Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673340864241004052149
2024-10-16
2025-10-01
Loading full text...

Full text loading...

/deliver/fulltext/cmc/32/33/CMC-32-33-01.html?itemId=/content/journals/cmc/10.2174/0109298673340864241004052149&mimeType=html&fmt=ahah

References

  1. KhanagarS.B. AlkadiL. AlghilanM.A. KalagiS. AwawdehM. BijaiL.K. VishwanathaiahS. AldhebaibA. SinghO.G. Application and performance of Artificial Intelligence (AI) in oral cancer diagnosis and prediction using histopathological images: A systematic review.Biomedicines2023116161210.3390/biomedicines1106161237371706
    [Google Scholar]
  2. WangN. LiuY. LiuZ. HuangX. Application of artificial intelligence and big data in modern financial management.2020 International Conference on Artificial Intelligence and Education (ICAIE)202085710.1109/ICAIE50891.2020.00027
    [Google Scholar]
  3. KarA. WreesmannV.B. ShwethaV. ThakurS. RaoV.U.S. ArakeriG. BrennanP.A. Improvement of oral cancer screening quality and reach: The promise of artificial intelligence.J. Oral Pathol. Med.202049872773010.1111/jop.1301332162398
    [Google Scholar]
  4. PanigrahiS. SwarnkarT. Machine learning techniques used for the histopathological image analysis of oral cancer-a review.Open Bioinform. J.202013110611810.2174/1875036202013010106
    [Google Scholar]
  5. PatelJ. GoyalR. Applications of artificial neural networks in medical science.Curr. Clin. Pharmacol.20072321722610.2174/15748840778166881118690868
    [Google Scholar]
  6. XuY. JiaZ. WangL.B. AiY. ZhangF. LaiM. ChangE.I.C. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.BMC Bioinformatics201718128110.1186/s12859‑017‑1685‑x28549410
    [Google Scholar]
  7. ChangS.W. Abdul-KareemS. MericanA.F. ZainR.B. Oral cancer prognosis based on clinicopathologic and genomic markers using a hybrid of feature selection and machine learning methods.BMC Bioinformatics201314117010.1186/1471‑2105‑14‑17023725313
    [Google Scholar]
  8. DasD.K. KoleyS. ChakrabortyC. MaitiA.K. Automated segmentation of Mitotic Cells for in vitro histological evaluation of oral squamous cell carcinoma.2014 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)2014000354710.1109/ISSPIT.2014.7300614
    [Google Scholar]
  9. ShettyS. PatilA.P. Oral cancer detection model in distributed cloud environment via optimized ensemble technique.Biomed. Signal Process. Control20238110431110.1016/j.bspc.2022.104311
    [Google Scholar]
  10. ShamimM.Z.M. SyedS. ShibleeM. UsmanM. AliS.J. HusseinH.S. FarragM. Automated detection of oral pre-cancerous tongue lesions using deep learning for early diagnosis of oral cavity cancer.Comput. J.20226519110410.1093/comjnl/bxaa136
    [Google Scholar]
  11. ArtemovaE. Deep Learning for the Russian Language. The Palgrave Handbook of Digital Russia Studies.ChamSpringer International Publishing202146548110.1007/978‑3‑030‑42855‑6_26
    [Google Scholar]
  12. DongS. WangP. AbbasK. A survey on deep learning and its applications.Comput. Sci. Rev.20214010037910.1016/j.cosrev.2021.100379
    [Google Scholar]
  13. SonL.H. TuanT.M. FujitaH. DeyN. AshourA.S. NgocV.T.N. AnhL.Q. ChuD-T. Dental diagnosis from X-Ray images: An expert system based on fuzzy computing.Biomed. Signal Process. Control201839647310.1016/j.bspc.2017.07.005
    [Google Scholar]
  14. ChawlaP. RoyP. Role of artificial intelligence in the screening of neoplastic oral lesions. Advanced Communication and Intelligent Systems.ChamSpringer202378579210.1007/978‑3‑031‑25088‑0_69
    [Google Scholar]
  15. SohailM.N. JiadongR. UbaM.M. IrshadM. A comprehensive looks at data mining techniques contributing to medical data growth: A survey of researcher reviews. Recent Developments in Intelligent Computing, Communication and Devices.ChamSpringer2019212610.1007/978‑981‑10‑8944‑2_3
    [Google Scholar]
  16. TanM.S. TanJ.W. ChangS.W. YapH.J. Abdul KareemS. ZainR.B. A genetic programming approach to oral cancer prognosis.PeerJ20164e248210.7717/peerj.248227688975
    [Google Scholar]
  17. RajpurkarP. ChenE. BanerjeeO. TopolE.J. AI in health and medicine.Nat. Med.2022281313810.1038/s41591‑021‑01614‑035058619
    [Google Scholar]
  18. UdelsmanB. ChienI. OuchiK. BrizziK. TulskyJ.A. LindvallC. Needle in a haystack: Natural language processing to identify serious illness.J. Palliat. Med.201922217918210.1089/jpm.2018.029430251922
    [Google Scholar]
  19. AlhazmiA. AlhazmiY. MakramiA. MasmaliA. SalawiN. MasmaliK. PatilS. Application of artificial intelligence and machine learning for prediction of oral cancer risk.J. Oral Pathol. Med.202150544445010.1111/jop.1315733394536
    [Google Scholar]
  20. KimJ.S. KimB.G. HwangS.H. Efficacy of artificial intelligence-assisted discrimination of oral cancerous lesions from normal mucosa based on the oral mucosal image: A systematic review and meta-analysis.Cancers (Basel)20221414349910.3390/cancers1414349935884560
    [Google Scholar]
  21. OyaK. KokomotoK. NozakiK. ToyosawaS. Oral squamous cell carcinoma diagnosis in digitized histological images using convolutional neural network.J. Dent. Sci.202318132232910.1016/j.jds.2022.08.01736643248
    [Google Scholar]
  22. JayaramN. MuralidharanM. MuthupandianS. The use of multilayer perceptron and radial basis function: An artificial intelligence model to predict progression of oral cancer.Int. J. Surg.20231091575910.1097/JS9.000000000000002636799795
    [Google Scholar]
  23. DixitS. KumarA. SrinivasanK. A current review of machine learning and deep learning models in oral cancer diagnosis: Recent technologies, open challenges, and future research directions.Diagnostics (Basel)2023137135310.3390/diagnostics1307135337046571
    [Google Scholar]
  24. WarinK. LimprasertW. SuebnukarnS. JinapornthamS. JantanaP. VicharueangS. AI-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer.PLoS One2022178e027350810.1371/journal.pone.027350836001628
    [Google Scholar]
  25. KavyashreeC. VimalaH.S. ShreyasJ. A systematic review of artificial intelligence techniques for oral cancer detection.Health Care Anal.2024510030410.1016/j.health.2024.100304
    [Google Scholar]
  26. Kanimozhi RB. Advancements in AI-driven bioinformatics for oral cancer detection and personalized treatment.Oral Oncol. Reports20241010040010.1016/j.oor.2024.100400
    [Google Scholar]
  27. SuryawanshiH. PatilS.R. ThangaveluL. KarobariM.I. Artificial intelligence illuminates the path: Revolutionizing oral oncology with Intelligent Insights.Oral Oncol. Reports2024910024410.1016/j.oor.2024.100244
    [Google Scholar]
  28. Karuppan PerumalM.K. Prasad SrinivasanG. ThangaveluL. Rajan RenukaR. Theragnostic applications of artificial intelligence (AI) in the field of oral cancer care.Oral Oncol. Reports20241010027810.1016/j.oor.2024.100278
    [Google Scholar]
  29. AhmedS.K. The future of oral cancer care: Integrating ChatGPT into clinical practice.Oral Oncol. Reports20241010031710.1016/j.oor.2024.100317
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673340864241004052149
Loading
/content/journals/cmc/10.2174/0109298673340864241004052149
Loading

Data & Media loading...


  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test