Skip to content
2000
Volume 32, Issue 38
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Polycystic Ovary Syndrome (PCOS) is a common endocrine disorder that negatively affects female reproductive capacity. Although the association between autophagy and PCOS is known, there are few detailed studies on the association between autophagy-related genes and PCOS.

Methods

Publicly available gene expression datasets (GSE102293, GSE138518, GSE34526, GSE114419, GSE137684, GSE155489) were used in a comprehensive analysis to identify a role for autophagy in PCOS. Batch effects were mitigated using the sva package, followed by WGCNA (weighted gene correlation network analysis) and ssGSEA (single sample gene set enrichment analysis) to identify autophagy-related genes. Recursive feature elimination (RFE) and LASSO COX methods were used to identify important hub genes, and their correlation with immune cell activity was assessed using ssGSEA and Pearson correlation analysis.

Results

High autophagy scores were observed in PCOS samples, and the dark green gene module with the highest autophagy correlation was identified. The differential analysis identified a total of 169 up-regulated genes 2 down-regulated genes in the PCOS samples, which were intersected by taking the intersection with the deep green module genes and resulted in 121 key genes. Subsequently, 6 hub genes (MMP25, CSF3R, SLPI, MMP9, CLEC4E, and SIGLEC10) were further identified based on RFE and LASSO algorithms. Diagnostic efficacy based on ROC curves showed six autophagy-associated hub genes with AUC values as high as 0.959 and 0.896 in the training and validation sets, respectively. Finally, we observed that these hub genes are strongly associated with immune function, especially chronic inflammation and aberrant immune activation pathways.

Conclusion

In this study, we identified autophagy genes closely related to PCOS and constructed a gene model with high diagnostic accuracy. These findings not only provided potential new biomarkers for the diagnosis of PCOS but also revealed the key role of autophagy in the pathogenesis of PCOS.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673337033241010072529
2024-10-17
2025-11-01
Loading full text...

Full text loading...

References

  1. TeedeH.J. TayC.T. LavenJ.J.E. DokrasA. MoranL.J. PiltonenT.T. CostelloM.F. BoivinJ. RedmanL.M. BoyleJ.A. NormanR.J. MousaA. JohamA.E. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome.J. Clin. Endocrinol. Metab.2023108102447246910.1210/clinem/dgad46337580314
    [Google Scholar]
  2. TeedeH.J. TayC.T. LavenJ.J.E. DokrasA. MoranL.J. PiltonenT.T. CostelloM.F. BoivinJ. RedmanL.M. BoyleJ.A. NormanR.J. MousaA. JohamA.E. ArltW. AzzizR. BalenA. BedsonL. BerryL. BoivinJ. BoyleJ. BrennanL. BrownW. BurgertT. BusbyM. EeC. GaradR.M. Gibson-HelmM. HarrisonC. HartR. HopkinsK. HirschbergA.L. HoT. HoegerK. JordanC. LegroR.S. LiR. LujanM. MaR. MansfieldD. MarshK. MocanuE. MolB. MormonR. NormanR. OberfieldS. PatelM. PattuwageL. PeñaA. RedmanL. RombautsL. RomualdiD. ShahD. SpritzerP.M. Stener-VictorinE. TehraniF.R. ThangaratinamS. ThondanM. VankyE. WijeyaratneC. WitchelS. YangD. YildizB. AlesiS. Alur-GuptaS. AveryJ. KhomamiM.B. BenhamJ. BidstrupH. ChuaS.J. CooneyL. CosterT. EeC. FitzV. FlanaganM. ForslundM. JiskootG. KazemiM. KempegowdaP. LouwersY. LujanM. MelinJ. MelsonE. MengistuY.B. NaderpoorN. NevenA. PastoorH. RochaT. SabagA. SubramanianA. TanK. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome.Eur. J. Endocrinol.20231892G43G6410.1093/ejendo/lvad09637580861
    [Google Scholar]
  3. Frias-ToralE. Garcia-VelasquezE. de los ANGELES CARIGNANOM. Rodriguez-VeintimillaD. Alvarado-AguileraI. Bautista-LitardoN. Polycystic ovary syndrome and obesity: clinical aspects and nutritional management.Minerva Endocrinol.202247221524110.23736/S2724‑6507.21.03349‑633792235
    [Google Scholar]
  4. VárbíróS. TakácsI. TűűL. NasK. SzivaR.E. HetthéssyJ.R. TörökM. Effects of vitamin D on fertility, pregnancy and polycystic ovary syndrome: A review.Nutrients2022148164910.3390/nu1408164935458211
    [Google Scholar]
  5. HuddlestonH.G. DokrasA. Diagnosis and treatment of polycystic ovary syndrome.JAMA2022327327427510.1001/jama.2021.2376935040896
    [Google Scholar]
  6. TeedeH.J. MissoM.L. CostelloM.F. DokrasA. LavenJ. MoranL. PiltonenT. NormanR.J. InternationalP.N. Erratum. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome.Hum. Reprod.201934238810.1093/humrep/dey36330521039
    [Google Scholar]
  7. GuanC. ZahidS. MinhasA.S. OuyangP. VaughtA. BakerV.L. MichosE.D. Polycystic ovary syndrome: A “risk-enhancing” factor for cardiovascular disease.Fertil. Steril.2022117592493510.1016/j.fertnstert.2022.03.00935512976
    [Google Scholar]
  8. ParkerJ. O’BrienC. HawrelakJ. GershF.L. Polycystic ovary syndrome: An evolutionary adaptation to lifestyle and the environment.Int. J. Environ. Res. Public Health2022193133610.3390/ijerph1903133635162359
    [Google Scholar]
  9. AzzizR. Polycystic ovary syndrome.Obstet. Gynecol.2018132232133610.1097/AOG.000000000000269829995717
    [Google Scholar]
  10. ParzychK.R. KlionskyD.J. An overview of autophagy: Morphology, mechanism, and regulation.Antioxid. Redox Signal.201420346047310.1089/ars.2013.537123725295
    [Google Scholar]
  11. ChengD. ZhengB. ShengY. ZengZ. MoZ. The roles of autophagy in the genesis and development of polycystic ovary syndrome.Reprod. Sci.202330102920293110.1007/s43032‑023‑01255‑337204635
    [Google Scholar]
  12. ZhangC. HuJ. WangW. SunY. SunK. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS.FASEB J.20203479563957410.1096/fj.202000605RR32469087
    [Google Scholar]
  13. TongC. WuY. ZhangL. YuY. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway.Front. Endocrinol. (Lausanne)202213109114710.3389/fendo.2022.109114736589825
    [Google Scholar]
  14. LeekJ.T. StoreyJ.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis.PLoS Genet.200739e16110.1371/journal.pgen.003016117907809
    [Google Scholar]
  15. ZouY. XieJ. ZhengS. LiuW. TangY. TianW. DengX. WuL. ZhangY. WongC.W. TanD. LiuQ. XieX. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery.Int. J. Surg.202210710693610.1016/j.ijsu.2022.10693636341760
    [Google Scholar]
  16. HänzelmannS. CasteloR. GuinneyJ. GSVA: Gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  17. BarbieD.A. TamayoP. BoehmJ.S. KimS.Y. MoodyS.E. DunnI.F. SchinzelA.C. SandyP. MeylanE. SchollC. FröhlingS. ChanE.M. SosM.L. MichelK. MermelC. SilverS.J. WeirB.A. ReilingJ.H. ShengQ. GuptaP.B. WadlowR.C. LeH. HoerschS. WittnerB.S. RamaswamyS. LivingstonD.M. SabatiniD.M. MeyersonM. ThomasR.K. LanderE.S. MesirovJ.P. RootD.E. GillilandD.G. JacksT. HahnW.C. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.Nature2009462726910811210.1038/nature0846019847166
    [Google Scholar]
  18. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑55919114008
    [Google Scholar]
  19. SongZ. YuJ. WangM. ShenW. WangC. LuT. ShanG. DongG. WangY. ZhaoJ. CHDTEPDB: Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenit. Heart Dis.202318669370110.32604/chd.2024.048081
    [Google Scholar]
  20. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  21. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  22. caret: Classification and regression training.2012Available from: https://cran.r-project.org/web/packages/caret/index.html
  23. RobinX. TurckN. HainardA. TibertiN. LisacekF. SanchezJ.C. MüllerM. pROC: An open-source package for R and S+ to analyze and compare ROC curves.BMC Bioinformatics20111217710.1186/1471‑2105‑12‑7721414208
    [Google Scholar]
  24. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan- cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  25. ZhouJ. PengX. MeiS. Autophagy in ovarian follicular development and atresia.Int. J. Biol. Sci.201915472673710.7150/ijbs.3036930906205
    [Google Scholar]
  26. KumariyaS. UbbaV. JhaR.K. GayenJ.R. Autophagy in ovary and polycystic ovary syndrome: Role, dispute and future perspective.Autophagy202117102706273310.1080/15548627.2021.193891434161185
    [Google Scholar]
  27. NechiporukT. KurtzS.E. NikolovaO. LiuT. JonesC.L. D’AlessandroA. Culp-HillR. d’AlmeidaA. JoshiS.K. RosenbergM. TognonC.E. DanilovA.V. DrukerB.J. ChangB.H. McWeeneyS.K. TynerJ.W. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells.Cancer Discov.20199791092510.1158/2159‑8290.CD‑19‑012531048320
    [Google Scholar]
  28. ShahrajabianM.H. SunW. Survey on multi-omics, and multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  29. PalombaS. PiltonenT.T. GiudiceL.C. Endometrial function in women with polycystic ovary syndrome: A comprehensive review.Hum. Reprod. Update202127358461810.1093/humupd/dmaa05133302299
    [Google Scholar]
  30. WuY. HuangJ. LiuC. WangF. Autophagy Proteins and clinical data reveal the prognosis of polycystic ovary syndrome.BMC Pregnancy Childbirth202424115210.1186/s12884‑024‑06273‑w38383330
    [Google Scholar]
  31. TsaiY.R. LiaoY.N. KangH.Y. Current advances in cellular approaches for pathophysiology and treatment of polycystic ovary syndrome.Cells20231217218910.3390/cells1217218937681921
    [Google Scholar]
  32. WuM. ZhangJ. GuR. DaiF. YangD. ZhengY. TanW. JiaY. LiB. ChengY. The role of Sirtuin 1 in the pathophysiology of polycystic ovary syndrome.Eur. J. Med. Res.202227115810.1186/s40001‑022‑00746‑436030228
    [Google Scholar]
  33. AlmaeenA.H. AlduraywishA.A. NabiM. ShahN.N. ShaikR. TantryB.A. Quantitative changes in white blood cells: Correlation with the hallmarks of polycystic ovary syndrome.Medicina (Kaunas)202258453510.3390/medicina5804053535454373
    [Google Scholar]
  34. GündayÖ.K. YılmazerM. Delta neutrophil index in obese and non-obese polycystic ovary syndrome patients.Obstet. Gynecol. Sci.202366544144810.5468/ogs.2231037500074
    [Google Scholar]
  35. ZhuM. XuY. LiC. LuZ. BiK. WangK. GuoP. JiangH. CaoY. Involvement of impaired CD8+ mucosal-associated invariant T cells and myeloid-derived suppressor cells in polycystic ovary syndrome.Reprod. Biol. Endocrinol.202119117510.1186/s12958‑021‑00861‑734847942
    [Google Scholar]
  36. YangZ. WuS. HeS. HanL. ZhouM. YangJ. ChenJ. WuG. LncRNA AOC4P impacts the differentiation of macrophages and T-lymphocyte by regulating the NF-κB pathways of KGN cells: Potential pathogenesis of polycystic ovary syndrome.Am. J. Reprod. Immunol.2023904e1377610.1111/aji.1377637766402
    [Google Scholar]
  37. YangY. ChenX. LiaoX. JiangW. ZhouY. SunY. ZhengB. Identification of MAP1LC3A as a promising mitophagy-related gene in polycystic ovary syndrome.Sci. Rep.20241411698210.1038/s41598‑024‑67969‑939043888
    [Google Scholar]
  38. Soria-VallesC. Gutiérrez-FernándezA. OsorioF.G. CarreroD. FerrandoA.A. ColadoE. Fernández-GarcíaM.S. Bonzon-KulichenkoE. VázquezJ. FueyoA. López-OtínC. MMP-25 metalloprotease regulates innate immune response through NF-κB signaling.J. Immunol.2016197129630210.4049/jimmunol.160009427259858
    [Google Scholar]
  39. SprenkelerE.G.G. ToolA.T.J. KreftI.C. van AlphenF.P.J. SeneviratneS.L. MaimarisJ. LuqmaniA. van LeeuwenK. van BruggenR. BurnsS.O. KuijpersT.W. Loss-of-function mutations in CSF3R cause moderate neutropenia with fully mature neutrophils: Two novel pedigrees.Br. J. Haematol.2020191593093410.1111/bjh.1708132966608
    [Google Scholar]
  40. NugterenS. SamsomJ.N. Secretory leukocyte protease inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer.Cytokine Growth Factor Rev.202159223510.1016/j.cytogfr.2021.01.00533602652
    [Google Scholar]
  41. BaiL. GaoX. GuoY. GongJ. LiY. HuangH. LiuX. Prediction of shared gene signatures and biological mechanisms between polycystic ovary syndrome and asthma: Based on weighted gene coexpression network analysis.Int. J. Gynaecol. Obstet.2024165115516810.1002/ijgo.1525338055328
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673337033241010072529
Loading
/content/journals/cmc/10.2174/0109298673337033241010072529
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test