Skip to content
2000
Volume 32, Issue 40
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

The interplay between dietary habits and the development of Diverticular Disease (DD) has long been a subject of vibrant debate.

Objective

Utilizing Mendelian Randomization (MR), this study aims to meticulously examine the causal dynamics at play.

Methods

The foundation for the Genome-Wide Association Studies (GWAS) on DD was established using a dataset from the FinnGen consortium, encompassing 33,619 patients and 329,381 control participants. Data on 18 dietary habits and DD for the validation cohort were procured from the UK Biobank. An MR analysis was executed to delve into the causal relationship between dietary habits and DD, adhering to a rigorous Bonferroni correction threshold of 3.00E-03. Our main analysis method was the Inverse Variance Weighted (IVW) approach. To improve the accuracy and reliability of our study, we also conducted heterogeneity analysis, tests for horizontal pleiotropy, outlier identification, and “leave-one-out” sensitivity analysis.

Results

Our analysis unearthed a potential causal association between the consumption of dried fruits and a lower risk of developing DD (IVW: odds ratio (OR) 0.372, 95% confidence interval (CI) 0.272 - 0.509, = 5.79E-10), a finding that was corroborated in the validation cohort (IVW: OR 0.975, 95% CI 0.961 - 0.990, = 1.04E-03). Conversely, our results do not substantiate a causal link between the consumption of alcohol, dietary fiber, and red meat and the risk of DD.

Conclusion

Our detailed MR analyses show that eating dried fruit lowers the risk of DD, providing strong support for prevention and treatment approaches for DD.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673342480250203111209
2025-02-18
2025-10-18
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/40/CMC-32-40-15.html?itemId=/content/journals/cmc/10.2174/0109298673342480250203111209&mimeType=html&fmt=ahah

References

  1. BhatiaM. MattooA. Diverticulosis and diverticulitis: Epidemiology, pathophysiology, and current treatment trends.Cureus2023158e4315837565180
    [Google Scholar]
  2. MaliJ. MentulaP. LeppäniemiA. SallinenV. Determinants of treatment and outcomes of diverticular abscesses.World J. Emerg. Surg.20191413110.1186/s13017‑019‑0250‑531320921
    [Google Scholar]
  3. CoakleyK.M. DavisB.R. KastenK.R. Complicated diverticular disease.Clin. Colon Rectal Surg.202134209610310.1055/s‑0040‑171670133642949
    [Google Scholar]
  4. PeeryA.F. CrockettS.D. MurphyC.C. JensenE.T. KimH.P. EgbergM.D. LundJ.L. MoonA.M. PateV. BarnesE.L. SchlusserC.L. BaronT.H. ShaheenN.J. SandlerR.S. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: Update 2021.Gastroenterology2022162262164410.1053/j.gastro.2021.10.01734678215
    [Google Scholar]
  5. BöhmS.K. Risk factors for diverticulosis, diverticulitis, diverticular perforation, and bleeding: A plea for more subtle history taking.Viszeralmedizin2015312849426989377
    [Google Scholar]
  6. WeizmanA.V. NguyenG.C. Diverticular disease: Epidemiology and management.Can. J. Gastroenterol.201125738538910.1155/2011/79524121876861
    [Google Scholar]
  7. PainterN.S. BurkittD.P. Diverticular disease of the colon: A deficiency disease of Western civilization.BMJ19712575945045410.1136/bmj.2.5759.4504930390
    [Google Scholar]
  8. StrateL.L. Lifestyle factors and the course of diverticular disease.Dig. Dis.2012301354510.1159/00033570722572683
    [Google Scholar]
  9. ManousosO.N. VrachliotisG. PapaevangelouG. DetorakisE. DoritisP. StergiouL. MerikasG. Relation of diverticulosis of the colon to environmental factors in Greece.Am. J. Dig. Dis.197318317417610.1007/BF010719694688568
    [Google Scholar]
  10. LinO.S. SoonM.S. WuS.S. ChenY.Y. HwangK.L. TriadafilopoulosG. Dietary habits and right-sided colonic diverticulosis.Dis. Colon Rectum200043101412141810.1007/BF0223663811052519
    [Google Scholar]
  11. SongJ.H. KimY.S. LeeJ.H. OkK.S. RyuS.H. LeeJ.H. MoonJ.S. Clinical characteristics of colonic diverticulosis in Korea: A prospective study.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)201025214014610.3904/kjim.2010.25.2.14020526386
    [Google Scholar]
  12. PeeryA.F. BarrettP.R. ParkD. RogersA.J. GalankoJ.A. MartinC.F. SandlerR.S. A high-fiber diet does not protect against asymptomatic diverticulosis.Gastroenterology20121422266272.e110.1053/j.gastro.2011.10.03522062360
    [Google Scholar]
  13. PeeryA.F. SandlerR.S. AhnenD.J. GalankoJ.A. HolmA.N. ShaukatA. MottL.A. BarryE.L. FriedD.A. BaronJ.A. Constipation and a low-fiber diet are not associated with diverticulosis.Clin. Gastroenterol. Hepatol.201311121622162710.1016/j.cgh.2013.06.03323891924
    [Google Scholar]
  14. SchoepfD. HeunR. Alcohol dependence and physical comorbidity: Increased prevalence but reduced relevance of individual comorbidities for hospital-based mortality during a 12.5-year observation period in general hospital admissions in urban North-West England.Eur. Psychiatry201530445946810.1016/j.eurpsy.2015.03.00125841661
    [Google Scholar]
  15. NagataN. NiikuraR. ShimboT. KishidaY. SekineK. TanakaS. AokiT. WatanabeK. AkiyamaJ. YanaseM. ItohT. MizokamiM. UemuraN. Alcohol and smoking affect risk of uncomplicated colonic diverticulosis in Japan.PLoS One2013812e8113710.1371/journal.pone.008113724339905
    [Google Scholar]
  16. AldooriW.H. GiovannucciE.L. RimmE.B. WingA.L. TrichopoulosD.V. WillettW.C. A prospective study of alcohol, smoking, caffeine, and the risk of symptomatic diverticular disease in men.Ann. Epidemiol.19955322122810.1016/1047‑2797(94)00109‑77606311
    [Google Scholar]
  17. CroweF.L. ApplebyP.N. AllenN.E. KeyT.J. Diet and risk of diverticular disease in Oxford cohort of European prospective investigation into cancer and nutrition (EPIC): Prospective study of British vegetarians and non-vegetarians.BMJ2011343jul19 4d413110.1136/bmj.d413121771850
    [Google Scholar]
  18. CaoY. StrateL.L. KeeleyB.R. TamI. WuK. GiovannucciE.L. ChanA.T. Meat intake and risk of diverticulitis among men.Gut201867346647210.1136/gutjnl‑2016‑31308228069830
    [Google Scholar]
  19. StrateL.L. LiuY.L. SyngalS. AldooriW.H. GiovannucciE.L. Nut, corn, and popcorn consumption and the incidence of diverticular disease.JAMA2008300890791410.1001/jama.300.8.90718728264
    [Google Scholar]
  20. EmdinC.A. KheraA.V. KathiresanS. Mendelian randomization.JAMA2017318191925192610.1001/jama.2017.1721929164242
    [Google Scholar]
  21. Davey SmithG. EbrahimS. ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease?Int. J. Epidemiol.200332112210.1093/ije/dyg07012689998
    [Google Scholar]
  22. Davey SmithG. HemaniG. Mendelian randomization: Genetic anchors for causal inference in epidemiological studies.Hum. Mol. Genet.201423R1R89R9810.1093/hmg/ddu32825064373
    [Google Scholar]
  23. BurgessS. LabrecqueJ.A. Mendelian randomization with a binary exposure variable: Interpretation and presentation of causal estimates.Eur. J. Epidemiol.2018331094795210.1007/s10654‑018‑0424‑630039250
    [Google Scholar]
  24. SudlowC. GallacherJ. AllenN. BeralV. BurtonP. DaneshJ. DowneyP. ElliottP. GreenJ. LandrayM. LiuB. MatthewsP. OngG. PellJ. SilmanA. YoungA. SprosenT. PeakmanT. CollinsR. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age.PLoS Med.2015123e100177910.1371/journal.pmed.100177925826379
    [Google Scholar]
  25. BurgessS. ThompsonS.G. CRP CHD Genetics CollaborationAvoiding bias from weak instruments in Mendelian randomization studies.Int. J. Epidemiol.201140375576410.1093/ije/dyr03621414999
    [Google Scholar]
  26. BowdenJ. Del Greco MF. MinelliC. Davey SmithG. SheehanN.A. ThompsonJ.R. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I2 statistic.Int. J. Epidemiol.2016456dyw22010.1093/ije/dyw22027616674
    [Google Scholar]
  27. BroadbentJ.R. FoleyC.N. GrantA.J. MasonA.M. StaleyJ.R. BurgessS. MendelianRandomization v0.5.0: Updates to an R package for performing Mendelian randomization analyses using summarized data.Wellcome Open Res.2020525210.12688/wellcomeopenres.16374.233381656
    [Google Scholar]
  28. HemaniG. ZhengJ. ElsworthB. WadeK.H. HaberlandV. BairdD. LaurinC. BurgessS. BowdenJ. LangdonR. TanV.Y. YarmolinskyJ. ShihabH.A. TimpsonN.J. EvansD.M. ReltonC. MartinR.M. Davey SmithG. GauntT.R. HaycockP.C. The MR-Base platform supports systematic causal inference across the human phenome.eLife20187e3440810.7554/eLife.3440829846171
    [Google Scholar]
  29. BurgessS. ButterworthA. ThompsonS.G. Mendelian randomization analysis with multiple genetic variants using summarized data.Genet. Epidemiol.201337765866510.1002/gepi.2175824114802
    [Google Scholar]
  30. ZhaoJ. MingJ. HuX. ChenG. LiuJ. YangC. Bayesian weighted Mendelian randomization for causal inference based on summary statistics.Bioinformatics20203651501150810.1093/bioinformatics/btz74931593215
    [Google Scholar]
  31. BowdenJ. Davey SmithG. HaycockP.C. BurgessS. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator.Genet. Epidemiol.201640430431410.1002/gepi.2196527061298
    [Google Scholar]
  32. BowdenJ. HemaniG. Davey SmithG. Invited commentary: Detecting individual and global horizontal pleiotropy in mendelian randomization—a job for the humble heterogeneity statistic?Am. J. Epidemiol.2018187122681268510.1093/aje/kwy18530188969
    [Google Scholar]
  33. van KippersluisH. RietveldC.A. Pleiotropy-robust Mendelian randomization.Int. J. Epidemiol.20184741279128810.1093/ije/dyx00228338774
    [Google Scholar]
  34. ChenL. YangH. LiH. HeC. YangL. LvG. Insights into modifiable risk factors of cholelithiasis: A Mendelian randomization study.Hepatology202275478579610.1002/hep.3218334624136
    [Google Scholar]
  35. HongJ. QuZ. JiX. LiC. ZhangG. JinC. WangJ. ZhangY. ShenY. MengJ. ZhouC. FangC. WangW. YanS. Genetic associations between IL-6 and the development of autoimmune arthritis are gender-specific.Front. Immunol.20211270761710.3389/fimmu.2021.70761734539640
    [Google Scholar]
  36. TursiA. EliseiW. Colonic diverticulosis and diet: Is it useful?Polish Archives of Internal Medicine2020130323223910.20452/pamw.1519932077444
    [Google Scholar]
  37. AlasalvarC. SalvadóJ.S. RosE. Bioactives and health benefits of nuts and dried fruits.Food Chem.202031412619210.1016/j.foodchem.2020.12619231958750
    [Google Scholar]
  38. VinsonJ.A. ZubikL. BoseP. SammanN. ProchJ. Dried fruits: Excellent in vitro and in vivo antioxidants.J. Am. Coll. Nutr.2005241445010.1080/07315724.2005.1071944215670984
    [Google Scholar]
  39. ChangS.K. AlasalvarC. ShahidiF. Review of dried fruits: Phytochemicals, antioxidant efficacies, and health benefits.J. Funct. Foods20162111313210.1016/j.jff.2015.11.034
    [Google Scholar]
  40. RababahT.M. EreifejK.I. HowardL. Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits.J. Agric. Food Chem.200553114444444710.1021/jf050281015913308
    [Google Scholar]
  41. Hernández-AlonsoP. Camacho-BarciaL. BullóM. Salas-SalvadóJ. Nuts and dried fruits: An update of their beneficial effects on type 2 diabetes.Nutrients20179767310.3390/nu907067328657613
    [Google Scholar]
  42. FolsomA.R. HongC.P. Magnesium intake and reduced risk of colon cancer in a prospective study of women.Am. J. Epidemiol.2006163323223510.1093/aje/kwj03716319289
    [Google Scholar]
  43. van den BrandtP.A. SmitsK.M. GoldbohmR.A. WeijenbergM.P. Magnesium intake and colorectal cancer risk in the netherlands cohort study.Br. J. Cancer200796351051310.1038/sj.bjc.660357717285123
    [Google Scholar]
  44. d’UnienvilleN.M.A. HillA.M. CoatesA.M. YandellC. NelsonM.J. BuckleyJ.D. Effects of almond, dried grape and dried cranberry consumption on endurance exercise performance, recovery and psychomotor speed: Protocol of a randomised controlled trial.BMJ Open Sport Exerc. Med.201951e00056010.1136/bmjsem‑2019‑00056031548903
    [Google Scholar]
  45. TianB. ZhangZ. ZhaoJ. MaQ. LiuH. NieC. MaZ. AnW. LiJ. Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice.Int. J. Food Sci. Technol.202156110311410.1111/ijfs.14606
    [Google Scholar]
  46. BarbaraG. ScaioliE. BarbaroM.R. BiagiE. LaghiL. CremonC. MarascoG. ColecchiaA. PiconeG. SalfiN. CapozziF. BrigidiP. FestiD. Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease.Gut20176671252126110.1136/gutjnl‑2016‑31237727618836
    [Google Scholar]
  47. LouT. HuangW. WuX. WangM. ZhouL. LuB. ZhengL. HuY. Monitoring, exposure and risk assessment of sulfur dioxide residues in fresh or dried fruits and vegetables in China.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201734691892710.1080/19440049.2017.131345828357931
    [Google Scholar]
  48. RentschlerH. Sulfur dioxide in dried fruit.Mitt. Geb. Lebensmittelunters. Hyg.195142327527914863309
    [Google Scholar]
  49. StadtmanE.R. BarkerH.A. MrakE.M. MackinneyG. Storage of dried fruit; influence of moisture and sulfur dioxide on deterioration of apricots.Ind. Eng. Chem.19463819910410.1021/ie50433a03821008317
    [Google Scholar]
  50. LiaoB.S. SramJ.C. FilesD.J. Determination of free sulfites (SO3 -2) in dried fruits processed with sulfur dioxide by ion chromatography through anion exchange column and conductivity detection.J. AOAC Int.20139651103110810.5740/jaoacint.11‑05324282955
    [Google Scholar]
  51. ShararaA.I. El-HalabiM.M. MansourN.M. MalliA. GhaithO.A. HashashJ.G. MaasriK. SoweidA. BaradaK. MouradF.H. El ZahabiL. Alcohol consumption is a risk factor for colonic diverticulosis.J. Clin. Gastroenterol.201347542042510.1097/MCG.0b013e31826be84723164685
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673342480250203111209
Loading
/content/journals/cmc/10.2174/0109298673342480250203111209
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test