Skip to content
2000
Volume 32, Issue 33
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Elevated glucose can have a detrimental effect on the function and healing process of periodontal cells in inflammatory conditions. Hesperidin (HPN), a bioflavonoid found abundantly in citrus fruits, has numerous biological benefits, including regenerative and anti-inflammatory properties. The current study aimed to assess the impact of HPN on the proliferation, wound healing, and functionality of periodontal cells in optimal and elevated glucose conditions.

Methods

Human periodontal ligament cells (HPDLCs) were cultured in optimal glucose (1g/L) (OG) and high glucose (4.5 g/L) (HG) conditions. XTT, wound healing, ALP, and calcium release assays were conducted with or without HPN in the culture media.

Results

The statistical analysis revealed that adding different concentrations of HPN (2, 4, 10, or 100 µM) had no significant effect on the viability of HPDLCs under both OG (=0.436) and HG conditions (=0.162) compared to the control. However, in the HG condition, the addition of 100 µM HPN resulted in a statistically significant increase in wound closure (=0.003). Furthermore, in the HG condition, the addition of 100 µM HPN significantly increased ALP activity in the non-osteogenic media (=0.001) and significantly increased calcium release within the osteogenic media (=0.016).

Conclusion

The findings of this study suggest that HPN provides beneficial effects, facilitating repair and mineralization in HPDLCs under HG conditions.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673339671241129074005
2025-01-15
2025-10-01
Loading full text...

Full text loading...

References

  1. HajishengallisG. ChavakisT. LambrisJ.D. Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy.Periodontol. 20002020841143410.1111/prd.1233132844416
    [Google Scholar]
  2. EmrichL.J. ShlossmanM. GencoR.J. Periodontal disease in non-insulin-dependent diabetes mellitus.J. Periodontol.199162212313110.1902/jop.1991.62.2.1232027060
    [Google Scholar]
  3. SoskolneW.A. KlingerA. The relationship between periodontal diseases and diabetes: An overview.Ann. Periodontol.200161919810.1902/annals.2001.6.1.9111887477
    [Google Scholar]
  4. MengstieM.A. Chekol AbebeE. Behaile TeklemariamA. Tilahun MuluA. AgidewM.M. Teshome AzezewM. ZewdeE.A. Agegnehu TeshomeA. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications.Front. Mol. Biosci.20229100271010.3389/fmolb.2022.100271036188225
    [Google Scholar]
  5. LiccardoD. CannavoA. SpagnuoloG. FerraraN. CittadiniA. RengoC. RengoG. Periodontal disease: A risk factor for diabetes and cardiovascular disease.Int. J. Mol. Sci.2019206141410.3390/ijms2006141430897827
    [Google Scholar]
  6. GencoR.J. GrazianiF. HasturkH. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus.Periodontol. 20002020831596510.1111/prd.1227132385875
    [Google Scholar]
  7. Bascones-MartínezA. Arias-HerreraS. Criado-CámaraE. Bascones-IlundáinJ. Bascones-IlundáinC. Periodontal disease and diabetes.Adv. Exp. Med. Biol.2013771768710.1007/978‑1‑4614‑5441‑0_923393673
    [Google Scholar]
  8. SeppäläB. SorsaT. AinamoJ. Morphometric analysis of cellular and vascular changes in gingival connective tissue in long-term insulin-dependent diabetes.J. Periodontol.199768121237124510.1902/jop.1997.68.12.12379444601
    [Google Scholar]
  9. WuC. YuanY. LiuH. LiS. ZhangB. ChenW. AnZ. ChenS. WuY. HanB. LiC. LiL. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus.BMC Oral Health202020120410.1186/s12903‑020‑01180‑w32652980
    [Google Scholar]
  10. LlambésF. Arias-HerreraS. CaffesseR. Relationship between diabetes and periodontal infection.World J. Diabetes20156792793510.4239/wjd.v6.i7.92726185600
    [Google Scholar]
  11. GencoR.J. BorgnakkeW.S. Diabetes as a potential risk for periodontitis: Association studies.Periodontol. 20002020831404510.1111/prd.1227032385881
    [Google Scholar]
  12. ZhaoM. XieY. GaoW. LiC. YeQ. LiY. Diabetes mellitus promotes susceptibility to periodontitis—novel insight into the molecular mechanisms.Front. Endocrinol.202314119262510.3389/fendo.2023.119262537664859
    [Google Scholar]
  13. SmithP.C. MartínezC. MartínezJ. McCullochC.A. Role of fibroblast populations in periodontal wound healing and tissue remodeling.Front. Physiol.20191027010.3389/fphys.2019.0027031068825
    [Google Scholar]
  14. FraserD. CatonJ. BenoitD.S.W. Periodontal wound healing and regeneration: Insights for engineering new therapeutic approaches.Front. Dent. Med.2022381581010.3389/fdmed.2022.815810
    [Google Scholar]
  15. HiraishiN. SonoR. IslamM.S. OtsukiM. TagamiJ. TakatsukaT. Effect of hesperidin in vitro on root dentine collagen and demineralization.J. Dent.201139539139610.1016/j.jdent.2011.03.00221414383
    [Google Scholar]
  16. AlqadiS. Diabetes mellitus and its influence on oral health: Review.Diabetes Metab. Syndr. Obes.20241710712010.2147/DMSO.S42667138222034
    [Google Scholar]
  17. SaghiriM.A. VakhnovetskyJ. SamadiE. NapoliS. SamadiF. ConteM. MorganoS.M. Effects of diabetes on elemental levels and nanostructure of root canal dentin.J. Endod.20234991169117510.1016/j.joen.2023.07.00237429496
    [Google Scholar]
  18. IslamM.S. HiraishiN. NassarM. SonoR. OtsukiM. TakatsuraT. YiuC. TagamiJ. In vitro effect of hesperidin on root dentin collagen and de/re-mineralization.Dent. Mater. J.201231336236710.4012/dmj.2011‑20322673464
    [Google Scholar]
  19. AlahmariM.M. AlShaibanH.M. MahmoodS.E. Prevalence and associated factors for periodontal disease among type I and II diabetes mellitus patients: A cross-sectional study.Healthcare202311679610.3390/healthcare1106079636981453
    [Google Scholar]
  20. VlachouS. LouméA. GiannopoulouC. PapathanasiouE. ZekeridouA. Investigating the interplay: Periodontal disease and type 1 diabetes mellitus—a comprehensive review of clinical studies.Int. J. Mol. Sci.20242513729910.3390/ijms2513729939000406
    [Google Scholar]
  21. HiraishiN. SonoR. SofiqulI. YiuC. NakamuraH. OtsukiM. TakatsukaT. TagamiJ. In vitro evaluation of plant-derived agents to preserve dentin collagen.Dent. Mater.201329101048105410.1016/j.dental.2013.07.01523942145
    [Google Scholar]
  22. IslamS. HiraishiN. NassarM. YiuC. OtsukiM. TagamiJ. Effect of natural cross-linkers incorporation in a self-etching primer on dentine bond strength.J. Dent.201240121052105910.1016/j.jdent.2012.08.01522982944
    [Google Scholar]
  23. IslamM.S. HiraishiN. NassarM. YiuC. OtsukiM. TagamiJ. Effect of hesperidin incorporation into a self-etching primer on durability of dentin bond.Dent. Mater.201430111205121210.1016/j.dental.2014.08.37125194169
    [Google Scholar]
  24. HorcajadaM.N. HabauzitV. TrzeciakiewiczA. MorandC. Gil-IzquierdoA. MardonJ. LebecqueP. DaviccoM.J. CheeW.S.S. CoxamV. OffordE. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats.J. Appl. Physiol.2008104364865410.1152/japplphysiol.00441.200718174393
    [Google Scholar]
  25. KamarajS. AnandakumarP. JaganS. RamakrishnanG. DevakiT. Modulatory effect of hesperidin on benzo(a)pyrene induced experimental lung carcinogenesis with reference to COX-2, MMP-2 and MMP-9.Eur. J. Pharmacol.20106491-332032710.1016/j.ejphar.2010.09.01720883688
    [Google Scholar]
  26. Birsu CincinZ. UnluM. KiranB. Sinem BirellerE. BaranY. CakmakogluB. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells.Cell Oncol. (Dordr.)201538319520410.1007/s13402‑015‑0222‑z25860498
    [Google Scholar]
  27. AryalA. C. Phytic acid effect on periodontal ligament fibroblast: An in-vitro study.PLoS One202318e029561210.1371/journal.pone.0295612
    [Google Scholar]
  28. LinW. EzuraY. IzuY. Profilin expression is regulated by bone morphogenetic protein (BMP) in osteoblastic cells.J. Cell. Biochem.201611710.1002/jcb.2531026271366
    [Google Scholar]
  29. YamadaT. EzuraY. HayataT. MoriyaS. ShirakawaJ. NotomiT. ArayalS. KawasakiM. IzuY. HaradaK. NodaM. β2 adrenergic receptor activation suppresses bone morphogenetic protein (BMP)-induced alkaline phosphatase expression in osteoblast-like MC3T3E1 cells.J. Cell. Biochem.201511661144115210.1002/jcb.2507125536656
    [Google Scholar]
  30. Aryal ACS. IslamM.S. SamsudinA.R. Investigation of the effect of a time delay on the characteristics and survival of dental pulp stem cells from extracted teeth.Arch. Oral Biol.202011910489610.1016/j.archoralbio.2020.104896
    [Google Scholar]
  31. SalamaM.A. Anwar IsmailA. IslamM.S. K GA.R. Al KawasS. SamsudinA.R. A CS.A. Impact of bone morphogenetic protein 7 and prostaglandin receptors on osteoblast healing and organization of collagen.PLoS One2024195e030320210.1371/journal.pone.030320238753641
    [Google Scholar]
  32. MoriyaS. IzuY. ArayalS. KawasakiM. HataK. Pawaputanon Na MahasarakhahmC. IzumiY. SaftigP. KanekoK. NodaM. EzuraY. Cathepsin K deficiency suppresses disuse-induced bone loss.J. Cell. Physiol.201623151163117010.1002/jcp.2521426460818
    [Google Scholar]
  33. KangH. Aryal ACS. BarnesA.M. MartinA. DavidV. CrawfordS.E. MariniJ.C. Antagonism between PEDF and TGF-β contributes to type VI osteogenesis imperfecta bone and vascular pathogenesis.J. Bone Miner. Res.202037592593710.1002/jbmr.454035258129
    [Google Scholar]
  34. TomokiyoA. WadaN. MaedaH. Periodontal ligament stem cells: Regenerative potency in periodontium.Stem Cells Dev.2019281597498510.1089/scd.2019.003131215350
    [Google Scholar]
  35. HashimN.T. BabikerR. RahmanM.M. MohamedR. PriyaS.P. ChaitanyaN.C.S.K. IslamM.S. GobaraB. Natural bioactive compounds in the management of periodontal diseases: A comprehensive review.Molecules20242913304410.3390/molecules2913304438998994
    [Google Scholar]
  36. HashimN.T. LindenG.J. WinningL. IbrahimM.E. GismallaB.G. LundyF.T. El KarimI.A. Putative periodontal pathogens in the subgingival plaque of Sudanese subjects with aggressive periodontitis.Arch. Oral Biol.2017819710210.1016/j.archoralbio.2017.04.02728499236
    [Google Scholar]
  37. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules2522524333187049
    [Google Scholar]
  38. Maquera-HuachoP.M. SpolidorioD.P. MantheyJ. GrenierD. Effect of hesperidin on barrier function and reactive oxygen species production in an oral epithelial cell model, and on secretion of macrophage-derived inflammatory mediators during Porphyromonas gingivalis infection.Int. J. Mol. Sci.202324121038910.3390/ijms24121038937373533
    [Google Scholar]
  39. LiuW. LiouS.S. HongT.Y. LiuI.M. Protective effects of hesperidin (Citrus Flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy.Nutrients2017912131210.3390/nu912131229207476
    [Google Scholar]
  40. TianM. HanY.B. ZhaoC.C. LiuL. ZhangF.L. Hesperidin alleviates insulin resistance by improving HG-induced oxidative stress and mitochondrial dysfunction by restoring miR-149.Diabetol. Metab. Syndr.20211315010.1186/s13098‑021‑00664‑133926520
    [Google Scholar]
  41. KimS.Y. LeeJ.Y. ParkY.D. KangK.L. LeeJ.C. HeoJ.S. Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells.PLoS One201386e6750410.1371/journal.pone.006750423840726
    [Google Scholar]
  42. AldossA. LambarteR. AlsalleehF. High-glucose media reduced the viability and induced differential pro-inflammatory cytokines in human periodontal ligament fibroblasts.Biomolecules202313469010.3390/biom1304069037189437
    [Google Scholar]
  43. GuM. LvL. HeX. LiW. GuoL. Effect of phosphoric acid concentration used for etching on the microtensile bond strength to fluorotic teeth.Med.20189710.1097/MD.0000000000012093
    [Google Scholar]
  44. LiW. KandhareA.D. MukherjeeA.A. BodhankarS.L. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways.EXCLI J.20181739941910.17179/excli2018‑103629805347
    [Google Scholar]
  45. ZulkefliN. Che ZahariC.N.M. SayutiN.H. KamarudinA.A. SaadN. HamezahH.S. BunawanH. BaharumS.N. MedianiA. AhmedQ.U. IsmailA.F.H. SarianM.N. Flavonoids as potential wound-healing molecules: Emphasis on pathways perspective.Int. J. Mol. Sci.2023245460710.3390/ijms2405460736902038
    [Google Scholar]
  46. VimalrajS. Alkaline phosphatase: Structure, expression and its function in bone mineralization.Gene202075414485510.1016/j.gene.2020.14485532522695
    [Google Scholar]
  47. ZhangQ. SongX. ChenX. JiangR. PengK. TangX. LiuZ. Antiosteoporotic effect of hesperidin against ovariectomy-induced osteoporosis in rats via reduction of oxidative stress and inflammation.J. Biochem. Mol. Toxicol.2021358e2283210.1002/jbt.2283234028927
    [Google Scholar]
  48. SeubbukS. SritanaudomchaiH. KasetsuwanJ. SuraritR. High glucose promotes the osteogenic differentiation capability of human periodontal ligament fibroblasts.Mol. Med. Rep.20171552788279410.3892/mmr.2017.633328447734
    [Google Scholar]
  49. HanchangW. KhamchanA. WongmaneeN. SeedadeeC. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model.Life Sci.201923511685810.1016/j.lfs.2019.11685831505195
    [Google Scholar]
  50. HongW. ZhangW. Hesperidin promotes differentiation of alveolar osteoblasts via Wnt/β-Catenin signaling pathway.J. Recept. Signal Transduct. Res.202040544244810.1080/10799893.2020.175271832308087
    [Google Scholar]
  51. Aryal A CS. IslamM.S. Potential role of BMP7 in regenerative dentistry.Int. Dent. J.202474590190910.1016/j.identj.2024.04.002
    [Google Scholar]
  52. Pawaputanon Na MahasarakhamC. EzuraY. KawasakiM. SmritiA. MoriyaS. YamadaT. IzuY. NifujiA. NishimoriK. IzumiY. NodaM. BMP-2 enhances Lgr4 gene expression in osteoblastic cells.J. Cell. Physiol.2016231488789510.1002/jcp.2518026332449
    [Google Scholar]
  53. TrzeciakiewiczA. HabauzitV. MercierS. LebecqueP. DaviccoM.J. CoxamV. DemigneC. HorcajadaM.N. Hesperetin stimulates differentiation of primary rat osteoblasts involving the BMP signalling pathway.J. Nutr. Biochem.201021542443110.1016/j.jnutbio.2009.01.01719427185
    [Google Scholar]
  54. ElyasiL. JahanshahiM. JameieS.B. Hamid AbadiH.G. NikmahzarE. KhaliliM. JameieM. JameieM. 6-OHDA mediated neurotoxicity in SH-SY5Y cellular model of Parkinson disease suppressed by pretreatment with hesperidin through activating L-type calcium channels.J. Basic Clin. Physiol. Pharmacol.2021322111710.1515/jbcpp‑2019‑027032918805
    [Google Scholar]
  55. KlecC. ZiomekG. PichlerM. MalliR. GraierW.F. Calcium signaling in ß-cell physiology and pathology: A revisit.Int. J. Mol. Sci.20192024611010.3390/ijms2024611031817135
    [Google Scholar]
  56. AryalA.C.S. MiyaiK. HayataT. NotomiT. NakamotoT. PawsonT. EzuraY. NodaM. Nck1 deficiency accelerates unloading-induced bone loss.J. Cell. Physiol.201322871397140310.1002/jcp.2431723280595
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673339671241129074005
Loading
/content/journals/cmc/10.2174/0109298673339671241129074005
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test