Skip to content
2000
Volume 33, Issue 2
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Background

Necroptosis is a modifiable form of cell death mainly dependent on RIPK3 and MLKL. The association between necroptosis and inflammation has been a key focus of research. An increasing number of studies have shown that necroptosis plays an important role in inflammatory diseases, such as inflammatory bowel disease.

Methods

Articles published up to 2023 were searched on the Web of Science. VOSviewer, CiteSpace, Gephi, and Microsoft Office Excel were used for bibliometric analysis and visualisation. In addition, journal impact factors and journal partitions were obtained through the Web of Science.

Results

A total of 3011 articles were included in this study. The number of publications and citations in the field increased year by year. China had the highest number of publications. Cell Death & Disease published the most papers in the field. P. Vandenabeele is one of the most important scholars in this field. The most cited reference was “Molecular Mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death”.We found substantial evidence that acute kidney injury, sepsis, cancer, and other diseases are closely related to necroptosis. In addition, we found that inhibitors of necroptosis have great potential in the treatment of inflammatory diseases.

Conclusion

This is the first bibliometric analysis of studies related to necroptosis in inflammatory diseases. Our results provide an overview of basic and influential research, providing a basis for the identification of valuable research directions. Furthermore, this work offers general insight into the role of necroptosis in inflammatory human diseases.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673336964250103060730
2025-01-22
2026-02-22
Loading full text...

Full text loading...

References

  1. RobertsJ.Z. CrawfordN. LongleyD.B. The role of ubiquitination in apoptosis and necroptosis.Cell Death Differ.202229227228410.1038/s41418‑021‑00922‑934912054
    [Google Scholar]
  2. NewtonK. DixitV.M. KayagakiN. Dying cells fan the flames of inflammation.Science202137465711076108010.1126/science.abi593434822265
    [Google Scholar]
  3. TonnusW. BelavgeniA. BeuschleinF. EisenhoferG. FassnachtM. KroissM. KroneN.P. ReinckeM. BornsteinS.R. LinkermannA. The role of regulated necrosis in endocrine diseases.Nat. Rev. Endocrinol.202117849751010.1038/s41574‑021‑00499‑w34135504
    [Google Scholar]
  4. HorneC.R. SamsonA.L. MurphyJ.M. The web of death: The expanding complexity of necroptotic signaling.Trends Cell Biol.202333216217410.1016/j.tcb.2022.05.00835750616
    [Google Scholar]
  5. Cheng, SY.; Hu, XM.; Xiong, K. Regulatory role of calpain in neuronal death.Neural Regen. Res.201813355656210.4103/1673‑5374.22876229623944
    [Google Scholar]
  6. ChenX. ZhuR. ZhongJ. YingY. WangW. CaoY. CaiH. LiX. ShuaiJ. HanJ. Mosaic composition of RIP1–RIP3 signalling hub and its role in regulating cell death.Nat. Cell Biol.202224447148210.1038/s41556‑022‑00854‑735256774
    [Google Scholar]
  7. LiuS. LiaoL. HuangJ. WangS. Role of CAST-Drp1 pathway in retinal neuron-regulated necrosis in experimental glaucoma.Curr. Med. Sci.202343116617210.1007/s11596‑022‑2639‑836255664
    [Google Scholar]
  8. WangS. LiaoL. HuangY. WangM. ZhouH. ChenD. LiuF. JiD. XiaX. JiangB. HuangJ. XiongK. Pin1 is regulated by camkii activation in glutamate-induced retinal neuronal regulated necrosis.Front. Cell. Neurosci.20191327610.3389/fncel.2019.0027631293391
    [Google Scholar]
  9. WangS. LiaoL. WangM. ZhouH. HuangY. WangZ. ChenD. JiD. XiaX. WangY. LiuF. HuangJ. XiongK. Pin1 promotes regulated necrosis induced by glutamate in rat retinal neurons via CAST/CALPAIN2 pathway.Front. Cell. Neurosci.20181142510.3389/fncel.2017.0042529403356
    [Google Scholar]
  10. Wang, SC.; Hu, XM.; Xiong, K. The regulatory role of pin1 in neuronal death. Neural Regen. Res.2023181748010.4103/1673‑5374.34104335799512
    [Google Scholar]
  11. YanW-T. ZhaoW-J. HuX-M. BanX-X. NingW-Y. WanH. ZhangQ. XiongK. PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons.Neural Regen. Res.202318235736335900430
    [Google Scholar]
  12. Castelo-SoccioL. KimH. GadinaM. SchwartzbergP.L. LaurenceA. O’SheaJ.J. Protein kinases: Drug targets for immunological disorders.Nat. Rev. Immunol.2023231278780610.1038/s41577‑023‑00877‑737188939
    [Google Scholar]
  13. LiccardiG. AnnibaldiA. MLKL post-translational modifications: Road signs to infection, inflammation and unknown destinations.Cell Death Differ.202330226927810.1038/s41418‑022‑01061‑536175538
    [Google Scholar]
  14. Yan, WT.; Yang, YD.; Hu, XM.; Ning, WY.; Liao, LS.; Lu, S.; Zhao, WJ.; Zhang, Q.; Xiong, K. Do Pyroptosis, apoptosis, and necroptosis (panoptosis) exist in cerebral ischemia? evidence from cell and rodent studies.Neural Regen. Res.20221781761176810.4103/1673‑5374.33153935017436
    [Google Scholar]
  15. AmirA. DomenicoP. DaolinT. ShuqinZ. ClaudioF. JunR. Immunosenescence: Molecular mechanisms and diseases.Signal Transduct. Target. Ther.20238110254010.1016/j.arr.2024.102540
    [Google Scholar]
  16. Hu, XM.; Zheng, SY.; Mao, R,; Zhang, Q.; Wan, XX.; Zhang, YY.; Li, J.; Yang, RH.; Xiong, K. Pyroptosis-related gene signature elicits immune response in rosacea.Exp. Dermatol.2024331e1481210.1111/exd.1481237086043
    [Google Scholar]
  17. KoichiroH. AkoI. YoshihisaT. NobuhikoO. HiroyukiK. AkariH. MamiM. DaisukeK. RihoO. HiroshiK. AndrewJ. JunichiN. HiroakiW. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation.Nat. Commun.2019101581610.1038/s41467‑019‑13812‑z.31862977
    [Google Scholar]
  18. JeO. OhE. SongE. MoriyamaM. WongP. ZhangS. JiangR. StrohmeierS. KleinsteinS.H. KrammerF. IwasakiA. Intranasal priming induces local lung-resident b cell populations that secrete protective mucosal antiviral IgA.Sci. Immunol.2021666eabj512910.1126/sciimmunol.abj512934890255
    [Google Scholar]
  19. NeupaneA.S. KubesP. Imaging reveals novel innate immune responses in lung, liver, and beyond.Immunol. Rev.2022306124425710.1111/imr.1304034816440
    [Google Scholar]
  20. ZippF. BittnerS. SchaferD.P. Cytokines as emerging regulators of central nervous system synapses.Immunity202356591492510.1016/j.immuni.2023.04.01137163992
    [Google Scholar]
  21. SefikE. QuR. JunqueiraC. KaffeE. MirzaH. ZhaoJ. BrewerJ.R. HanA. SteachH.R. IsraelowB. BlackburnH.N. VelazquezS.E. ChenY.G. HaleneS. IwasakiA. MeffreE. NussenzweigM. LiebermanJ. WilenC.B. KlugerY. FlavellR.A. Inflammasome activation in infected macrophages drives COVID-19 pathology.Nature2022606791458559310.1038/s41586‑022‑04802‑135483404
    [Google Scholar]
  22. ZhengY. ZhaoJ. ShanY. GuoS. SchrodiS.J. HeD. Role of the granzyme family in rheumatoid arthritis: Current Insights and future perspectives.Front. Immunol.202314113791810.3389/fimmu.2023.113791836875082
    [Google Scholar]
  23. LeyfmanY. EmmanuelN. MenonG.P. JoshiM. WilkersonW.B. CappelliJ. ErickT.K. ParkC.H. SharmaP. Cancer and COVID-19: Unravelling the immunological interplay with a review of promising therapies against severe SARS-CoV-2 for cancer patients.J. Hematol. Oncol.20231613910.1186/s13045‑023‑01432‑637055774
    [Google Scholar]
  24. BentE.H. Millán-BareaL.R. ZhuangI. GouletD.R. FröseJ. HemannM.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy.Nat. Commun.2021121621810.1038/s41467‑021‑26407‑434711820
    [Google Scholar]
  25. CucoloL. ChenQ. QiuJ. YuY. KlapholzM. BudinichK.A. ZhangZ. ShaoY. BrodskyI.E. JordanM.S. GillilandD.G. ZhangN.R. ShiJ. MinnA.J. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade.Immunity2022554671685.e1010.1016/j.immuni.2022.03.00735417675
    [Google Scholar]
  26. SendlerM. van den BrandtC. GlaubitzJ. WildenA. GolchertJ. WeissF.U. HomuthG. De Freitas ChamaL.L. MishraN. MahajanU.M. BossallerL. VölkerU. BrökerB.M. MayerleJ. LerchM.M. NLRP3 inflammasome regulates development of systemic inflammatory response and compensatory anti-inflammatory response syndromes in mice with acute pancreatitis.Gastroenterology20201581253269.e1410.1053/j.gastro.2019.09.04031593700
    [Google Scholar]
  27. KondylisV. PasparakisM. RIP Kinases in Liver Cell Death, Inflammation and Cancer.Trends Mol. Med.2019251476310.1016/j.molmed.2018.10.00730455045
    [Google Scholar]
  28. JostP.J. HöckendorfU. Necroinflammation emerges as a key regulator of hematopoiesis in health and disease.Cell Death Differ.2019261536710.1038/s41418‑018‑0194‑430242210
    [Google Scholar]
  29. LiuX. LuF. ChenX. Corrigendum: Examination of the role of necroptotic damage-associated molecular patterns in tissue fibrosis.Front. Immunol.202213104802610.3389/fimmu.2022.104802636439139
    [Google Scholar]
  30. MuraiS. YamaguchiY. ShirasakiY. YamagishiM. ShindoR. HildebrandJ.M. MiuraR. NakabayashiO. TotsukaM. TomidaT. Adachi-AkahaneS. UemuraS. SilkeJ. YagitaH. MiuraM. NakanoH. A FRET biosensor for necroptosis uncovers two different modes of the release of DAMPs.Nat. Commun.201891445710.1038/s41467‑018‑06985‑630367066
    [Google Scholar]
  31. DengX.X. LiS.S. SunF.Y. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-Mediated RIPK3/MLKL signaling.Aging Dis.201910480781710.14336/AD.2018.072831440386
    [Google Scholar]
  32. ShlomovitzI. ErlichZ. SpeirM. ZargarianS. BaramN. EnglerM. Edry-BotzerL. MunitzA. CrokerB.A. GerlicM. Necroptosis directly induces the release of full-length biologically active IL -33 in vitro and in an inflammatory disease model.FEBS J.2019286350752210.1111/febs.1473830576068
    [Google Scholar]
  33. LiuZ. WangM. LuoJ. TanY. HouM. WangS. A bibliometric analysis of hotpots and trends for the relationship between skin inflammation and regeneration.Front. Surg.202310118062410.3389/fsurg.2023.118062437151861
    [Google Scholar]
  34. Chen, XY.; Dai, YH.; Wan, XX.; Hu, XM.; Zhao, WJ.; Ban, XX.; Wan, H.; Huang, K.; Zhang, Q.; Xiong, K. ZBP1-mediated necroptosis: Mechanisms and therapeutic implications.Molecules20222815210.3390/molecules2801005236615244
    [Google Scholar]
  35. ZhangJ.H. WangM.J. TanY.T. LuoJ. WangS.C. A bibliometric analysis of apoptosis in glaucoma.Front. Neurosci.202317110515810.3389/fnins.2023.110515836814788
    [Google Scholar]
  36. LiL. XiaX. LuoY. ZhuY. LuoX. YangB. ShangL. Prospects and hot spots for mammalian target of rapamycin in the field of neuroscience from 2002 to 2021.Front. Integr. Nuerosci.20221694026510.3389/fnint.2022.94026536118114
    [Google Scholar]
  37. ZhangJ.H. NiS.Y. TanY.T. LuoJ. WangS.C. A bibliometric analysis of PIN1 and cell death.Front. Cell Dev. Biol.202210104372510.3389/fcell.2022.104372536393861
    [Google Scholar]
  38. ZhuS. LiL. GuZ. ChenC. ZhaoY. 15 years of small : Research trends in nanosafety.Small20201636200098010.1002/smll.20200098032338444
    [Google Scholar]
  39. SabeM. ChenC. PerezN. SolmiM. MucciA. GalderisiS. StraussG.P. KaiserS. Thirty years of research on negative symptoms of schizophrenia: A scientometric analysis of hotspots, bursts, and research trends.Neurosci. Biobehav. Rev.202314410497910.1016/j.neubiorev.2022.10497936463972
    [Google Scholar]
  40. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑429362479
    [Google Scholar]
  41. WangH. SunL. SuL. RizoJ. LiuL. WangL.F. WangF.S. WangX. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3.Mol. Cell201454113314610.1016/j.molcel.2014.03.00324703947
    [Google Scholar]
  42. ChoY. ChallaS. MoquinD. GengaR. RayT.D. GuildfordM. ChanF.K.M. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation.Cell200913761112112310.1016/j.cell.2009.05.03719524513
    [Google Scholar]
  43. DegterevA. HitomiJ. GermscheidM. Ch’enI.L. KorkinaO. TengX. AbbottD. CunyG.D. YuanC. WagnerG. HedrickS.M. GerberS.A. LugovskoyA. YuanJ. Identification of RIP1 kinase as a specific cellular target of necrostatins.Nat. Chem. Biol.20084531332110.1038/nchembio.8318408713
    [Google Scholar]
  44. HuB. GongQ. ChenS. YueL. MaW. WangF. FengX. WangJ. LiC. LiuM. WangX. MengX. LiJ. WenJ. Protective effect of inhibiting necroptosis on gentamicin-induced nephrotoxicity.FASEB J.2022369e2248710.1096/fj.202200163R35947125
    [Google Scholar]
  45. ZhengX. DengF. SharmaI. KanwarY.S. Myo -inositol oxygenase overexpression exacerbates cadmium-induced kidney injury via oxidant stress and necroptosis.Am. J. Physiol. Renal Physiol.20223223F344F35910.1152/ajprenal.00460.202135100813
    [Google Scholar]
  46. XuY. MaH. ShaoJ. WuJ. ZhouL. ZhangZ. WangY. HuangZ. RenJ. LiuS. ChenX. HanJ. A role for tubular necroptosis in cisplatin-induced AKI.J. Am. Soc. Nephrol.201526112647265810.1681/ASN.201408074125788533
    [Google Scholar]
  47. LiJ. ZhangJ. ZhangY. WangZ. SongY. WeiS. HeM. YouS. JiaJ. ChengJ. TRAF2 protects against cerebral ischemia-induced brain injury by suppressing necroptosis.Cell Death Dis.201910532810.1038/s41419‑019‑1558‑530988281
    [Google Scholar]
  48. JunzheJ. MengL. WeifanH. MinX. JiachengL. YihanQ. KeZ. FangW. DongweiX. HailongW. XiaoniK. Potential effects of different cell death inhibitors in protecting against ischemia-reperfusion injury in steatotic liver.Int. Immunopharmacol.202412811154510.1016/j.intimp.2024.11154538244517
    [Google Scholar]
  49. YangX. LiG. LouP. ZhangM. YaoK. XiaoJ. ChenY. XuJ. TianS. DengM. PanY. LiM. WuX. LiuR. ShiX. TianY. YuL. KeH. JiaoB. CongY. PlikusM.V. LiuX. YuZ. LvC. Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation.Proc. Natl. Acad. Sci. USA20241211e230739512010.1073/pnas.230739512038157451
    [Google Scholar]
  50. WangF. ZhouF. PengJ. ChenH. XieJ. LiuC. XiongH. ChenS. XueG. ZhouX. XieY. Macrophage Tim-3 maintains intestinal homeostasis in DSS-induced colitis by suppressing neutrophil necroptosis.Redox Biol.20247010307210.1016/j.redox.2024.10307238330550
    [Google Scholar]
  51. LiuL. LiangL. YangC. ZhouY. ChenY. Extracellular vesicles of Fusobacterium nucleatum compromise intestinal barrier through targeting RIPK1-mediated cell death pathway.Gut Microbes2021131190271810.1080/19490976.2021.190271833769187
    [Google Scholar]
  52. JiaY. ChengL. YangJ. MaoJ. XieY. YangX. ZhangX. WangD. ZhaoZ. SchoberA. WeiY. miR-223-3p prevents necroptotic macrophage death by targeting Ripk3 in a negative feedback loop and consequently ameliorates advanced atherosclerosis.Arterioscler. Thromb. Vasc. Biol.202444121823710.1161/ATVBAHA.123.31977637970714
    [Google Scholar]
  53. LinB. JinZ. ChenX. ZhaoL. WengC. ChenB. TangY. LinL. Necrostatin-1 protects mice from acute lung injury by suppressing necroptosis and reactive oxygen species.Mol. Med. Rep.20202152171218110.3892/mmr.2020.1101032323764
    [Google Scholar]
  54. NaderiS. KhodagholiF. PourbadieH.G. NaderiN. RafieiS. JanahmadiM. SayehmiriF. MotamediF. Role of amyloid beta (25−35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer’s disease.Neurotoxicology202394718610.1016/j.neuro.2022.11.00336347329
    [Google Scholar]
  55. CaoX. PengS. YanY. LiJ. ZhouJ. DaiH. XuJ. Alleviation of temporomandibular joint osteoarthritis by targeting RIPK1-mediated inflammatory signalling.J. Cell. Mol. Med.2024285e1792910.1111/jcmm.1792937643315
    [Google Scholar]
  56. ChengJ. DuanX. FuX. JiangY. YangP. CaoC. LiQ. ZhangJ. HuX. ZhangX. AoY. RIP1 perturbation induces chondrocyte necroptosis and promotes osteoarthritis pathogenesis via targeting BMP7.Front. Cell Dev. Biol.2021963838210.3389/fcell.2021.63838233937236
    [Google Scholar]
  57. WangY. WangH. TaoY. ZhangS. WangJ. FengX. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury.Neuroscience20142669110110.1016/j.neuroscience.2014.02.00724561219
    [Google Scholar]
  58. ChenH. FengZ. MinL. TanM. ZhangD. GongQ. LiuH. HouJ. Vagus nerve stimulation prevents endothelial necroptosis to alleviate blood-spinal cord barrier disruption after spinal cord injury.Mol. Neurobiol.202360116466647510.1007/s12035‑023‑03477‑737460917
    [Google Scholar]
  59. ZhangQ. WeiS. LuJ. FuW. ChenH. HuangQ. ChenZ. ZengZ. Necrostatin-1 accelerates time to death in a rat model of cecal ligation and puncture and massively increases hepatocyte caspase-3 cleavage.Am. J. Physiol. Gastrointest. Liver Physiol.20193164G551G56110.1152/ajpgi.00175.201830735454
    [Google Scholar]
  60. ZhouM. HeJ. ShiY. LiuX. LuoS. ChengC. GeW. QuC. DuP. ChenY. ABIN3 negatively regulates necroptosis-induced intestinal inflammation through recruiting a20 and restricting the ubiquitination of ripk3 in inflammatory bowel disease.J. Crohn’s Colitis20211519911410.1093/ecco‑jcc/jjaa13132599618
    [Google Scholar]
  61. WangJ. LiuM. WangF. WeiB. YangQ. CaiY. ChenX. LiuX. JiangL. LiC. HuX. YuJ. MaT. JinJ. WuY. LiJ. MengX. RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress.Clin. Sci. (Lond.)2019133141609162710.1042/CS2019059931315969
    [Google Scholar]
  62. YangX. LuH. XieH. ZhangB. NieT. FanC. YangT. XuY. SuH. TangW. ZhouB. Potent and selective RIPK1 inhibitors targeting dual-pockets for the treatment of systemic inflammatory response syndrome and sepsis.Angew. Chem. Int. Ed.2022615e20211492210.1002/anie.20211492234851543
    [Google Scholar]
  63. ZengY. PengJ. GaoX. TianD. ZhanW. LiuJ. HuX. HuangS. TianS. QiuL. LiangA. WangF. DongR. GuangB. YangT. A novel gut-restricted RIPK1 inhibitor, SZ-15, ameliorates DSS-induced ulcerative colitis.Eur. J. Pharmacol.202293717538110.1016/j.ejphar.2022.17538136368417
    [Google Scholar]
  64. SunY. XuL. ShaoH. QuanD. MoZ. WangJ. ZhangW. YuJ. ZhuangC. XuK. Discovery of a trifluoromethoxy cyclopentanone benzothiazole receptor-interacting protein kinase 1 inhibitor as the treatment for Alzheimer’s disease.J. Med. Chem.20226521149571496910.1021/acs.jmedchem.2c0147836288088
    [Google Scholar]
  65. HarrisP.A. BergerS.B. JeongJ.U. NagillaR. BandyopadhyayD. CampobassoN. CapriottiC.A. CoxJ.A. DareL. DongX. EidamP.M. FingerJ.N. HoffmanS.J. KangJ. KasparcovaV. KingB.W. LehrR. LanY. LeisterL.K. LichJ.D. MacDonaldT.T. MillerN.A. OuelletteM.T. PaoC.S. RahmanA. ReillyM.A. RendinaA.R. RiveraE.J. SchaefferM.C. SehonC.A. SinghausR.R. SunH.H. SwiftB.A. TotoritisR.D. VossenkämperA. WardP. WisnoskiD.D. ZhangD. MarquisR.W. GoughP.J. BertinJ. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases.J. Med. Chem.20176041247126110.1021/acs.jmedchem.6b0175128151659
    [Google Scholar]
  66. HeF. MaY. LiS. RenH. LiuQ. ChenX. MiaoH. YeT. LuQ. YangZ. LiT. TongX. YangH. ZhangM. WangH. WangY. YuS. Necroptotic TNFα-syndecan 4-TNFα vicious cycle as a therapeutic target for preventing temporomandibular joint osteoarthritis.J. Bone Miner. Res.20203751044105510.1002/jbmr.454235278225
    [Google Scholar]
  67. ZhaoW. LiC. ZhangH. ZhouQ. ChenX. HanY. ChenX. DihydrotanshinoneI. Dihydrotanshinone I attenuates plaque vulnerability in apolipoprotein e-deficient mice: Role of receptor-interacting protein 3.Antioxid. Redox Signal.202134535136310.1089/ars.2019.779632323566
    [Google Scholar]
  68. CuiY.R. QuF. ZhongW.J. YangH.H. ZengJ. HuangJ.H. LiuJ. ZhangM.Y. ZhouY. GuanC.X. Beneficial effects of aloperine on inflammation and oxidative stress by suppressing necroptosis in lipopolysaccharide-induced acute lung injury mouse model.Phytomedicine202210015407410.1016/j.phymed.2022.15407435397283
    [Google Scholar]
  69. LouK. LiuS. ZhangF. SunW. SuX. BiW. YinQ. QiuY. ZhangZ. JingM. MaS. The effect of hyperthyroidism on cognitive function, neuroinflammation, and necroptosis in APP/PS1 mice.J. Transl. Med.202321165710.1186/s12967‑023‑04511‑x37740205
    [Google Scholar]
  70. JayakumarA. BothwellA.L.M. RIPK3-induced inflammation by I-MDSCs promotes intestinal tumors.Cancer Res.20197971587159910.1158/0008‑5472.CAN‑18‑215330786994
    [Google Scholar]
  71. XyH. ZhangT. YinC. FedorovA. QiaoL. BaoH. BeknazarovN. WangS. GautamH. MM.R. ChaseC.J. PeriS. StuditskyV. BegA.A. ThomasG.P. WalkleyC. XuY. PoptsovaM. HerbertA. BalachandranS. Compound-42 alleviates acute kidney injury by targeting RIPK3-mediated necroptosis.Br. J. Pharmacol.2023180202641266010.1111/bph.1615237248964
    [Google Scholar]
  72. XuC. WangJ. SuoX. JiM. HeX. ChenX. ZhuS. HeY. XieS. LiC. DongZ. ChenY. NiW. FengX. LiuM. JinJ. LiZ. MengX. RIPK3 inhibitor-AZD5423 alleviates acute kidney injury by inhibiting necroptosis and inflammation.Int. Immunopharmacol.202211210926210.1016/j.intimp.2022.10926236166972
    [Google Scholar]
  73. GautamA. BoydD.F. NikharS. ZhangT. SiokasI. Van de VeldeL.A. GaevertJ. MeliopoulosV. ThapaB. RodriguezD.A. CaiK.Q. YinC. SchnepfD. BeerJ. DeAntoneoC. WilliamsR.M. ShubinaM. LivingstonB. ZhangD. AndrakeM.D. LeeS. BodaR. DuddupudiA.L. CrawfordJ.C. VogelP. LochC. SchwemmleM. FritzL.C. Schultz-CherryS. GreenD.R. CunyG.D. ThomasP.G. DegterevA. BalachandranS. Necroptosis blockade prevents lung injury in severe influenza.Nature2024628800983584310.1038/s41586‑024‑07265‑838600381
    [Google Scholar]
  74. JeonJ. NohH.J. LeeH. ParkH.H. HaY.J. ParkS.H. LeeH. KimS.J. KangH.C. EyunS. YangS. KimY.S. TRIM24-RIP3 axis perturbation accelerates osteoarthritis pathogenesis.Ann. Rheum. Dis.202079121635164310.1136/annrheumdis‑2020‑21790432895234
    [Google Scholar]
  75. PiaoL. WuD. RuiC. YangY. LiuS. LiuJ. JinZ. ZhangH. FengX. BaiL. The Bcr-Abl inhibitor DCC-2036 inhibits necroptosis and ameliorates osteoarthritis by targeting RIPK1 and RIPK3 kinases.Biomed. Pharmacother.202316111452810.1016/j.biopha.2023.11452836931029
    [Google Scholar]
  76. QinX. HuL. ShiS. ChenX. ZhuangC. ZhangW. JitkaewS. PangX. YuJ. TanY. WangH. CaiZ. The Bcr-Abl inhibitor GNF-7 inhibits necroptosis and ameliorates acute kidney injury by targeting RIPK1 and RIPK3 kinases.Biochem. Pharmacol.202017711394710.1016/j.bcp.2020.11394732247850
    [Google Scholar]
  77. MotawiT.M.K. Abdel-NasserZ.M. ShahinN.N. Ameliorative Effect of Necrosulfonamide in a Rat Model of Alzheimer’s Disease: Targeting Mixed Lineage Kinase Domain-like Protein-Mediated Necroptosis.ACS Chem. Neurosci.202011203386339710.1021/acschemneuro.0c0051632936609
    [Google Scholar]
  78. WangY. WangJ. WangH. FengX. TaoY. YangJ. CaiJ. Necrosulfonamide attenuates spinal cord injury via necroptosis inhibition.World Neurosurg.2018114e1186e119110.1016/j.wneu.2018.03.17429614353
    [Google Scholar]
  79. YangW. TaoK. WangY. HuangY. DuanC. WangT. LiC. ZhangP. YinY. GaoJ. LiR. Necrosulfonamide ameliorates intestinal inflammation via inhibiting GSDMD-medicated pyroptosis and MLKL-mediated necroptosis.Biochem. Pharmacol.202220611533810.1016/j.bcp.2022.11533836347275
    [Google Scholar]
  80. ZhongW.J. ZhangJ. DuanJ.X. ZhangC.Y. MaS.C. LiY.S. YangN.S.Y. YangH.H. XiongJ.B. GuanC.X. JiangZ.X. YouZ.J. ZhouY. TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury.J. Transl. Med.202321117910.1186/s12967‑023‑04027‑436879273
    [Google Scholar]
  81. LiuS. LiY. ChoiH.M.C. SarkarC. KohE.Y. WuJ. LipinskiM.M. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis.Cell Death Dis.20189547610.1038/s41419‑018‑0469‑129686269
    [Google Scholar]
  82. LiuX. LiuM. JiangL. GaoL. ZhangY. HuangY. WangX. ZhuW. ZengH. MengX. WuY. A novel small molecule Hsp90 inhibitor, C-316-1, attenuates acute kidney injury by suppressing RIPK1-mediated inflammation and necroptosis.Int. Immunopharmacol.202210810884910.1016/j.intimp.2022.10884935588657
    [Google Scholar]
  83. LiuQ. WengJ. LiC. FengY. XieM. WangX. ChangQ. LiM. ChungK.F. AdcockI.M. HuangY. ZhangH. LiF. Attenuation of PM2.5-induced alveolar epithelial cells and lung injury through regulation of mitochondrial fission and fusion.Part. Fibre Toxicol.20232012810.1186/s12989‑023‑00534‑w37464447
    [Google Scholar]
  84. ZhangW. ZhengX. GongY. JiangT. QiuJ. WuX. LuF. WangZ. HongZ. VX-11e protects articular cartilage and subchondral bone in osteoarthritis by inhibiting the RIP1/RIP3/MLKL and MAPK signaling pathways.Bioorg. Chem.202212010563210.1016/j.bioorg.2022.10563235074577
    [Google Scholar]
  85. SunK. GuoZ. ZhangJ. HouL. LiangS. LuF. WangG. XuJ. ZhangX. GuoF. ZhuW. Inhibition of TRADD ameliorates chondrocyte necroptosis and osteoarthritis by blocking RIPK1-TAK1 pathway and restoring autophagy.Cell Death Discov.20239110910.1038/s41420‑023‑01406‑037002200
    [Google Scholar]
  86. MedzhitovR. Origin and physiological roles of inflammation.Nature2008454720342843510.1038/nature0720118650913
    [Google Scholar]
  87. PasparakisM. VandenabeeleP. Necroptosis and its role in inflammation.Nature2015517753431132010.1038/nature1419125592536
    [Google Scholar]
  88. MalireddiR.K.S. KesavardhanaS. KannegantiT.D. ZBP1 and TAK1: Master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis).Front. Cell. Infect. Microbiol.2019940610.3389/fcimb.2019.0040631850239
    [Google Scholar]
  89. PlaceD.E. LeeS. KannegantiT.D. PANoptosis in microbial infection.Curr. Opin. Microbiol.202159424910.1016/j.mib.2020.07.01232829024
    [Google Scholar]
  90. KarkiR. SundaramB. SharmaB.R. LeeS. MalireddiR.K.S. NguyenL.N. ChristgenS. ZhengM. WangY. SamirP. NealeG. VogelP. KannegantiT.D. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis.Cell Rep.202137310985810.1016/j.celrep.2021.10985834686350
    [Google Scholar]
  91. LeeS. KarkiR. WangY. NguyenL.N. KalathurR.C. KannegantiT.D. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence.Nature2021597787641541910.1038/s41586‑021‑03875‑834471287
    [Google Scholar]
  92. WanH. YanY. HuX. ShangL. ChenY. HuangY. ZhangQ. YanW. XiongK. Inhibition of mitochondrial VDAC1 oligomerization alleviates apoptosis and necroptosis of retinal neurons following OGD/R injury.Ann. Anat.202324715204910.1016/j.aanat.2023.15204936690044
    [Google Scholar]
  93. Zhang, Q.; Hu, XM.; Zhao, WJ.; Ban, XX.; Li, Y.; Huang, YX.; Wan, H.; He, Y.; Liao, LS.; Shang, L.; Jiang, B.; Qing, GP.; Xiong, K. Targeting necroptosis: A novel therapeutic option for retinal degenerative diseases.Int. J. Biol. Sci.202319265867410.7150/ijbs.7799436632450
    [Google Scholar]
  94. MulayS.R. AndersH.J. Crystal nephropathies: Mechanisms of crystal-induced kidney injury.Nat. Rev. Nephrol.201713422624010.1038/nrneph.2017.1028218266
    [Google Scholar]
  95. LawlorK.E. KhanN. MildenhallA. GerlicM. CrokerB.A. D’CruzA.A. HallC. Kaur SpallS. AndertonH. MastersS.L. RashidiM. WicksI.P. AlexanderW.S. MitsuuchiY. BenetatosC.A. CondonS.M. WongW.W.L. SilkeJ. VauxD.L. VinceJ.E. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL.Nat. Commun.201561628210.1038/ncomms728225693118
    [Google Scholar]
  96. KamiyaM. MizoguchiF. KawahataK. WangD. NishiboriM. DayJ. LouisC. WicksI.P. KohsakaH. YasudaS. Targeting necroptosis in muscle fibers ameliorates inflammatory myopathies.Nat. Commun.202213116610.1038/s41467‑021‑27875‑435013338
    [Google Scholar]
  97. SimpsonJ. LohZ. UllahM.A. LynchJ.P. WerderR.B. CollinsonN. ZhangV. DondelingerY. BertrandM.J.M. EverardM.L. BlythC.C. HartelG. Van OosterhoutA.J. GoughP.J. BertinJ. UphamJ.W. SpannK.M. PhippsS. Respiratory syncytial virus infection promotes necroptosis and HMGB1 release by airway epithelial cells.Am. J. Respir. Crit. Care Med.2020201111358137110.1164/rccm.201906‑1149OC32105156
    [Google Scholar]
  98. LeeS.A. ChangL.C. JungW. BowmanJ.W. KimD. ChenW. FooS.S. ChoiY.J. ChoiU.Y. BowlingA. YooJ.S. JungJ.U. OASL phase condensation induces amyloid-like fibrillation of RIPK3 to promote virus-induced necroptosis.Nat. Cell Biol.20232519210710.1038/s41556‑022‑01039‑y36604592
    [Google Scholar]
  99. TingZ. ChaoranY. AleksandrF. LiangjunQ. HongliangB. NazarB. ShiyuW. AvishekhG. RileyW. JeremyC. SurajP. VasilyS. AmerB. PaulT. CarlW. YanX. MariaP. AlanH. SiddharthB. ADAR1 masks the cancer immunotherapeutic Promise of ZBP1-Driven necroptosis.Nature2022606791459460210.1038/s41586‑022‑04753‑735614224
    [Google Scholar]
  100. PogonowskaM. PoniatowskiŁ.A. WawrzyniakA. KrólikowskaK. KalickiB. The role of progranulin (PGRN) in the modulation of anti-inflammatory response in asthma.Cent. Eur. J. Immunol.20194419110110.5114/ceji.2019.8326731114443
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673336964250103060730
Loading
/content/journals/cmc/10.2174/0109298673336964250103060730
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bibliometrics; cell death; citespace; inflammation; Necroptosis; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test