElbaraziI. ElhabashyH.R. ElhadiM. JaafaryE.S.I. EshratiB. EskandariehS. EsmaeilzadehF. EtemadiA. EzzikouriS. FaisaluddinM. FaraonE.J.A. FaresJ. FarzadfarF. FerozeA.H. FerreroS. DesideriF.L. FilipI. FischerF. FisherJ.L. ForoutanM. FukumotoT. GaalP.A. GadM.M. GadanyaM.A. GallusS. FonsecaG.M. ObsaG.A. GhafourifardM. GhashghaeeA. GhithN. GholamalizadehM. GilaniS.A. GinindzaT.G. GizawA.T.T. GlasbeyJ.C. GolechhaM. GoleijP. GomezR.S. GopalaniS.V. GoriniG. GoudarziH. GrossoG. GubariM.I.M. GuerraM.R. GuhaA. GunasekeraD.S. GuptaB. GuptaV.B. GuptaV.K. GutiérrezR.A. NejadH.N. HaiderM.R. MirzaianH.A. HalwaniR. HamadehR.R. HameedS. HamidiS. HanifA. HaqueS. HarliantoN.I. HaroJ.M. HasaballahA.I. HassanipourS. HayR.J. HayS.I. HayatK. HeidariG. HeidariM. SernaH.B.Y. HerteliuC. HezamK. HollaR. HossainM.M. HossainM.B.H. HosseiniM.S. HosseiniM. HosseinzadehM. HostiucM. HostiucS. HousehM. HsairiM. HuangJ. HugoF.N. HussainR. HusseinN.R. HwangB.F. IavicoliI. IbitoyeS.E. IdaF. IkutaK.S. IlesanmiO.S. IlicI.M. IlicM.D. IrhamL.M. IslamJ.Y. IslamR.M. IslamS.M.S. IsmailN.E. IsolaG. IwagamiM. JacobL. JainV. JakovljevicM.B. JavaheriT. JayaramS. JazayeriS.B. JhaR.P. JonasJ.B. JooT. JosephN. JoukarF. JürissonM. KabirA. KahriziD. KalankeshL.R. KalhorR. KaliyadanF. KalkondeY. KamathA. Kameran Al-SalihiN. KandelH. KapoorN. KarchA. KasaA.S. KatikireddiS.V. KauppilaJ.H. KavetskyyT. KebedeS.A. KeshavarzP. KeykhaeiM. KhaderY.S. KhalilovR. KhanG. KhanM. KhanM.N. KhanM.A.B. KhangY.H. KhaterA.M. KhayamzadehM. KimG.R. KimY.J. KisaA. KisaS. SkarbekK.K. KopecJ.A. KoteeswaranR. KoulP.A. LaxminarayanaK.S.L. KoyanagiA. BicerK.B. KugbeyN. KumarG.A. KumarN. KumarN. KurmiO.P. KutlukT. VecchiaL.C. LamiF.H. LandiresI. LauriolaP. LeeS. LeeS.W.H. LeeW.C. LeeY.H. LeighJ. LeongE. LiJ. LiM.C. LiuX. LoureiroJ.A. LuneviciusR. Magdy Abd El RazekM. MajeedA. MakkiA. MaleS. MalikA.A. MansourniaM.A. MartiniS. MasoumiS.Z. MathurP. McKeeM. MehrotraR. MendozaW. MenezesR.G. MengeshaE.W. MesregahM.K. MestrovicT. JonassonM.J. MiazgowskiB. MiazgowskiT. MichalekI.M. MillerT.R. MirzaeiH. MirzaeiH.R. MisraS. MithraP. MoghadaszadehM. MohammadK.A. MohammadY. MohammadiM. MohammadiS.M. HafshejaniM.A. MohammedS. MokaN. MokdadA.H. MolokhiaM. MonastaL. MoniM.A. MoosaviM.A. MoradiY. MoragaP. Morgado-da-CostaJ. MorrisonS.D. MosapourA. MubarikS. MwanriL. NagarajanA.J. NagarajuS.P. NagataC. NaimzadaM.D. NangiaV. NaqviA.A. SwamyN.S. NdejjoR. NduagubaS.O. NegoiI. NegruS.M. KandelN.S. NguyenC.T. NguyenH.L.T. NiaziR.K. NnajiC.A. NoorN.M. SamudioN.V. NzoputamC.I. OanceaB. OchirC. OdukoyaO.O. OgboF.A. OlagunjuA.T. OlakundeB.O. OmarE. BaliO.A. OmonisiA.E.E. OngS. OnwujekweO.E. OrruH. AltamiranoO.D.V. OtstavnovN. OtstavnovS.S. OwolabiM.O. /surname>P.M. PadubidriJ.R. PakshirK. PanaA. PanagiotakosD. JonasP.S. PardhanS. ParkE.C. ParkE.K. KanP.F. PatelH.K. PatelJ.R. PatiS. PattanshettyS.M. PaudelU. PereiraD.M. PereiraR.B. PerianayagamA. PillayJ.D. PirouzpanahS. PishgarF. PodderI. PostmaM.J. PourjafarH. PrashantA. PreotescuL. RabieeM. RabieeN. RadfarA. RadhakrishnanR.A. RadhakrishnanV. RafieeA. RahimF. RahimzadehS. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RajeshA. RakovacI. RamP. RamezanzadehK. RanabhatK. RanasingheP. RaoC.R. RaoS.J. RawassizadehR. RazeghiniaM.S. RenzahoA.M.N. RezaeiN. RezaeiN. RezapourA. RobertsT.J. RodriguezJ.A.B. RohloffP. RomoliM. RonfaniL. RoshandelG. RwegereraG.M. SM. SabourS. SaddikB. SaeedU. SahebkarA. SahooH. SalehiS. SalemM.R. SalimzadehH. SamaeiM. SamyA.M. SanabriaJ. SankararamanS. MilicevicS.M.M. SardiwallaY. SarveazadA. SathianB. SawhneyM. SaylanM. SchneiderI.J.C. SekerijaM. SeylaniA. ShafaatO. ShaghaghiZ. ShaikhM.A. ShamsoddinE. ShannawazM. SharmaR. SheikhA. SheikhbahaeiS. ShettyA. ShettyJ.K. ShettyP.H. ShibuyaK. ShirkoohiR. ShivakumarK.M. ShivarovV. SiabaniS. MalleshappaS.S.K. SilvaD.A.S. SinghJ.A. SintayehuY. SkryabinV.Y. SkryabinaA.A. SoebergM.J. MahmudiS.A. SotoudehH. SteiropoulosP. StraifK. SubediR. SufiyanM.B. SultanI. SultanaS. SurD. SzerencsésV. SzócskaM. SeisdedosT.R. TabuchiT. TadbiriH. TaherkhaniA. TakahashiK. TalaatI.M. TanK.K. TatV.Y. TedlaB.A.A. TeferaY.G. BanihashemiT.A. TemsahM.H. TesfayF.H. TessemaG.A. ThaparR. ThavamaniA. ChandrasekarT.V. ThomasN. TohidinikH.R. TouvierM. PaloneT.M.R. TrainiE. TranB.X. TranK.B. TranM.T.N. TripathyJ.P. TusaB.S. UllahI. UllahS. UmapathiK.K. UnnikrishnanB. UpadhyayE. VacanteM. VaeziM. TahbazV.S. VelazquezD.Z. VerouxM. ViolanteF.S. VlassovV. VoB. VoloviciV. VuG.T. WaheedY. WamaiR.G. WardP. WenY.F. WestermanR. WinklerA.S. YadavL. JabbariY.S.H. YangL. YayaS. YazieT.S.Y. YeshawY. YonemotoN. YounisM.Z. YousefiZ. YuC. YuceD. YunusaI. ZadnikV. ZareF. ZastrozhinM.S. ZastrozhinaA. ZhangJ. ZhongC. ZhouL. ZhuC. ZiapourA. ZimmermannI.R. FitzmauriceC. MurrayC.J.L. ForceL.M. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.698734967848
    [Google Scholar]
  53. MarkouA. ChiamuleraC. GeyerM.A. TricklebankM. StecklerT. Removing obstacles in neuroscience drug discovery: The future path for animal models.Neuropsychopharmacology2009341748910.1038/npp.2008.17318830240
    [Google Scholar]
  54. UmbrichtD NiggliM DucrayS.P DeptulaD MooreR GrünbauerW BoakL FontouraP. Randomized, double-blind, placebo-controlled trial of the mGlu2/3 negative allosteric modulator decoglurant in partially refractory major depressive disorder. J. Clin. Psych.2020814467
    [Google Scholar]
  55. EngersJ.L. BollingerK.A. WeinerR.L. RodriguezA.L. LongM.F. BreinerM.M. ChangS. BollingerS.R. BubserM. JonesC.K. MorrisonR.D. BridgesT.M. BlobaumA.L. NiswenderC.M. ConnP.J. EmmitteK.A. LindsleyC.W. Design and synthesis of N-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu3 NAMs.ACS Med. Chem. Lett.20178992593010.1021/acsmedchemlett.7b0024928947938
    [Google Scholar]
  56. GoeldnerC. BallardT.M. KnoflachF. WichmannJ. GattiS. UmbrichtD. Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target.Neuropharmacology20136433734610.1016/j.neuropharm.2012.08.00122992331
    [Google Scholar]
  57. HascupE.R. HascupK.N. StephensM. PomerleauF. HuettlP. GrattonA. GerhardtG.A. Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex.J. Neurochem.201011561608162010.1111/j.1471‑4159.2010.07066.x20969570
    [Google Scholar]
  58. KhajaviD. FarokhniaM. ModabberniaA. AshrafiM. AbbasiS.H. TabriziM. AkhondzadehS. Oral scopolamine augmentation in moderate to severe major depressive disorder: A randomized, double-blind, placebo-controlled study.J. Clin. Psychiatry201273111428143310.4088/JCP.12m0770623146150
    [Google Scholar]
  59. SinghK. PalR. KhanS.A. KumarB. AkhtarM.J. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review.J. Mol. Struct.2021123713036910.1016/j.molstruc.2021.130369
    [Google Scholar]
  60. SirakanyanS.N. SpinelliD. GeronikakiA. KartsevV. HakobyanE.K. PetrouA. ParonikyanR.G. NazaryanI.M. AkopyanH.H. HovakimyanA.A. Synthesis and Neurotropic Activity of New Heterocyclic Systems: Pyridofuro[3,2-d]pyrrolo[1,2-a]pyrimidines, Pyridofuro[3,2-d]pyrido[1,2-a]pyrimidines and Pyridofuro[3′,2′: 4,5]pyrimido[1,2-a]azepines.Molecules20212611332010.3390/molecules2611332034205930
    [Google Scholar]
  61. FurukawaT. McGuireH. BarbuiC. Low dosage tricyclic antidepressants for depression.Cochrane Database Syst. Rev.200320033CD00319712917952
    [Google Scholar]
  62. MuñozL.F. D’OcónP. RomeroA. GuerraJ.A. ÁlamoC. Role of serendipity in the discovery of classical antidepressant drugs: Applying operational criteria and patterns of discovery.World J. Psychiatry202212458860210.5498/wjp.v12.i4.58835582332
    [Google Scholar]
  63. MuW. XuG. WangZ. LiQ. SunS. QinQ. LiZ. ShiW. DaiW. ZhanX. WangJ. BaiZ. XiaoX. Tricyclic antidepressants induce liver inflammation by targeting NLRP3 inflammasome activation.Cell Commun. Signal.202321112310.1186/s12964‑023‑01128‑x37231437
    [Google Scholar]
  64. LaxmikeshavK. KumariP. ShankaraiahN. Expedition of sulfur-containing heterocyclic derivatives as cytotoxic agents in medicinal chemistry: A decade update.Med. Res. Rev.202242151357510.1002/med.2185234453452
    [Google Scholar]
  65. BanikBK SahooBM KumarBR PandaJ KumarA Green chemistry and synthetic approaches in the development of antidepressant and antipsychotic agents.Green approaches in medicinal chemistry for sustainable drug design.Elsevier202451353010.1016/B978‑0‑12‑817592‑7.00020‑4
    [Google Scholar]
  66. ElmegeedG.A. BaiuomyA.R. AbdelhalimM.M. HanaH.Y. Synthesis and antidepressant evaluation of five novel heterocyclic tryptophan-hybrid derivatives.Arch. Pharm.2010343526126710.1002/ardp.20090024420232373
    [Google Scholar]
  67. BawaS. SiddiquiN. Andalip AliR. AfzalO. AkhtarM.J. AzadB. KumarR. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review.J. Pharm. Bioallied Sci.20113219421210.4103/0975‑7406.8076521687347
    [Google Scholar]
  68. CarboniL. RulloL. CaputiF.F. StamatakosS. CandelettiS. RomualdiP. Chronic trazodone and citalopram treatments increase trophic factor and circadian rhythm gene expression in rat brain regions relevant for antidepressant efficacy.Int. J. Mol. Sci.202223221404110.3390/ijms23221404136430520
    [Google Scholar]
  69. GoracciA. ForgioneR.N. GiorgiD.R. ColucciaA. CuomoA. FagioliniA. Practical guidance for prescribing trazodone extended-release in major depression.Expert Opin. Pharmacother.201617343344110.1517/14656566.2016.113358726678742
    [Google Scholar]
  70. CiprianiA. FurukawaT.A. SalantiG. ChaimaniA. AtkinsonL.Z. OgawaY. LeuchtS. RuheH.G. TurnerE.H. HigginsJ.P.T. EggerM. TakeshimaN. HayasakaY. ImaiH. ShinoharaK. TajikaA. IoannidisJ.P.A. GeddesJ.R. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis.Lancet2018391101281357136610.1016/S0140‑6736(17)32802‑729477251
    [Google Scholar]
  71. harbiA.K.S. Treatment-resistant depression: Therapeutic trends, challenges, and future directions.Patient Prefer. Adherence2012636938810.2147/PPA.S2971622654508
    [Google Scholar]
  72. PeselowE.D. FilippiA.M. GoodnickP. BaroucheF. FieveR.R. The short- and long-term efficacy of paroxetine HCl: B. Data from a double-blind crossover study and from a year-long term trial vs. imipramine and placebo.Psychopharmacol. Bull.19892522722762532374
    [Google Scholar]
  73. ThaseM.E. Antidepressant combinations: Cutting edge psychopharmacology or passing fad?Curr. Psychiatry Rep.2013151040310.1007/s11920‑013‑0403‑224052267
    [Google Scholar]
  74. MoretC. Combination/augmentation strategies for improving the treatment of depression.Neuropsychiatr. Dis. Treat.20051430130918568111
    [Google Scholar]
  75. NelsonJ.C. MazureC.M. BowersM.B.Jr JatlowP.I. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression.Arch. Gen. Psychiatry199148430330710.1001/archpsyc.1991.018102800190022009031
    [Google Scholar]
  76. HollandJ.C. RomanoS.J. HeiligensteinJ.H. TepnerR.G. WilsonM.G. A controlled trial of fluoxetine and desipramine in depressed women with advanced cancer. Psycho-Oncology: Journal of the Psychological.Soc. Behav. Dimen. Cancer.199874291300
    [Google Scholar]
  77. EganB.M. ZhaoY. AxonR.N. BrzezinskiW.A. FerdinandK.C. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008.Circulation201112491046105810.1161/CIRCULATIONAHA.111.03018921824920
    [Google Scholar]
  78. ThaseM.E. RushA.J. KasperS. NemeroffC.B. Tricyclics and newer antidepressant medications: Treatment options for treatment-resistant depressions.Depression19942315216810.1002/depr.3050020307
    [Google Scholar]
  79. GillmanP.K. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated.Br. J. Pharmacol.2007151673774810.1038/sj.bjp.070725317471183
    [Google Scholar]
  80. PinheiroR.R. DuarteB. CabeteJ. Trichloroacetic acid (80%) as a chemical debridement method for chronic venous leg ulcers-A pilot study.Int. Wound J.201815343844010.1111/iwj.1288429334174
    [Google Scholar]
  81. DantzerR. O’ConnorJ.C. FreundG.G. JohnsonR.W. KelleyK.W. From inflammation to sickness and depression: When the immune system subjugates the brain.Nat. Rev. Neurosci.200891465610.1038/nrn229718073775
    [Google Scholar]
  82. HestadK.A. EngedalK. WhistJ.E. FarupP.G. The relationships among tryptophan, kynurenine, indoleamine 2, 3-dioxygenase, depression, and neuropsychological performance.Front. Psychol.20178156110.3389/fpsyg.2017.0156129046648
    [Google Scholar]
  83. DantzerR. Role of the kynurenine metabolism pathway in inflammation-induced depression: Preclinical approaches.Curr. Top Behav. Neurosci.20173111713810.1007/7854_2016_6
    [Google Scholar]
  84. PathakS. NadarR. KimS. LiuK. GovindarajuluM. CookP. AlexanderW.C.S. DhanasekaranM. MooreT. The influence of kynurenine metabolites on neurodegenerative pathologies.Int. J. Mol. Sci.202425285310.3390/ijms2502085338255925
    [Google Scholar]
  85. OnaolapoA.Y. OnaolapoO.J. Glutamate and depression: Reflecting a deepening knowledge of the gut and brain effects of a ubiquitous molecule.World J. Psychiatry202111729731510.5498/wjp.v11.i7.29734327123
    [Google Scholar]
  86. BrylevaE.Y. BrundinL. Kynurenine pathway metabolites and suicidality.Neuropharmacology2017112Pt B32433010.1016/j.neuropharm.2016.01.03426820800
    [Google Scholar]
  87. FlintA.J. Augmentation strategies in geriatric depression.Int. J. Geriatr. Psychiatry199510213714610.1002/gps.930100209
    [Google Scholar]
  88. ĽuptákM. MichaličkováD. FišarZ. KitzlerováE. HroudováJ. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets.World J. Psychiatry202111727729610.5498/wjp.v11.i7.27734327122
    [Google Scholar]
  89. WincewiczD. BraszkoJ. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders.Pharmacopsychiatry201750623324710.1055/s‑0043‑11234528641333
    [Google Scholar]
  90. FarvoldenP. KennedyS.H. LamR.W. Recent developments in the psychobiology and pharmacotherapy of depression: Optimising existing treatments and novel approaches for the future.Expert Opin. Investig. Drugs2003121658610.1517/13543784.12.1.6512517255
    [Google Scholar]
  91. JiaoS. CaoT. CaiH. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives.Front. Pharmacol.202213100570210.3389/fphar.2022.100570236313375
    [Google Scholar]
  92. StewartA.M. KalueffA.V. Anxiolytic drug discovery: What are the novel approaches and how can we improve them?Expert Opin. Drug Discov.201491152610.1517/17460441.2014.85730924206163
    [Google Scholar]
  93. TangJ. ChenL.R. ChenK.H. The utilization of dehydroepiandrosterone as a sexual hormone precursor in premenopausal and postmenopausal women: An overview.Pharmaceuticals20211514610.3390/ph1501004635056103
    [Google Scholar]
  94. LabrieF. DHEA, important source of sex steroids in men and even more in women.Prog. Brain Res.20101829714810.1016/S0079‑6123(10)82004‑720541662
    [Google Scholar]
  95. KilanczykE. RuminkiewiczD. BanalesJ.M. MilkiewiczP. MilkiewiczM. DHEA protects human cholangiocytes and hepatocytes against apoptosis and oxidative stress.Cells2022116103810.3390/cells1106103835326489
    [Google Scholar]
  96. MisiakB. PiotrowskiP. ChęćM. SamochowiecJ. Cortisol and dehydroepiandrosterone sulfate in patients with schizophrenia spectrum disorders with respect to cognitive performance.Compr. Psychoneuroendocrinol.2021610004110.1016/j.cpnec.2021.10004135757369
    [Google Scholar]
  97. GouldT.D. ChenG. ManjiH.K. Mood stabilizer psychopharmacology.Clin. Neurosci. Res.200223-419321210.1016/S1566‑2772(02)00044‑022707923
    [Google Scholar]
  98. LeoR.J. NarendranR. Anticonvulsant use in the treatment of bipolar disorder: A primer for primary care physicians.Prim. Care Companion J. Clin. Psychiatry199913748415014689
    [Google Scholar]
  99. GrunzeA. AmannB.L. GrunzeH. Efficacy of carbamazepine and its derivatives in the treatment of bipolar disorder.Medicina202157543310.3390/medicina5705043333946323
    [Google Scholar]
  100. WardM.P. IrazoquiP.P. Evolving refractory major depressive disorder diagnostic and treatment paradigms: Toward closed-loop therapeutics.Front. Neuroeng.20103710.3389/fneng.2010.0000720631824
    [Google Scholar]
  101. VietaE. MorenoS.J. Acute and long-term treatment of mania.Dialogues Clin. Neurosci.200810216517910.31887/DCNS.2008.10.2/evieta18689287
    [Google Scholar]
  102. KhannaS. VietaE. LyonsB. GrossmanF. EerdekensM. KramerM. Risperidone in the treatment of acute mania.Br. J. Psychiatry2005187322923410.1192/bjp.187.3.22916135859
    [Google Scholar]
  103. PoleseD. FornaroM. PalermoM. LucaD.V. Bartolomeisd.A. Treatment-resistant to antipsychotics: A resistance to everything? Psychotherapy in treatment-resistant schizophrenia and nonaffective psychosis: A 25-year systematic review and exploratory meta-analysis.Front. Psychiatry20191021010.3389/fpsyt.2019.0021031057434
    [Google Scholar]
  104. KolovosS. Tulderv.M.W. CuijpersP. PrigentA. ChevreulK. RiperH. BosmansJ.E. The effect of treatment as usual on major depressive disorder: A meta-analysis.J. Affect. Disord.2017210728110.1016/j.jad.2016.12.01328013125
    [Google Scholar]
  105. BonsonK. BuckholtzJ.W. MurphyD.L. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans.Neuropsychopharmacology199614642543610.1016/0893‑133X(95)00145‑48726753
    [Google Scholar]
  106. PetermannF. Hospital anxiety and depression scale, deutsche version (HADS-D).Z. Psychiatr. Psychol. Psychother.2015
    [Google Scholar]
  107. GasserP. HolsteinD. MichelY. DoblinR. KlosinskiY.B. PassieT. BrenneisenR. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases.J. Nerv. Ment. Dis.2014202751352010.1097/NMD.000000000000011324594678
    [Google Scholar]
  108. PáleníčekT. HliňákZ. Bubeníková-ValešováV. NovákT. HoráčekJ. Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition.Prog. Neuropsychopharmacol. Biol. Psychiatry201034458859610.1016/j.pnpbp.2010.02.00820156516
    [Google Scholar]
  109. ThiessenM.S. WalshZ. BirdB.M. LafranceA. Psychedelic use and intimate partner violence: The role of emotion regulation.J. Psychopharmacol.201832774975510.1177/026988111877178229807492
    [Google Scholar]
  110. HarrisC.R.L. BolstridgeM. DayC.M.J. RuckerJ. WattsR. ErritzoeD.E. KaelenM. GiribaldiB. BloomfieldM. PillingS. RickardJ.A. ForbesB. FeildingA. TaylorD. CurranH.V. NuttD.J. Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up.Psychopharmacology2018235239940810.1007/s00213‑017‑4771‑x29119217
    [Google Scholar]
  111. RosemanL. NuttD.J. HarrisC.R.L. Quality of acute psychedelic experience predicts therapeutic efficacy of psilocybin for treatment-resistant depression.Front. Pharmacol.2018897410.3389/fphar.2017.0097429387009
    [Google Scholar]
  112. LiebesA.G. The role of self-compassion in psilocybin-assisted motivational enhancement therapy to treat alcohol dependence: A randomized controlled trial.Psychol. Addict. Behav.2019381101113
    [Google Scholar]
  113. GerhardD.M. PothulaS. LiuR.J. WuM. LiX.Y. GirgentiM.J. TaylorS.R. DumanC.H. DelpireE. PicciottoM. WohlebE.S. DumanR.S. GABA interneurons are the cellular trigger for ketamine’s rapid antidepressant actions.J. Clin. Invest.202013031336134910.1172/JCI13080831743111
    [Google Scholar]
  114. KavalaliE.T. MonteggiaL.M. Targeting homeostatic synaptic plasticity for treatment of mood disorders.Neuron2020106571572610.1016/j.neuron.2020.05.01532497508
    [Google Scholar]
  115. HolmesS.E. GallezotJ.D. DavisM.T. DellaGioiaN. MatuskeyD. NabulsiN. KrystalJ.H. JavitchJ.A. DeLorenzoC. CarsonR.E. EsterlisI. Measuring the effects of ketamine on mGluR5 using [ 18 F]FPEB and PET.J. Cereb. Blood Flow Metab.202040112254226410.1177/0271678X1988631631744389
    [Google Scholar]
  116. KatoT. PothulaS. LiuR.J. DumanC.H. TerwilligerR. VlasukG.P. SaiahE. HahmS. DumanR.S. Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation.J. Clin. Invest.201912962542255410.1172/JCI12685930990795
    [Google Scholar]
  117. NugentA.C. RobinsonS.E. CoppolaR. ZarateC.A.Jr Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder.Psychiatry Res. Neuroimaging2016254566610.1016/j.pscychresns.2016.06.00627362845
    [Google Scholar]
  118. AbdallahC.G. AverillL.A. CollinsK.A. GehaP. SchwartzJ. AverillC. DeWildeK.E. WongE. AnticevicA. TangC.Y. IosifescuD.V. CharneyD.S. MurroughJ.W. Ketamine treatment and global brain connectivity in major depression.Neuropsychopharmacology20174261210121910.1038/npp.2016.18627604566
    [Google Scholar]
  119. TedescoS. GajaramG. ChidaS. AhmadA. PentakM. KeladaM. LewisL. KrishnanD. TranC. SoetanO.T. MukonaL.T. JolayemiA. The efficacy of MDMA (3, 4-Methylenedioxymethamphetamine) for post-traumatic stress disorder in humans: A systematic review and meta-analysis.Cureus2021135e1507010.7759/cureus.1507034150406
    [Google Scholar]
  120. RiazK. SuneelS. Hamza Bin Abdul MalikM. KashifT. UllahI. WarisA. NicolaD.M. MazzaM. SaniG. MartinottiG. BerardisD.D. MDMA-based psychotherapy in treatment-resistant post-traumatic stress disorder (PTSD): A brief narrative overview of current evidence.Diseases202311415910.3390/diseases1104015937987270
    [Google Scholar]
  121. GarcíaM.J.A. de la Fuente RevengaM. GilA.S. FrancoR.M.I. FeildingA. CastilloP.A. RibaJ. The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in vitro.Sci. Rep.201771530910.1038/s41598‑017‑05407‑928706205
    [Google Scholar]
  122. OsórioF.L. SanchesR.F. MacedoL.R. Santosd.R.G. Maia-de-OliveiraJ.P. AnaW.L. Araujod.D.B. RibaJ. CrippaJ.A. HallakJ.E. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: A preliminary report.Rev. Bras. Psiquiatr.2015371132010.1590/1516‑4446‑2014‑149625806551
    [Google Scholar]
  123. RagnhildstveitA. KhanR. SeliP. BassL.C. AugustR.J. KaiyoM. BarrN. JacksonL.K. GaffreyM.S. BarsugliaJ.P. AverillL.A. 5-MeO-DMT for post-traumatic stress disorder: A real-world longitudinal case study.Front. Psychiatry202314127115210.3389/fpsyt.2023.127115238076677
    [Google Scholar]
  124. ReckwegJ.T. UthaugM.V. SzaboA. DavisA.K. LancelottaR. MasonN.L. RamaekersJ.G. The clinical pharmacology and potential therapeutic applications of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT).J. Neurochem.2022162112814610.1111/jnc.1558735149998
    [Google Scholar]
  125. ErmakovaA.O. DunbarF. RuckerJ. JohnsonM.W. A narrative synthesis of research with 5-MeO-DMT.J. Psychopharmacol.202236327329410.1177/0269881121105054334666554
    [Google Scholar]
  126. GermannC.B. 5-methoxy-N, N-dimethyltryptamine: An ego-dissolving endogenous neurochemical catalyst of creativity.Act. Nerv. Super.201961417021610.1007/s41470‑019‑00063‑y
    [Google Scholar]
  127. RushB MarcusO ShoreR CunninghamL ThompsonN RideoutK. Psychedelic medicine: A rapid review of therapeutic applications and implications for future research.Homewood Research InstituteGuelph, ON, Canada2022
    [Google Scholar]
  128. Dawood HristovaJ.J. Pérez-JoverV. Psychotherapy with psilocybin for depression: systematic review.Behav. Sci. (Basel)2023134297
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673342524250109181220
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test