Skip to content
2000
Volume 32, Issue 35
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Triple-Negative Breast Cancer (TNBC) is the most common type of breast cancer (BC). In order to develop effective treatments for TNBC, it is vital to identify potential therapeutic targets. Angiogenesis stimulates tumor growth and metastasis in TNBC, and miR-155 plays a crucial role in this process. The exosome is a nano-sized vesicle that carries many cargoes, including miRNAs. The present study investigated the effect of exosomal delivery of miR-155 antagomir on tumor migration, invasion, and angiogenesis in TNBC.

Materials and Methods

From MDA-MB-231 cells, exosomes were extracted, characterized, and loaded with miR-155 antagomir using electroporation. The expression of miR-155 and its target genes, including and was analyzed using RT-qPCR. The wound-healing and transwell assays were used to measure cell migration and invasion. Furthermore, angiogenesis was evaluated by tube formation and chorioallantoic membrane (CAM) assays.

Results

The results indicated that exosomal delivery of miR-155 antagomir to HUVEC cells significantly suppressed miR-155 expression while upregulating and . The tube formation properties of HUVEC cells were also significantly reduced following treatment with exosomes containing miR-155 antagomirs, and these results were confirmed using CAM assay. The migration and invasion of MDA-MB-231 cells were significantly reduced after treatment with miR-155 antagomir-loaded exosomes.

Conclusion

It was found that miR-155 antagomir delivery using exosomes can inhibit migration, invasion, and angiogenesis and in TNBC.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673341499241016110341
2025-10-01
2025-10-31
Loading full text...

Full text loading...

References

  1. GiaquintoA.N. SungH. MillerK.D. KramerJ.L. NewmanL.A. MinihanA. JemalA. SiegelR.L. Breast cancer statistics, 2022.CA Cancer J. Clin.202272652454110.3322/caac.2175436190501
    [Google Scholar]
  2. DassS.A. TanK.L. RajanR.S. MokhtarN.F. Mohd AdzmiE.R. Abdul RahmanW.F.W. Tengku DinT.A.D.A.A. BalakrishnanV. Triple negative breast cancer: A review of present and future diagnostic modalities.Medicina (Kaunas)20215716210.3390/medicina5701006233445543
    [Google Scholar]
  3. KadambR. SinghS. Clinical implementation of biomarkers and signaling pathway as novel targeted therapeutics in breast cancer.Treatment Landscape of Targeted Therapies in Oncology2023275610.1016/B978‑0‑443‑16034‑9.00003‑4
    [Google Scholar]
  4. PourteimoorV. ParyanM. Mohammadi-YeganehS. MicroRNA as a systemic intervention in the specific breast cancer subtypes with C-MYC impacts; introducing subtype-based appraisal tool.J. Cell. Physiol.201823385655566910.1002/jcp.2639929243807
    [Google Scholar]
  5. LeeJ. Current treatment landscape for early triple-negative breast cancer (TNBC).J. Clin. Med.2023124152410.3390/jcm1204152436836059
    [Google Scholar]
  6. EirizI.F. Vaz BatistaM. Cruz TomásT. NevesM.T. Guerra-PereiraN. BragaS. Breast cancer in very young women-a multicenter 10-year experience.ESMO Open20216110002910.1016/j.esmoop.2020.10002933399090
    [Google Scholar]
  7. CserniG. QuinnC.M. FoschiniM.P. BianchiS. CallagyG. ChmielikE. DeckerT. FendF. KovácsA. van DiestP.J. EllisI.O. RakhaE. TotT. European Working Group For Breast Screening Pathology Triple-negative breast cancer histological subtypes with a favourable prognosis.Cancers20211322569410.3390/cancers1322569434830849
    [Google Scholar]
  8. JinJ. GaoY. ZhangJ. WangL. WangB. CaoJ. ShaoZ. WangZ. Incidence, pattern and prognosis of brain metastases in patients with metastatic triple negative breast cancer.BMC Cancer201818144610.1186/s12885‑018‑4371‑029673325
    [Google Scholar]
  9. WangX.Y. RosenM.N. ChehadeR. SahgalA. DasS. WarnerE. SaskinR. ZhangB. SolimanH. ChanK.K.W. JerzakK.J. Analysis of rates of brain metastases and association with breast cancer subtypes in Ontario, Canada.JAMA Netw. Open202258e2225424e222542410.1001/jamanetworkopen.2022.2542435960523
    [Google Scholar]
  10. DianaA. CarlinoF. FranzeseE. OikonomidouO. CriscitielloC. De VitaF. CiardielloF. OrdituraM. Early triple negative breast cancer: Conventional treatment and emerging therapeutic landscapes.Cancers202012481910.3390/cancers1204081932235297
    [Google Scholar]
  11. Chang-QingY. JieL. Shi-QiZ. KunZ. Zi-QianG. RanX. Hui-MengL. Ren-BinZ. GangZ. Da-ChuanY. Chen-YanZ. Recent treatment progress of triple negative breast cancer.Prog. Biophys. Mol. Biol.2020151405310.1016/j.pbiomolbio.2019.11.00731761352
    [Google Scholar]
  12. RattiM. LampisA. GhidiniM. SalatiM. MirchevM.B. ValeriN. HahneJ.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside.Target. Oncol.202015326127810.1007/s11523‑020‑00717‑x32451752
    [Google Scholar]
  13. MohrA.M. In Seminars in liver diseaseThieme Medical Publishers,201535003011
    [Google Scholar]
  14. KurosakiT. PoppM.W. MaquatL.E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay.Nat. Rev. Mol. Cell Biol.201920740642010.1038/s41580‑019‑0126‑230992545
    [Google Scholar]
  15. RomanoG. VenezianoD. AcunzoM. CroceC.M. Small non-coding RNA and cancer.Carcinogenesis201738548549110.1093/carcin/bgx02628449079
    [Google Scholar]
  16. JohnB. EnrightA.J. AravinA. TuschlT. SanderC. MarksD.S. Human microRNA targets.PLoS Biol.2004211e36310.1371/journal.pbio.002036315502875
    [Google Scholar]
  17. PasquinelliA.E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship.Nat. Rev. Genet.201213427128210.1038/nrg316222411466
    [Google Scholar]
  18. MulraneL. McGeeS.F. GallagherW.M. O’ConnorD.P. miRNA dysregulation in breast cancer.Cancer Res.201373226554656210.1158/0008‑5472.CAN‑13‑184124204025
    [Google Scholar]
  19. UzunerE. UluG.T. GürlerS.B. BaranY. The role of miRNA in cancer: Pathogenesis, diagnosis, and treatment.miRNomics:MicroRNA Biology and Computational Analysis2022375422
    [Google Scholar]
  20. Salinas-VeraY.M. MarchatL.A. Gallardo-RincónD. Ruiz-GarcíaE. Astudillo-De La VegaH. Echavarría-ZepedaR. López-CamarilloC. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review).Int. J. Mol. Med.201943265767030483765
    [Google Scholar]
  21. LouW. LiuJ. GaoY. ZhongG. ChenD. ShenJ. BaoC. XuL. PanJ. ChengJ. DingB. FanW. MicroRNAs in cancer metastasis and angiogenesis.Oncotarget201787011578711580210.18632/oncotarget.2311529383201
    [Google Scholar]
  22. KontomanolisE.N. FasoulakisZ. PapamanolisV. KoliantzakiS. DimopoulosG. KambasN.J. The impact of microRNAs in breast cancer angiogenesis and progression.MicroRNA20198210110910.2174/221153660766618101712292130332982
    [Google Scholar]
  23. FridrichovaI. ZmetakovaI. MicroRNAs contribute to breast cancer invasiveness.Cells2019811136110.3390/cells811136131683635
    [Google Scholar]
  24. MichailleJ.J. AwadH. FortmanE.C. EfanovA.A. TiliE. miR-155 expression in antitumor immunity: The higher the better?Genes Chromosomes Cancer201958420821810.1002/gcc.2269830382602
    [Google Scholar]
  25. JankauskasS.S. GambardellaJ. SarduC. LombardiA. SantulliG. Functional role of miR-155 in the pathogenesis of diabetes mellitus and its complications.Noncoding RNA2021733910.3390/ncrna703003934287359
    [Google Scholar]
  26. DengT. ZhangH. YangH. WangH. BaiM. SunW. WangX. SiY. NingT. ZhangL. LiH. GeS. LiuR. LinD. LiS. YingG. BaY. Exosome miR-155 derived from gastric carcinoma promotes angiogenesis by targeting the c-MYB/VEGF Axis of endothelial cells.Mol. Ther. Nucleic Acids2020191449145910.1016/j.omtn.2020.01.02432160713
    [Google Scholar]
  27. KalkusovaK. TaborskaP. StakheevD. SmrzD. The role of miR-155 in antitumor immunity.Cancers20221421541410.3390/cancers1421541436358832
    [Google Scholar]
  28. NeophytouC. BoutsikosP. PapageorgisP. Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis.Front. Oncol.201883110.3389/fonc.2018.0003129520340
    [Google Scholar]
  29. DeepakK.G.K. VempatiR. NagarajuG.P. DasariV.R. SN. RaoD.N. MallaR.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer.Pharmacol. Res.202015310468310.1016/j.phrs.2020.10468332050092
    [Google Scholar]
  30. GuoC.H. HsiaS. ChungC.H. LinY.C. ShihM.Y. ChenP.C. PengC.L. HenningS.M. HsuG.S.W. LiZ. Nutritional supplements in combination with chemotherapy or targeted therapy reduces tumor progression in mice bearing triple-negative breast cancer.J. Nutr. Biochem.20218710850410.1016/j.jnutbio.2020.10850432956826
    [Google Scholar]
  31. AdinewG.M. TakaE. MochonaB. BadisaR.B. MazzioE.A. ElhagR. SolimanK.F.A. Therapeutic potential of thymoquinone in triple-negative breast cancer prevention and progression through the modulation of the tumor microenvironment.Nutrients20211417910.3390/nu1401007935010954
    [Google Scholar]
  32. Jiménez-MoralesJ.M. Hernández-CuencaY.E. Reyes-AbrahantesA. Ruiz-GarcíaH. Barajas-OlmosF. García-OrtizH. OrozcoL. Quiñones-HinojosaA. Reyes-GonzálezJ. Abrahantes-PérezM.C. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review.J. Control. Release202234971273010.1016/j.jconrel.2022.07.02735905783
    [Google Scholar]
  33. AtriC. Guerfali, F.Z.; Laouini, D. AGO-driven Non-coding RNAsElsevier201913717710.1016/B978‑0‑12‑815669‑8.00006‑3
    [Google Scholar]
  34. DasguptaI. ChatterjeeA. Recent advances in miRNA delivery systems.Methods Protoc.2021411010.3390/mps401001033498244
    [Google Scholar]
  35. FuY. ChenJ. HuangZ. Recent progress in microRNA-based delivery systems for the treatment of human disease.ExRNA2019112410.1186/s41544‑019‑0024‑y34171007
    [Google Scholar]
  36. EsmaeiliA. HosseiniS. Baghaban EslaminejadM. Engineered-extracellular vesicles as an optimistic tool for microRNA delivery for osteoarthritis treatment.Cell. Mol. Life Sci.2021781799110.1007/s00018‑020‑03585‑w32601714
    [Google Scholar]
  37. MunirJ. YoonJ.K. RyuS. Therapeutic miRNA-enriched extracellular vesicles: Current approaches and future prospects.Cells2020910227110.3390/cells910227133050562
    [Google Scholar]
  38. KangT. AtukoralaI. MathivananS. Biogenesis of extracellular vesicles. Subcell Biochem2021971993
    [Google Scholar]
  39. DilsizN. Role of exosomes and exosomal microRNAs in cancer.Future Sci. OA202064FSO46510.2144/fsoa‑2019‑011632257377
    [Google Scholar]
  40. SchwarzenbachH. GahanP.B. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer.Noncoding RNA2019512810.3390/ncrna501002830901915
    [Google Scholar]
  41. ZhangM. ZangX. WangM. LiZ. QiaoM. HuH. ChenD. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: Recent advances and challenges.J. Mater. Chem. B Mater. Biol. Med.20197152421243310.1039/C9TB00170K32255119
    [Google Scholar]
  42. NarayananE. Exosomes as drug delivery vehicles for cancer treatment.Curr. Nanosci.2020161152610.2174/1573413715666190219112422
    [Google Scholar]
  43. KiaV. ParyanM. MortazaviY. BiglariA. Mohammadi-YeganehS. Evaluation of exosomal miR-9 and miR-155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells.J. Cell. Biochem.201912045666567610.1002/jcb.2785030335891
    [Google Scholar]
  44. AbadiA.J. ZarrabiA. GholamiM.H. MirzaeiS. HashemiF. ZabolianA. EntezariM. HushmandiK. AshrafizadehM. KhanH. KumarA.P. Small in size, but large in action: MicroRNAs as potential modulators of PTEN in breast and lung cancers.Biomolecules202111230410.3390/biom1102030433670518
    [Google Scholar]
  45. RiderM.A. HurwitzS.N. MeckesD.G. ExtraP.E.G. A polyethylene glycol-based method for enrichment of extracellular vesicles.Sci. Rep.2016612397810.1038/srep2397827068479
    [Google Scholar]
  46. KiaV. MortazaviY. ParyanM. BiglariA. Mohammadi-YeganehS. Exosomal miRNAs from highly metastatic cells can induce metastasis in non-metastatic cells.Life Sci.201922016216810.1016/j.lfs.2019.01.05730721706
    [Google Scholar]
  47. KarimkhanlooH. Mohammadi-YeganehS. AhsaniZ. ParyanM. Bioinformatics prediction and experimental validation of microRNA-20a targeting Cyclin D1 in hepatocellular carcinoma.Tumour Biol.2017394101042831769836110.1177/101042831769836128378640
    [Google Scholar]
  48. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method.Methods2001254402408
    [Google Scholar]
  49. LiaoH.Y. ZhangW.W. SunJ.Y. LiF.Y. HeZ.Y. WuS.G. The clinicopathological features and survival outcomes of different histological subtypes in triple-negative breast cancer.J. Cancer20189229630310.7150/jca.2228029344276
    [Google Scholar]
  50. WangY. WuS. ZhuX. ZhangL. DengJ. LiF. GuoB. ZhangS. WuR. ZhangZ. WangK. LuJ. ZhouY. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis.J. Exp. Med.20202173e2019095010.1084/jem.2019095031816634
    [Google Scholar]
  51. CaoH. HuangS. LiuA. ChenZ. Up-regulated expression of miR-155 in human colonic cancer.J. Cancer Res. Ther.201814360460710.4103/0973‑1482.17543229893326
    [Google Scholar]
  52. BayraktarR. Van RoosbroeckK. miR-155 in cancer drug resistance and as target for miRNA-based therapeutics.Cancer Metastasis Rev.2018371334410.1007/s10555‑017‑9724‑729282605
    [Google Scholar]
  53. WangZ. TanW. LiB. ZouJ. LiY. XiaoY. HeY. YoshidaS. ZhouY. Exosomal non-coding RNAs in angiogenesis: Functions, mechanisms and potential clinical applications.Heliyon202398e1862610.1016/j.heliyon.2023.e1862637560684
    [Google Scholar]
  54. BouzariB. MohammadiS. BokovD.O. KrasnyukI.I. Hosseini-FardS.R. HajibabaM. MirzaeiR. KarampoorS. Angioregulatory role of miRNAs and exosomal miRNAs in glioblastoma pathogenesis.Biomed. Pharmacother.202214811276010.1016/j.biopha.2022.11276035228062
    [Google Scholar]
  55. MondalJ. PillarisettiS. JunnuthulaV. SahaM. HwangS.R. ParkI. LeeY. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications.J. Control. Release20233531127114910.1016/j.jconrel.2022.12.02736528193
    [Google Scholar]
  56. YanaiharaN. CaplenN. BowmanE. SeikeM. KumamotoK. YiM. StephensR.M. OkamotoA. YokotaJ. TanakaT. CalinG.A. LiuC.G. CroceC.M. HarrisC.C. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.Cancer Cell20069318919810.1016/j.ccr.2006.01.02516530703
    [Google Scholar]
  57. LiH. XieS. LiuM. ChenZ. LiuX. WangL. LiD. ZhouY. The clinical significance of downregulation of miR-124-3p, miR-146a-5p, miR-155-5p and miR-335-5p in gastric cancer tumorigenesis.Int. J. Oncol.201445119720810.3892/ijo.2014.241524805774
    [Google Scholar]
  58. ZhuangX. XiangX. GrizzleW. SunD. ZhangS. AxtellR.C. JuS. MuJ. ZhangL. SteinmanL. MillerD. ZhangH.G. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain.Mol. Ther.201119101769177910.1038/mt.2011.16421915101
    [Google Scholar]
  59. GaoP.P. QiX.W. SunN. SunY.Y. ZhangY. TanX.N. DingJ. HanF. ZhangY. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer.Biochim. Biophys. Acta Rev. Cancer20211876118856210.1016/j.bbcan.2021.18856233964330
    [Google Scholar]
  60. ChenC.M. ChuT.H. ChouC.C. ChienC.Y. WangJ.S. HuangC.C. Exosome-derived microRNAs in oral squamous cell carcinomas impact disease prognosis.Oral Oncol.202112010540210.1016/j.oraloncology.2021.10540234174519
    [Google Scholar]
  61. WangY. WangZ. LuJ. ZhangH. Circular RNA circ-PTEN elevates PTEN inhibiting the proliferation of non-small cell lung cancer cells.Hum. Cell20213441174118410.1007/s13577‑021‑00526‑y33821441
    [Google Scholar]
  62. ShiY. LiK. XuK. LiuQ-H. MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways.Eur. Rev. Med. Pharmacol. Sci.2020243.
    [Google Scholar]
  63. WeiY. WangG. WangC. ZhouY. ZhangJ. XuK. Upregulation of DUSP14 affects proliferation, invasion and metastasis, potentially via epithelial–mesenchymal transition and is associated with poor prognosis in pancreatic cancer.Cancer Manag. Res.2020122097210810.2147/CMAR.S24004032256117
    [Google Scholar]
  64. YangC.Y. LiJ.P. ChiuL.L. LanJ.L. ChenD.Y. ChuangH.C. HuangC.Y. TanT.H. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation.J. Immunol.201419241547155710.4049/jimmunol.130098924403530
    [Google Scholar]
  65. ShojaeiS. Moradi-ChaleshtoriM. ParyanM. KoochakiA. SharifiK. Mohammadi-YeganehS. Mesenchymal stem cell-derived exosomes enriched with miR-218 reduce the epithelial–mesenchymal transition and angiogenesis in triple-negative breast cancer cells.Eur. J. Med. Res.202328151610.1186/s40001‑023‑01463‑237968694
    [Google Scholar]
  66. YiL. ChenY. JinQ. DengC. WuY. LiH. LiuT. LiY. YangY. WangJ. LvQ. ZhangL. XieM. Antagomir-155 attenuates acute cardiac rejection using ultrasound targeted microbubbles destruction.Adv. Healthc. Mater.2020914200018910.1002/adhm.20200018932548962
    [Google Scholar]
  67. PreethiK.A. LakshmananG. SekarD. Future Medicine2021137481484
    [Google Scholar]
  68. AksanH. KundaktepeB.P. SayiliU. VelidedeogluM. SimsekG. KoksalS. GelisgenR. YaylimI. UzunH. Circulating miR-155, let-7c, miR-21, and PTEN levels in differential diagnosis and prognosis of idiopathic granulomatous mastitis and breast cancer.Biofactors202046695596210.1002/biof.167632941675
    [Google Scholar]
  69. LiS. ShenY. WangM. YangJ. LvM. LiP. ChenZ. YangJ. Loss of PTEN expression in breast cancer: Association with clinicopathological characteristics and prognosis.Oncotarget2017819320433205410.18632/oncotarget.1676128410191
    [Google Scholar]
  70. HuangG-L. ZhangX-H. GuoG-L. HuangK-T. YangK-Y. ShenX. YouJ. HuX-Q. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma.Oncol. Rep.200921367367919212625
    [Google Scholar]
  71. KechagioglouP. PapiR.M. ProvatopoulouX. KalogeraE. PapadimitriouE. GrigoropoulosP. NonniA. ZografosG. KyriakidisD.A. GounarisA. Tumor suppressor PTEN in breast cancer: Heterozygosity, mutations and protein expression.Anticancer Res.20143431387140024596386
    [Google Scholar]
  72. ZuoW-N. ZhuH. LiL-P. JinA-Y. WangH-Q. miR-155 promotes proliferation and inhibits apoptosis of nasopharyngeal carcinoma cells through targeting PTEN-PI3K/AKT pathway.Eur. Rev. Med. Pharmacol. Sci.201923187935794231599418
    [Google Scholar]
  73. LuW.L. YuC.T.R. LienH.M. SheuG.T. CherngS.H. Cytotoxicity of naringenin induces Bax-mediated mitochondrial apoptosis in human lung adenocarcinoma A549 cells.Environ. Toxicol.202035121386139410.1002/tox.2300332667124
    [Google Scholar]
  74. FuX. WenH. JingL. YangY. WangW. LiangX. NanK. YaoY. TianT. Micro RNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway.Cancer Sci.2017108462063110.1111/cas.1317728132399
    [Google Scholar]
  75. SunJ.F. ZhangD. GaoC.J. ZhangY.W. DaiQ.S. Exosome-mediated miR-155 transfer contributes to hepatocellular carcinoma cell proliferation by targeting PTEN.Med. Sci. Monit. Basic Res.20192521822810.12659/MSMBR.91813431645540
    [Google Scholar]
  76. WuD. WangC. miR-155 regulates the proliferation of glioma cells through PI3K/Akt signaling.Front. Neurol.20201129710.3389/fneur.2020.0029732411077
    [Google Scholar]
  77. ShiY. LiZ. LiK. XuK. miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/ TXNIP/NLRP3 pathway.Acta Biochim. Pol.202269478779310.18388/abp.2020_609536441582
    [Google Scholar]
  78. MatsuuraY. WadaH. EguchiH. GotohK. KobayashiS. KinoshitaM. KuboM. HayashiK. IwagamiY. YamadaD. AsaokaT. NodaT. KawamotoK. TakedaY. TanemuraM. UmeshitaK. DokiY. MoriM. Exosomal miR-155 derived from hepatocellular carcinoma cells under hypoxia promotes angiogenesis in endothelial cells.Dig. Dis. Sci.201964379280210.1007/s10620‑018‑5380‑130465177
    [Google Scholar]
  79. ZhouX. YanT. HuangC. XuZ. WangL. JiangE. WangH. ChenY. LiuK. ShaoZ. ShangZ. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway.J. Exp. Clin. Cancer Res.201837124210.1186/s13046‑018‑0911‑330285793
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673341499241016110341
Loading
/content/journals/cmc/10.2174/0109298673341499241016110341
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Angiogenesis; DUSP14; exosome; invasion; migration; miR-155; PTEN; TNBC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test